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Abstract

The touching character segmentation problem becomes complex when touching
strings are multi-oriented. Moreover in graphical documents sometimes char-
acters in a single touching string have different orientations. Segmentation of
such complex touching is more challenging. In this paper, we present a scheme
towards the segmentation of English multi-oriented touching strings into indi-
vidual characters. When two or more characters touch, they generate a big
cavity region in the background portion. Based on the convex hull informa-
tion, at first, we use this background information to find some initial points for
segmentation of a touching string into possible primitives (a primitive consists
of a single character or part of a character). Next, the primitives are merged
to get optimum segmentation. A dynamic programming algorithm is applied
for this purpose using the total likelihood of characters as the objective func-
tion. A SVM classifier is used to find the likelihood of a character. To consider
multi-oriented touching strings the features used in the SVM are invariant to
character orientation. Experiments were performed in different databases of
real and synthetic touching characters and the results show that the method is
efficient in segmenting touching characters of arbitrary orientations and sizes.

Keywords: Touching Character Segmentation, Multi-oriented Character
Recognition, Dynamic Programming

1. Introduction1

As electronic media becomes more and more accessible, the need for trans-2

ferring offline documents to the electronic domain grows. Optical Character3

Recognition (OCR) works by scanning source documents and performing char-4

acter analysis on the resulting images giving a transcription to ASCII text which5

can then be stored and manipulated electronically like any standard electronic6

document. As part of the OCR process, character segmentation techniques7

are applied to word images before individual characters images are recognized.8

The simplest way to perform character segmentation is to use the small space9

between characters as segmentation regions. This strategy fails when there are10

touching or broken characters, which often occur in degraded text images. Some11

examples of such documents are photocopies, faxes, historical documents, etc.12

and they are often degraded due to compression, bilevel conversion, aging or13
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poor typing [3, 28]. In these situations, two or more characters may be seg-14

mented as one character component or one character may split into multiple15

pieces. Due to degradation, adjacent characters in a word touch together and16

they share common pixels in touching regions [27].17

Besides the huge amount of documents having only horizontal direction text,18

there are many graphical documents such as maps, engineering drawings, etc. or19

artistic documents, where text lines appear frequently in different orientations20

other than usual horizontal direction. The purpose of such orientation and21

curvi-linearity is to catch people’s attention at some particular words/lines or to22

annotate the location of graphical objects. Thus, a single document may contain23

strings with different inter-character spacing in the strings due to the annotation,24

style, etc. Also, the curvi-linear nature of the text makes the orientations of25

characters in a string different. As a result, it is difficult to detect the skew of26

such strings and hence character recognition of such documents is a complex27

task.28

Segmentation of touching components is one of the difficulties to get higher29

recognition rates by OCR systems. The OCR systems available commercially30

do not perform well when words are multi-oriented in fashion in a document.31

When touching occurs in multi-oriented documents (e.g. artistic or graphical32

documents), it is much more difficult to segment such multi-oriented touching33

than touching segmentation of normal horizontal touching. Touching in curvi-34

linear string leads to false character segmentation and hence wrong recognition35

result occurs.36

Text-lines could appear at different directions in the same document as illus-37

trated in Fig.1. It can be seen from Fig.1(a), the word “PLANET” contains a38

touching string “LANE” of four characters. In Fig.1(b), we show a map where39

many characters in the word “Mayurakshi” are touching and they are oriented40

in different directions, although they belong to a same word. Orientation of two41

touching strings “ON” and “RE” of Fig.1(c) are perpendicular to each other.42

In Fig.1(d), it may be noted that orientations of “es” and “no” in the word43

“Couesnon” are not the same and such strings create difficulty for segmenta-44

tion.45

1.1. Related Work46

There are many published papers towards the recognition and segmentation47

of the touching characters of horizontal direction [2, 15, 19, 30] and they are48

briefly reviewed here.49

Among the earlier pieces of work on touching character segmentation, one50

class of approaches uses contour features of the connected components for seg-51

mentation [7, 15, 29]. When analyzing the contour of a touching pattern, valley52

and crest points are derived. Next, a cutting path is decided to segment the53

touching pattern by joining valley and crest points. Kahan et al. [13] used pro-54

jection profiles as the objective function for touching character segmentation.55

They used the idea of joining adjacent characters that have minimum vertical56

projection. The segmentation function is calculated from the ratio of the second57

derivative of the projection-profile curve to its height. Later, Lu [18] introduced58

a peak-to-valley function to improve the segmentation approach. Fujisawa et al.59

[8] used profile features for touching numeral segmentation. Upper and lower60

profiles of the connected component are computed and the distance between61

upper and lower profiles are analyzed to detect the segmentation points.62
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Figure 1: Example of documents showing multi-oriented touching characters in (a) an adver-
tisement, (b) and (d) maps, and (c) electrical diagram.

Afterwards, Liang et al. [17] proposed discriminating functions for machine63

printed touching character segmentation. Pixel projection and profile projec-64

tion techniques are employed as discrimination functions for solving heavily65

touching printed characters. Next, they applied forward segmentation along66

with a backward merge procedure based on the output of a character classi-67

fier. It works on the components generated by discriminating functions. Yu68

and Yan [32] presented a segmentation technique using structural features for69

single-touching hand-written numeral strings. At first, the touching region of70

the character components is determined based on its structural shape. Next,71

a candidate touching point is pre-selected using the geometrical information of72

special structural shapes. Finally, morphological analysis and partial recogni-73

tion results are used for the purpose of segmentation. Dimauro et al. [5] applied74

contour based features along with some descending algorithms for the touching75

character segmentation purpose.76

Another class of approaches is based on thinning [3, 19]. In these approaches,77

thinning of foreground and/or background pixels of the connected pattern are78

processed. End and fork points obtained by thinning are used for cutting points79

extraction. These methods are time consuming and in addition they generate80

protrusions. These protrusions sometimes give wrong results because they bring81

some confusions among the actual fork and end points.82

A water reservoir based technique [21] is employed to locate inter-character83

spaces in touching numeral strings. Water reservoir is a metaphor to illustrate84

the cavity region of a component. In this sense, if water is poured from a side85

of a component, the cavity regions of the background portion of the component86

where water will be stored are considered as reservoirs of the component. Based87

on the size of water reservoirs, the segmentation zones of the touching string88
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are selected. Next, segmentation is done using structural information of these89

reservoirs.90

Yong et al. [31] proposed an approach using supervised learning on the la-91

beled examples and a Markov Random Field (MRF) approach has been applied92

for this purpose. Further, a propagation minimization method is employed to93

select the candidate patches based on the compatibility of the neighbor patches.94

The output of the MRF after the iterative belief propagation forms a segmen-95

tation probability map. Finally, the cut position is extracted from the map. An96

accuracy rate of 94.8% is reported.97

Methods based on combinations of features have also been used for touching98

segmentation. Oliveira et al. [20] used contour, profile and skeleton features to99

find a set of points for touching characters segmentation. First, local minima of100

contours and profile features are defined as basic point (BP ). Second, a point101

with more than two pixels in its neighborhood is defined as an intersection102

point (IP ). Afterwards, an Euclidean distance scheme is applied to determine103

proximity between IP and BP for segmentation.104

The state-of-the-art approaches of touching character segmentation gener-105

ally consider touching of characters in horizontal text strings. These methods106

assume the characters of strings are aligned horizontally and thus segmenta-107

tion features are devised for such characters in horizontal strings. Also, the108

features used in most of the approaches for text character recognition are gen-109

erally not rotation invariant. The characters along a touching portion may be110

in different orientations with respect to the baseline of the word. In graphical111

documents when characters touch, it is difficult to know the angle of alignment112

of characters in the touching regions. Moreover in Fig.1(b), we show examples113

where the characters in a single touching have different orientations. As a result,114

skew correction methods cannot make such touching horizontal and hence the115

methods that take care of horizontal touching cannot be used. For segmenta-116

tion purpose, we need technique that can take care of size and rotation invariant117

touching strings. Hence, we propose here a segmentation approach that can han-118

dle touching strings in multiple orientations. Recently, we proposed a touching119

character segmentation approach in ICDAR-2009 [25] and the present work is120

its extended version. This paper elaborates the different steps of character seg-121

mentation method. Also, extensive experiments including comparative study122

are included in this version to prove the efficiency of this method.123

1.2. Outline of the Proposed Approach124

As mentioned earlier, many techniques are available for segmentation of125

horizontal touching characters but to the best of our knowledge there is no126

work towards multi-oriented touching character segmentation except our work.127

In this present paper, we propose an approach for multi-oriented n-character128

touching string segmentation scheme. The block-diagram of our approach is129

shown in Fig.2. The different steps used in this system are discussed as follows.130

Recognition process: An important step in our system is the recognition131

of the isolated character. As we consider multi-oriented graphical document,132

features used in our system must be rotation invariant. Circular and convex133

hull ring based zoning approach has been used along with angular information134

of the contour pixels of the character to make the feature rotation invariant.135

A SVM classifier is used to find the likelihood of a character. The C1 and C2136

modules of Fig.2 discuss about recognition.137
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Figure 2: Block diagram of the proposed approach for touching character segmentation.

Touching component detection: There may exist touching or non-touching138

characters in a word. Before passing a component into our segmentation process139

(steps T2-T5 of Fig.2), we detect if the component is touching or isolated. We140

apply a Connected Component (CC) labeling to the word image and extract141

individual components. For each component, we compute the recognition confi-142

dence for all character class models using our recognition process (steps C1-C2).143

Based on this recognition score, the components are separated into touching and144

non-touching components. The touching components are processed next for seg-145

mentation. This module is noted by T1 in Fig.2 and discussed later.146

Segmentation zones: When two or more characters touch, they generate a147

big cavity region at the background portion. This background portion is used148

to detect the segmentation zones. To handle the background information of a149

multi-oriented string, properties of the convex hull of the touching string have150

been used. This process is marked by T2 in Fig.2.151

Initial segmentation points: The segmentation zones are used to find the152

segmentation points. A set of initial segmentation points are calculated in the153

contours of convex hull residua using the Douglas Peucker polyline approxima-154

tion. This is denoted by T3 in Fig.2.155

Primitive Segmentation: Next, segmentation lines are calculated from the156

initial segmentation points of the touching character. Based on these segmenta-157

tion lines, the touching string is segmented into primitives. A primitive consists158

of a single character or a part of a single character. This step is mentioned by159

T4 in Fig.2.160

Merging of primitive segments using dynamic programming : Some of the161

primitives obtained before are merged to get optimum segmentation. To do this,162
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dynamic programming algorithm is applied using total likelihood of characters163

as the objective function. Based on the recognition rates of primitive segments,164

multiple hypothesis of segmentation are generated. A dynamic programming165

(DP) algorithm is applied to get the optimal solution for the touching character166

segmentation. This step is marked by T5 in Fig.2.167

As discussed earlier, the main contribution of this paper is the multi-oriented168

n-character string segmentation for its recognition (i.e. steps T2-T5 in Fig.2).169

However, it is difficult to dissociate this part from the recognition process. So,170

we will present recognition procedure briefly before detail discussion of touching171

character segmentation.172

The rest of the paper is organized as follows. In Section 2, we explain173

the feature extraction procedure as well as recognition for handling characters174

in multi-scale and multi-oriented environments (steps C1 and C2 of Fig.2). In175

Section 3, we present the proposed segmentation approach for n-touching strings176

(steps T1-T5 of Fig.2). Next, data details and the different experimental results177

are discussed in Section 4. Finally, the paper is concluded in Section 5.178

2. Feature Description and Recognition of Text Character179

Recognition of text characters in multi-rotation and multi-scale environment180

is a challenging task. Recognition of individual characters in multi-oriented181

and multi-sized environment drives the segmentation hypothesis of n-touching182

characters in our system. In the literature different shape descriptors like An-183

gular Radial Transform (ART) [23], Hu’s moments [12], Zernike moments [14],184

Fourier-Mellin [1], Angle based features [22] etc. are proposed for recognition185

and they are invariant to rotation, translation and scale. We noted that an an-186

gle based feature provides best performance among different rotation invariant187

shape descriptors. Because of the highest performance we have used an angle188

based feature for our work. The computation of such feature is briefly described189

in the following subsections.190

2.1. Feature Descriptor191

Our Angle based feature descriptor is a zone-wise feature descriptor to de-192

scribe symbol/text characters. It is based on the histogram of angular informa-193

tion of the external and internal contour pixels of the characters. The relative194

angles obtained from all the contour pixels of a character are grouped into bins.195

Here, we consider 8 bins (360◦/45◦) of angular information.196

To obtain local relative angle information, circular ring and convex hull197

rings are constructed. A set of circular rings is defined as the concentric circles198

considering their center as the center of Minimum Enclosing Circle (MEC) of199

the character and the minimum enclosing circle is the outer ring of the set.200

Similarly, convex hull rings are also constructed from the convex hull shape of201

the character. Angular slope of the contour pixels with respect to the center of202

the MEC is also included as rotation invariant features. The slope of contour203

pixels for each bin is computed and grouped into different sets. Details of feature204

explanation can be found in [22], so we are elaborating it here.205

Considering 7 circular rings and 7 convex hull rings, we have 56 (8 relative206

angular bins × 7 convex hull rings) features from the convex hull ring, 56 (8207

relative angular bins × 7 circular rings) features from the circular ring and 64208
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(8 relative angular bins × 8 sets of angular slopes) features from angular slope209

with respect to the center of MEC. As a result, we have a 176 (56+56+64)210

dimensional feature vector for the classification. The numbers of bins, rings and211

sets have been selected based on the experiment. To obtain scale invariance,212

the feature vector is normalized. The feature vector is divided by the total213

number of contour pixels for this purpose. We have shown the plot of 176214

dimensional features of characters between intra-class and inter-class characters215

in Fig.3. From the figure it can be seen that the corresponding features of same216

character classes are similar although the characters are multi-oriented.217

2.2. Character Recognition218

A Support Vector Machine (SVM) has been used to build the isolated charac-219

ter models. We employed the SVM software package libSVM 1 for this purpose.220

A Gaussian kernel with Radial Basis Function (RBF ) has been chosen in our221

system to recognize multi-oriented text characters. Feature learning is done with222

datasets of multi-oriented characters to generate the text character models.223

During the training process, the SVM generates character models according224

to pre-segmented text characters. After training, when an unknown character225

or a primitive segment is fed to this SVM classifier, the SVM provides its class226

label along with its weight. The value of the weight lies between 0 to 1. We227

consider this weight as recognition confidence and this value is used as the cost228

function in our dynamic programming approach for correct segmentation of229

multi-oriented touching characters.230

3. Touching Character Segmentation231

A touching component segmentation approach for two touching characters232

in a multi-oriented environment was presented in [24]. This segmentation was233

performed with the knowledge of the number of total characters in the touching234

component. To do this, touching components of only 2 characters were collected235

and the method was based on cavity regions of the background portion. The236

convex hull was used to find the cavity regions. Next, several hypothesis of237

segmentation lines were computed from these cavity regions. Each of these238

segmentation lines divided the touching component into 2 parts. Finally, all239

pair-wise segmented parts were fed to the SVM classifier to find the correct240

segmentation. The best segmentation line was selected based on the highest241

accumulated recognition confidence of the two parts of the touching component.242

Continuing with this idea, a touching component of n-characters could be243

segmented if the number of character in the touching component were known244

before. This concept is restricted because we have to know the number of245

characters in the touching component apriori. It is a hard constraint, since246

it is not always possible to know the number of characters in a real touching247

component in a multi-scale and multi-rotation environment. Because of this,248

here in this paper, we propose an optimization algorithm to segment n-character249

touching components.250

If a n-character string or word is rotated to a certain angle, we estimate251

a rough angle from the minimum rectangular bounding box of the string. We252

1http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Feature vectors are plotted for different orientations of characters ‘A’, ‘R’ and
‘N’. (Here, X axis (horizontal) denotes the feature vector and Y axis (vertical) denotes their
values.)

compute the bounding box of the word and find the angle (α) of the major253

axis. Better approximation of the angle can be obtained if a word contain more254
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number of characters. An approximate height of the word (Hw) is found from its255

bounding box (See Fig.4). It is to be noted that, when there are few characters in256

the word and it includes characters having ascenders and descenders, α indicates257

an approximated angle of the inclination of the word. In Fig.4, we show a multi-258

oriented word along with its bounding box and α and Hw are marked in this259

figure. It can be noted that if this word is rotated by α then all the components260

of the word will not be in horizontal mode. Hence, existing approaches of261

horizontal touching character segmentation can not be applied in such string262

after rotating it by α. Given a touching string of unknown orientation, our rough263

inclination angle α is used to arrange the primitive segments of the touching264

component in a sequential order, such that a dynamic programming algorithm265

can be applied to merge some of the primitive segments for proper segmentation.266

Figure 4: A multi-oriented word and its bounding box are shown. Here, α indicates the rough
angle of inclination and Hw is the height of the bounding box.

Our proposed segmentation method is divided into five main steps (See267

Fig.2): touching component detection (T1), segmentation zones (T2), initial268

segmentation points (T3), primitive segmentation (T4) and merging of primi-269

tive segments using DP (T5). Details of the segmentation method are discussed270

in the following subsections.271

3.1. Touching Component Detection272

There may exist touching or non-touching characters in a word. A com-273

ponent is detected as touching or isolated before applying the segmentation274

approach on the touching string. For this purpose, at first, a Connected Com-275

ponent (CC) labeling is applied to extract individual components of the word.276

For each component, we compute the recognition confidence for all character277

class models using SVM and rank their confidence scores in descending order.278

If a component is recognized by the SVM with a high accuracy (more than 0.4),279

we assign it as a non-touching or isolated character. If the difference between280

the top two recognition scores of a component is high, it is also considered as281

an isolated character. The rest of the components are considered as touching.282

These touching components are processed for segmentation using our approach.283

We may get some false positive labelling due to such separation based on confi-284

dence score. For example, the difference between the top two recognition scores285

may be less for characters like ‘D’ and ‘O’. Such mislabelled components do not286

affect the final segmentation result because the proposed dynamic programming287

approach takes care of such errors with the final optimal score.288

3.2. Segmentation Zones289

When two or more characters touch, generally they generate big cavity re-290

gions at the background portion between touching components. When compo-291

nents in a string are in the horizontal direction, the water reservoir concept can292
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be used to find these cavity regions [21]. Water reservoir based algorithms may293

not be applied in the strings of multi-oriented nature. We have considered some294

properties of the convex hull to take care of this problem.295

The Convex Hull [10] or convex envelope for a set of points X in a real vector296

space V is the minimal convex set containing X. In another way, a convex hull297

is a minimal convex shape entirely bounding an object. Some of the properties298

of convex hull residuum are described as follows.299

1. Residuum area (RA): The area of a residuum is defined by the number of300

pixels inside the residuum.301

2. Residuum surface level (RSL): The RSL of a residuum is the line obtained302

by joining two endpoints of the open face of the residuum.303

3. Residuum border pixels (RBP ): The border pixels of each residuum are304

defined as the contour pixels of the residuum excluding the RSL pixels.305

4. Residuum height (RH): It is the depth of the farthest residuum border306

pixel from RSL.307

In Fig.5, convex hull residua and their different parameters for a text character308

‘S’ are shown.309

Figure 5: (a) Image of the character ‘S’. (b) Two residua from the convex hull of ‘S’. (c)
Different parameters of convex hull are shown in a residuum.

Similarly, the cavity regions of the touching component are determined by310

finding residua of that component through convex hulls. These residua cover311

the cavity regions of the touching component and thus, they are used to de-312

termine the segmentation zone of touching characters. The residua found from313

the convex hull of a touching character are shown in Fig.6. For this touching314

component (“72”), we find a total of four cavity regions.315

Figure 6: (a) Touching character. (b) The residua of the convex hull are shown and marked
by grey shade. (c) Different parameters of the residuum.

Given a touching component, we may find many small cavity regions along316

with the segmentation zones due to the degradation of contour of the characters.317

Even, the presence of “Serif” in some fonts of text characters (e.g. Times New318
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Roman) also produces small cavity regions. These small cavity regions are319

considered as noise and thus, these are not considered for segmentation in this320

approach. To do that, the residua having height more than stroke-width are321

considered for segmentation purpose. The stroke-width (Stw) of the word is322

the statistical mode of object pixels’ run lengths [2]. For a component, Stw323

is calculated as follows. The component is scanned row-wise (horizontally),324

column-wise (vertically) and then in two diagonal directions (45◦ and 135◦). If325

rl different runs of lengths r1, r2 . . . rrl with frequencies f1, f2 . . . frl, respectively326

are obtained by the scanning the component, then value of Stw will be ri if fi327

= max(fj), j = 1, 2 . . . rl.328

3.3. Initial Segmentation Points329

To segment a touching string into possible primitive segments, segmentation330

points are next computed from the segmentation zones extracted previously. To331

do it, we employ a polygonal approximation method to the contour pixels of332

residuum borders. Polygonisation provides key-points which are at the corner333

of edges in the corresponding segmentation zones. Among existing algorithms334

of the literature [16], we have selected the Douglas and Peucker [6] polygonal335

approximation algorithm. A short presentation of this algorithm is given in336

Appendix A. This algorithm is well adapted to localize hard curvature points337

along a border.338

The two end points of the residuum surface level (RSL) of each selected339

residua are regarded as the initial rough estimate of the polyline. Using this340

initial guess, the other vertices are approximated using a tolerance threshold341

ε. The value of this tolerance threshold is selected with stroke width (Stw)342

precision. After approximation, the list of vertices are treated as key-points. The343

advantage of using polygonal approximation is that it provides the key-points344

which are at the corner of the edges in the corresponding segmentation zones.345

These key points are necessary for touching character segmentation because,346

usually when the characters touch, they form a corner at the touching region.347

We have noted that some of the key-points might appear very near to RSL348

due to the appearance of hard curvature or degradation in the contours of these349

zones. These key-points do not provide the segmentation lines and thus are350

selected for removal. We remove such key-points based on the corresponding351

residuum height (RH). The key-points which are having height more than352

(0.5 × RH) from the corresponding RSL are kept for the initial segmenta-353

tion points. Remaining key-points are considered as the initial segmentation354

points. In Fig.8(b), we have shown the initial segmentation points for the image355

Fig.8(a). Similarly, these initial segmentation points are shown for a touching356

component of fonts having serifs in Fig.7.357

Figure 7: A touching component of characters “UT” is shown with its initial segmentation
points. These initial segmentation points are marked in dark gray (red in pdf).
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3.4. Primitive Segmentation358

Once we get initial segmentation points, for each initial segmentation point359

(Si) we find another point (Sj) through which the touching component can be360

cut into 2 parts. Computation of Sj is done as follows. We know the angle of361

the direction of the RSL with the horizontal axis. For each initial segmentation362

point, we find a segmentation line passing through this point and perpendicular363

to the respective RSL. This line segments a touching component at the point364

Si. The perpendicular line to the RSL generally gives us a clue to the direction365

of the segmentation line. We draw a line from the point Si in the opposite366

side of RSL and perpendicular to the RSL until it passes through the object367

pixels. Let, the last object pixel on this line be Sc. The line from Si to Sc368

may be considered as a segmentation line. This segmentation line may not369

give the best segmentation always and hence to get better segmentation the370

point Sc is tuned to be a better segmentation point. This tuning is done by371

considering some neighbor contour points of the point Sc. To get neighboring372

pixels, the contour is traced upto a length of stroke-width (Sw) clockwise and373

anti-clockwise starting from Sc. These traced pixels are neighbor pixels. The374

neighbor pixel having the minimum distance from Si is chosen as Sj . The line375

obtained by joining Sj and Si is the segmentation line and the distance between376

Sj and Si is called the length of segmetnation line. We explain the segmentation377

line computation process in Algorithm 1.378

Algorithm 1 Segmentation Lines of Touching Component

Require: Touching component (CT )
Ensure: A set of segmentation lines from CT

Compute convex hull of CT and find the residua.
//create a list (LS) of segmentation lines
LS ⇐ �
for all residua Rk of CT do

Generate the initial segmentation points using polyline approx. in the
contour of Rk

for all initial segmentation points Si do
Compute segmentation line (Lik) at Si perpendicular to RSL of Rk and
tune Lik

LS ⇐ LS ∪ Lik

end for
end for

It may happen that the touching portion of the components creates segmen-379

tation zones in both sides (top and bottom) of the characters. Such touching380

creates multiple hypotheses of segmentation points in both sides. These points381

generate segmentation lines for the components. As a result, some of the seg-382

mentation hypotheses may lie very close to other. To reduce the choices of383

hypotheses we remove some of the lines which are very closed. If the distance384

between two segmentation lines is less than Stw, the segmentation line with385

bigger length is not considered for segmentation. Moreover, if the length of a386

segmentation line is greater than 0.75×Hw, that segmentation line is also not387

considered. This value is determined from the experimental result.388

For each initial segmentation point we get the corresponding segmentation389

line. If we have n segmentation lines, the image is segmented into (n + 1)390
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sub-images. The (candidate) segmentation lines of Fig.8(a) have been shown391

in Fig.8(c). Note that, there were 7 initial segmentation points (See Fig.8(b))392

and we have got 5 segmentation lines (these 5 segmentation lines are shown in393

Fig.8(c)). These segmentation lines split the touching component into primitive394

segments. In Fig.8(c) there are 6 primitive segments. These primitive segments395

are arranged in a sequence following the direction of angle α. Now, we will merge396

some primitive segments for correct segmentation. A dynamic programming397

technique is used for the purpose.398

Figure 8: (a) A touching string of four characters. (b) Initial segmentation points found from
concave residua. (c) Candidate segmentation lines and primitive segments obtained from
selected segmentation points.

3.5. Merging of Primitive Segments using Dynamic Programming399

The key idea behind dynamic programming (DP) is quite simple and the400

core of a DP algorithm [9] is the module that takes a set of symbols (list of401

primitive segments in our case) and a set of labels (possible characters) and402

returns the optimum assignment of labels to symbols assuming that an optimum403

assignment is the sum of the sub-assignments (sub-problems). DP is a very404

powerful algorithmic paradigm in which a problem is solved by identifying a405

collection of sub-problems and tackling them one by one, smallest first, using406

the answers to small problems to help figure out larger ones, until the whole lot of407

them is solved. The DP seeks to solve each sub-problem only once, thus reducing408

the number of computations. Given a touching image, the primitive segments409

are merged so that the average character likelihood is maximized using DP and410

in our case, the likelihood of each character is calculated using a recognition411

accuracy obtained by the SVM. Generally the order of time complexity of DP is412

O(N×M×M), where N is the length of the touching string and M is maximum413

number of primitive segments for a character. From, our experiment we noted414

that a single character can take at most four primitive segments and hence, M415

reduces to four in our case.416

To apply the DP algorithm, the primitive segments are arranged from left417

to right following the direction of α. Let S1, S2, ..Sn be a list of n primitives. In418

Fig.8(c) the six primitive segments (n = 6) are indexed according to their sorting419

order. We use two tables to store the character likelihood of primitive segments420

after merging (see Fig.9). In the Score Table ST , we enter the classification421

score {cuv} and in the Label Table LT , we enter the character classification422

label {luv} where 1 ≤ u ≤ v ≤ n. The classification scores and classification423

labels are defined as follows:424

cuv =

v⋃
i=u

Si , score from ST
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425

luv =

v⋃
i=u

Si , label from LT

In these tables, the cells correspond to the recognition result of a cumulative426

grouping of primitive segments. The possible merging result of the primitive seg-427

ments of Fig.8(c) are shown in Fig.9(a) and Fig.9(b). For example, in Fig.9(b),428

the cell l35 represents the character likelihood of merging the primitive segments429

S3, S4 and S5. The label obtained by our SVM is ‘m’. In table ST, the cell c35430

indicates the corresponding classification score (0.183) to obtain the label ‘m’.431

If the classification score of merged segments is very low (a threshold value of432

0.1 is decided empirically), we do not consider it. Cumulation of primitive seg-433

ments is continued until the width of the resultant image is less than 1.2×Hw.434

This value is chosen based on the size of the Latin alphabet. Also, characters435

like ‘M’ can be segmented into multiple hypothesis of ‘1’. So, if we find two or436

more consecutive character shapes of ‘1’, ‘t’, etc., we check the hypothesis of437

the combination of these shapes and based on the recognition confidence, the438

character is selected.439

(a)

(b)

Figure 9: (a) Score Table ST and (b) Label Table LT of character string “OBAR”.

Next, we check the total likelihood of the character groups. The group hav-440

ing the maximum likelihood is chosen and the corresponding merged primitives441

are their segmentation result. In Fig.8(c), the first segment corresponds to the442

letter ‘O’, the second segment corresponds to the letter ‘B’, the third and the443

fourth segments correspond to the letter ‘A’ and the fifth and sixth segments444

correspond to the letter ‘R’. The assignment of primitive segments for the char-445

acters O B A R is also represented by:446

i→ 1 2 3 4 and j(i)→ 1 2 4 6447
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where i denotes the letter number, j(i) denotes the number of the last primitive448

corresponding to the i-th letter. Note that the number of the first primitive449

segment corresponding to the i-th letter is j(i− 1) + 1. Given j(i), (i = 1. . .n),450

the total likelihood of characters is represented by451

L =

n∑
i=1

l(i, j(i− 1) + 1, j(i)) (1)

where l(i, j(i − 1) + 1, j(i)) is the likelihood for the i-th letter. The optimal452

assignment (the optimal segmentation) that maximizes the total likelihood is453

found in terms of dynamic programming as follows. The optimal assignment454

j(n)∗ for the n-th letter is the one such that455

L∗
j(n) = L(n, j(n)∗) = MaxL(n, j(n)) (2)

where L(k, j(k)) is the maximum likelihood of partial solutions given j(k) for456

the k-th letter. This is defined and calculated recursively by457

L(k, j(k))= Maxj(1),j(2)..j(k−1)

∑k
i=1 l(i, j(i−1)+1, j(i))458

= Maxj(k−1)[l(k, j(k − 1) + 1, j(k)) + L(k − 1, j(k − 1))] (3)

459

and L(0, j(0)) = 0 for j(0) = 1, 2, ...m (4)

Starting from (4), all L(k, j(k))’s are calculated for k = 1, 2, ..., n using (3) to460

find j(n)∗ using (2). The rest of j(k)∗’s (k = n−1, n−2, ..., 1) are found by back461

tracking a pointer array representing the optimal j(k − 1)∗’s which maximizes462

L(k, j(k)) in (3).463

Given a segment group, the feature vector is calculated for a character class.464

Based on the character likelihood, the total likelihood of a word is found in465

terms of the dynamic programming technique discussed above. In Fig.10 we466

have shown the final segmentation result of the touching characters of Fig.8(a).467

Figure 10: Final segmentation lines are drawn on the touching string shown in Fig.8(a) after
applying our proposed approach.

468

4. Data Collection and Experimental Results469

In this section we detail the performance of the proposed approach. First we470

describe the dataset generation and then we show experimental results of our471

touching character segmentation approach.472
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4.1. Dataset Generation473

To the best of our knowledge, there exists no standard database to evaluate474

character segmentation methods in a multi-oriented and multi-size context. For475

our experiments, we have constituted our own database using real as well as syn-476

thetic data. Synthetic data is available online1 for the use of other researchers.477

The real data is collected from maps, newspapers and magazines. We have478

considered 10 different real geographical maps for evaluation of OCR in graph-479

ical documents. The average size of these map images are 1200 × 1200. There480

are approximately 35-40 words in each document. Documents are digitized in481

grey tone at 300 dpi and we have used a histogram based global binarization482

algorithm for their two tone conversion. A text separation method [26] has483

been used to extract characters from documents, and the groundtruth has been484

generated manually.485

Synthetic data is generated from Arial and Times New Roman fonts. Some486

of them are shown in Fig.12(a) and (b). These datasets have been produced487

using the system described in [4]. The data are produced at first in vector488

graphics form with the corresponding ground-truth. Next, vector graphics data489

are rasterized to obtain the test images. The touching strings are composed490

of single-word images with different scales, orientations and fonts, with cor-491

responding groundtruth at the character level. The words are selected from a492

dictionary (of 52 country names), with random scaling and rotation parameters.493

The average number of characters in the word is 7-8. In each word, this data494

generation method looks for the pairs of successive characters, and makes them495

connected according to a boolean value. The overlapping between characters is496

controlled using a Gaussian function.497

In our experiment on touching character segmentation, we tested our scheme498

on 450 words (200 real and 250 synthetic). The synthetic data contains touching499

as well as non-touching characters. There were 880 touching components in500

these 450 words. Also we noted that 2050 characters touched in these 880501

touching strings. The touching strings are of different sizes and orientations.502

Some of the data are up side down to check the rotation invariance nature of503

our method.504

4.2. Isolated Character Recognition using Different Shape Descriptors505

Isolated text recognition in a multi-scale and multi-oriented environment506

drives the solution towards the touching character segmentation problem. Text507

character recognition is a challenging task in such an environment. To over-508

come such problems, multi-scale and multi-rotation shape features are used as509

discussed in Section 2. A SVM classifier with RBF function is employed for510

isolated text character recognition.511

In our experiment both English uppercase and lowercase alpha-numeric char-512

acters are considered, so we should have 62 classes (26 for uppercase, 26 for513

lowercase and 10 for digits). But because of shape similarity due to orientation514

some of the characters like ‘d’ and ‘p’; ‘b’ and ‘q’; etc. are grouped together.515

Hence, in our approach we considered 40 classes of character shapes. Different516

fonts of characters including Times New Roman and Arial have been used for517

the experiment.518

1http://mathieu.delalandre.free.fr/projects/sesyd/charseg.html
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A comparison is done with other rotation invariant feature descriptors used519

in the literature, namely: ART, HU, Zernike moments and Fourier Mellin. We520

considered three different sets of data consisting of multi-oriented and multi-521

scale text characters to perform this character recognition evaluation. One of522

the datasets is from graphical documents and its size is 8250. The groundtruth523

of this dataset has been generated manually for the performance evaluation. The524

other two datasets are synthetic data, constructed from Arial and Times New525

Roman fonts characters. The size of both of these datasets is 1850. The feature526

vectors obtained from different descriptors are passed to a SVM classifier to get527

the recognition accuracy. The classification is done with 5-fold cross-validation.528

Comparative results of different descriptors are shown in Fig.11. It is noted529

that angle based features (HU moments) perform the best (worst) among these530

descriptors to classify text characters.531

Figure 11: Text character recognition accuracy with different shape feature descriptors like
ART, HU, Zernike, Fourier Mellin and Angle based feature.

4.3. Performance Evaluation of n-Touching Characters532

In our experiment, here at first, we have provided some qualitative results533

to show how segmentation is done with our approach. Next, we evaluate the534

performance of our method in the datasets discussed in Section 4.1. To get535

an idea about the segmentation results, we have shown some touching images536

with their segmentation results in Fig.12. In Fig.12(c), some of the words are537

touching in a curvilinear fashion. Our method also segmented them correctly.538

We compared the touching character segmentation results using 2 different539

multi-oriented text descriptors namely: angle based features and Fourier-Mellin540

moments. The Fourier-Mellin moment shape descriptor has been chosen due to541

its good performance in recognizing isolated multi-oriented characters [1]. We542

obtained 91.36% and 88.38% segmentation accuracy in overall experiment using543

angle based features and Fourier-Mellin, respectively. In Table 1, we provide544
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(a)

(b)

(c)

Figure 12: Some segmentation results of different datasets when angle based features are
applied : (a) Arial font (b) Times New Roman font (c) Real data.

the accuracy of touching character segmentation based on the number of char-545

acters present in a touching component. We noted that, our system provides546

better results on 2-character touching strings than 3 or more character touching547

strings. Fig.13 provides the comparative results of different datasets using these548

two different features. It can be noted that angle based features provides better549

segmentation results than that of Fourier Mellin in all these datasets.550

551

Error Analysis: Fig.14 shows some wrong segmentation of touching char-552

acters from our method. It is noted that most of the segmentation errors are553
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due to following. (a) When a touching string can be segmented in more than554

two ways to get the valid segmented characters. For example, in Fig.14(a) the555

touching string was formed from the characters ‘r’ and ‘m’. But this touching556

string can be visualized as ‘r-r-n’ also, and our system segmented this string into557

‘r’, ‘r’ and ‘n’ instead of ‘r’ and ‘m’ which we consider as erroneous. (b) The558

character shapes like ‘h’ (Fig.14(b)) may be split in two parts and our system559

segments this character into ‘t’,‘l’. We also considered it as wrong segmentation.560

(c) Since our method is based on convex hulls, when touching is made in two or561

more positions, we may not find any segmentation point in the touching cavity562

region. Hence we get erroneous results.563

Table 1: Segmentation results on touching string of different length.

No. of characters Total number of Segmentation Accuracy
in a touching string touching strings Angle-based Fourier-Mellin

2 635 92.60% 91.18%
3 206 89.97% 86.25%
≥ 4 38 86.18% 73.68%

Total 879 91.36% 88.38%

Figure 13: Percentage of touching character segmentation accuracy in datasets of “Arial”,
“Times New Roman” fonts and Real dataset.

Figure 14: Two examples of wrong segmentation results.
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4.4. Experiment on 2-touching Components564

Though our objective is to segment n-touching components into their cor-565

responding characters, we have performed an experiment with the additional566

knowledge of the number of components present in a touching component. This567

test is performed to check whether the information of the number of character of568

a touching string improves the performance of touching component segmenta-569

tion or not. For the experiment, we have created a restricted dataset of touching570

components containing 2 characters only. The dataset contains 635 components571

(as mentioned in the 2nd row of Table 1) and the characters are in multi-scale572

and multi-orientation fashion. The segmentation on this dataset is done based573

on the concept discussed in the first paragraph of Section 3. We have obtained574

95.74% character segmentation accuracy in this experiment. In Fig.15, we have575

shown some touching images with their segmentation results obtained using this576

algorithm. From the Table 1, it can be noted that we obtain 92.60% accuracy577

on two character touching strings when the number of characters in a touching578

string was not known. Thus, it is to be noted that we achieved 3.14% (95.74% -579

92.60%) higher accuracy than the dynamic programming based approach when580

additional information of the number of characters in a touching component is581

used.582

Figure 15: Few images showing segmentation in 2-character touching.

4.5. Experiment on Graphical Documents583

We have integrated the touching character segmentation method in OCR of584

graphical documents. The details of these graphical documents are mentioned585

in Section 4.1. We have performed the character recognition in 10 maps. We586
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show a map in Fig.16. These maps contain text characters at different scale587

and orientation. There were long graphical lines that touch or overlap with588

text in these documents. To separate the text components, we remove the long589

graphical objects that are present in the document using [26]. Also, the text590

characters in a string sometimes touch together. So, our method of touching591

character segmentation is applied here for improving character recognition in592

these documents. The extracted text characters are recognized initially using593

only isolated character recognition approach. Next, we integrated the touching594

character segmentation method and compared the recognition accuracy. We595

show in Table 2 the improvement of OCR in such documents when segmentation596

based recognition method is used.597

Figure 16: Part of a map showing orientation and touching of characters.

Table 2: Comparison of OCR accuracy by adding touching character segmentation approach

Map Total Number of OCR Accuracy OCR Accuracy
Image Characters in without Touching with Touching

the Document Segmentation Segmentation
1 251 91.24% 96.81%
2 236 91.95% 95.76%
3 318 92.77% 95.60%
4 458 93.45% 96.07%
5 173 91.33% 96.53%
6 185 87.02% 92.97%
7 201 88.56% 97.01%
8 362 89.50% 95.30%
9 277 97.47% 98.19%
10 180 86.67% 93.89%

5. Conclusions598

In this paper we have proposed a scheme towards segmentation of multi-599

oriented and multi-sized n-character touching strings. The algorithm, at first,600

segments the touching characters into primitives and then finds the best se-601
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quence of characters shapes based on a dynamic programming approach using602

these primitive segments.603

We also performed an adhoc segmentation approach of touching characters604

based on the knowledge of number of characters in the touching string. In605

such a restrictive dataset, we have obtained better performance. But, in a606

real environment, it is not possible to know a priori the number of characters607

in the touching component. Hence, the proposed approach based on dynamic608

programming explores the full idea for such segmentation.609

To the best of our knowledge, this work is pioneer towards multi-oriented610

and multi-sized n-character touching string segmentation. We have tested our611

method on various multi-oriented touching character data with different fonts612

and scale. As the features of text characters are devised for multi-scale and613

multi-orientation, some touching characters are not segmented properly due to614

different possibility of segmentation. Such situation can be taken care of by615

using a word dictionary in the dynamic programming algorithm and by using616

contextual information.617
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Appendix625

Douglas-Peucker polyline-approximation algorithm : The classical626

Douglas-Peucker [6, 11] polyline-approximation algorithm generates a set of627

points to represent the original line. It works from top to bottom by starting628

with a rough initial approximation at a simplified polyline, namely the single629

edge joining the first and the last vertices of the polyline. Then the remaining630

vertices are tested for closeness to that edge. If there are vertices further than631

a specified tolerance, ε, away from the edge, then the vertex furthest from it is632

added to the simplification. This creates a new guess for the simplified polyline.633

Using recursion, this process continues for each edge of the current guess until634

all vertices of the original polyline are within the tolerance of the simplification.635

Fig.17 explains a few steps for obtaining approximated polyline. For a polyline636

shown in Fig.17(a), the contour pixel (Vt) has the maximum distance from the637

line joining the farthest points (V1 and Vn) of the polyline. Next, the polyline638

is simplified with lines V1Vt and VtVn as shown in Fig.17(b). In Fig.17(c),639

this process is iterated in polyline segment VtVn and Vu is selected having the640

maximum distance between points Vt and Vn.641
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