
Combination of Product Graph and Random Walk Kernel
for Symbol Spotting in Graphical Documents

Anjan Dutta†, Jaume Gibert†, Josep Lladós†, Horst Bunke†† and Umapada Pal†††
†Computer Vision Center, Universitat Autònoma de Barcelona, Barcelona, Spain

††Institute of Computer Science and Applied Mathematics, Universitat Bern, Bern, Switzerland
†††Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Kolkata, India

{adutta, jgibert, josep}@cvc.uab.es, bunke@iam.unibe.ch, umapada@isical.ac.in

Abstract

This paper explores the utilization of product graph
for spotting symbols on graphical documents. Prod-
uct graph is intended to find the candidate subgraphs
or components in the input graph containing the paths
similar to the query graph. The acute angle between
two edges and their length ratio are considered as the
node labels. In a second step, each of the candidate
subgraphs in the input graph is assigned with a dis-
tance measure computed by a random walk kernel. Ac-
tually it is the minimum of the distances of the compo-
nent to all the components of the model graph. This
distance measure is then used to eliminate dissimilar
components. The remaining neighboring components
are grouped and the grouped zone is considered as a
retrieval zone of a symbol similar to the queried one.
The entire method works online, i.e., it doesn’t need any
preprocessing step. The present paper reports the ini-
tial results of the method, which are very encouraging.

1. Introduction

Symbol spotting can be defined as locating a given
query symbol into a set of graphical document images.
The desired output for a particular query should be a
ranked list of retrieved symbols in which the true posi-
tives should appear at the beginning. In document anal-
ysis it is applied for document retrieval and indexing
tasks. Since documents often suffer from various noise
and distortion symbol spotting is a difficult problem.
Spotting is usually done through query by example i.e.
the user crops the item he wants to retrieve from the
database and the cropped image acts as input of the sys-
tem. This implies an infinite number of possibilities of

query symbols, which prevents explicit training of the
spotting system.

The list of approaches proposed for spotting symbols
in graphical documents is long [12]. The current paper
only contains the key works of symbol spotting dealing
with the graph representations of graphical documents,
as they are more related to this work. The algorithms
proposed by Messmer and Bunke [8] and Lladós et al.
[5] were among the first few approaches of symbol spot-
ting using graph representation. More recently, Nayef
and Breuel [9] proposed a branch and bound algorithm
for spotting symbols in documents, where they used ge-
ometric primitives of images as features. Luqman et al.
[6, 7] also proposed a graph embedding based symbol
spotting method, where the candidate regions contain-
ing symbols are filtered out before hand using some cri-
teria. Recently Dutta et al. [2] proposed graph factor-
ization based symbol spotting methods for architectural
floorplans. Attributed graphs provide a robust represen-
tation of graphical documents and symbol spotting can
be seen as a subgraph matching problem. But the major
problem with most of the graph based methods is their
high computational complexity. Moreover some of the
methods for spotting symbol use an offline preprocess-
ing or indexation step which adds an additional over-
head. Also at the same time this offline step restricts
the flexibility of the method to apply on any unindexed
documents. The above reasons motivate us to propose a
new method where we combine product graph and ran-
dom walk graph kernel for spotting symbol on the fly
without any preprocessing or offline step.

The graph representing the model or query symbol
is referred to as the model graph GM and the graph
representing the document as input graph GI . We
compute the product graph GP of GI(VI , EI , α, β) and
GM (VM , EM , α, β), where VI , VM are the sets of nodes

and EI , EM are the sets of edges of the graphs GI , GM
respectively and α, β are two node labeling functions to
be discussed in the subsection 2.1. In general, the ad-
jacency matrix AP of GP gives the number of common
similar paths of length one in GM and GI ; similarly AnP
gives the number of common similar paths of length n

between them. Product graphs are mainly been used for
computing graph kernels [3]. In this work we use it for
getting the candidate components or subgraphs in GI

having similarity with the components or subgraphs in
GM . Computing product graphs is an easy and compar-
atively efficient procedure and this gives us the oppor-
tunity to compute it online. In this work the walk kernel
[4] is used to calculate the distance between the com-
ponents or subgraphs, this distance value later in the
second step being used to filter out the candidate com-
ponents which are dissimilar from the components of
GM . This two layered approach is proposed to maintain
a better trade-off between the performance and compu-
tational complexity.

The rest of the paper is organized into three sections.
In Section 2 we present the methodology to represent a
database in terms of the descriptors of graph paths. Sec-
tion 3 contains the detailed experimental results. After
that, in Section 4, we conclude the paper and discuss
future directions of work.

2. Methodology

Our attributed graph representation considers the
critical points detected by a vectorization method as the
nodes and the lines joining them as the edges. We vec-
torize the contour of the line segments as reported in
[11]. Note that the vectorization only results in closed
loops or open edges (see Figure 1). This further ensures
that each of the nodes is connected with only two adja-
cent nodes i.e. the maximum degree of any node is two.

(a)

l1

l2

l5 l3

l4

l6

l7

l8

l9 l10

l11

l12l13l14

l15

l16

θ1 θ2

θ3θ4θ5θ6

θ7
θ8 θ9

θ10

θ11

θ12

θ13

θ14

θ15

θ16

α

β

θ15
l 13
l14
,l13⩽l14

(b)

Figure 1. (a) An example symbol of table,
(b) The graph representation of the vec-
torized document.

2.1. Node labels

Two functions α, β are used to assign labels to nodes.
Note that our graph representation does not include
edge labels. The two node labeling functions include
the edge and angle information together. We define the
function α : V → LVα as

α(v) =

acute∠v, v is a node of degree two

0, otherwise
(1)

and node labeling function β : V → LVβ is defined as

β(v) =


l1
l2
, v is a node of degree two

0, otherwise
(2)

where l1, l2 are the lengths of the two connecting edges
to the vertex v with l1 ≤ l2. The same node labels are
used to compute both the product graph and the random
walk graph kernel.

2.2. Product graph

Product graph GP = (VP , EP) of GI and GM relates
the input graph GI and the model graph GM with the
following properties:

• The vertex set VP ⊆ VM × VI is defined by pairs of
nodes with similar labels, i.e.,

VP ={(uM , uI) |uM ∈ VM , uI ∈ VI ,

α(uM) ' α(uI) and β(uM) ' β(uI)}

• Moreover, two vertices (uM , uI) and (vM , vI) of GP
are connected by an edge if and only if

(uM , vM) ∈ EM and (uI , vI) ∈ EI .

We use the parameters tα, tβ for regulating node label
similarities: α(uM) ' α(uI) ⇔ |α(uM)− α(uI)| ≤ tα and
β(uM) ' β(uI)⇔ |β(uM)− β(uI)| ≤ tβ .

From the above definition of product graph it is clear
that any path in a product graph corresponds to simi-
lar paths in both GI and GM . We utilize this property
of product graph to get candidate components having
similar paths. Let us denote the set of candidate com-
ponents in GI as CGI and all the components in GM as
CGM . In the second step, each of the components in CGI
is assigned a distance value, which is the minimum of
the distances of a single component in CGI with all the
components in CGM . This distance is used for eliminat-
ing the components having distance value greater than
a threshold t1.

2.3. Random walk kernel

To measure the similarity between two subgraph
components we define simple random walk based graph
kernel. Traditional graph matching methods compute
this in terms of node and edge similarities, for example,
with graph edit distance. But this kind of computation
is costly. Graph kernels are very suitable because they
allow one to compute distances in terms of an implicitly
embedded feature space. Basically, the kernel function
κ(x, y) measures the similarity of objects x and y; the
larger the value of κ is, the greater is the similarity of
the objects x and y.

Let us introduce the basic random walk graph ker-
nel in a formal way. Let g1 = (V1, E1, α, β) and g2 =

(V2, E2, α, β) be two graphs. For completeness, we again
compute the product graph in a general form. The prod-
uct graph of g1 and g2 is a graph gx = (Vx, Ex) with

Vx = {(x, y) |x ∈ V1, y ∈ V2, α(x) 'α(y), β(x) ' β(y)}

Ex = {(e1, e2)|e1 ∈ E1, e2 ∈ E2}

Let Ax be the adjacency matrix of gx. Ax is a binary
matrix of dimension |Vx| × |Vx| with Ax(i, j) = 1 if and
only if xi, xj ∈ Vx and (xi, xj) ∈ Ex. It is easy to verify
that there exists a walk with some label sequence in gx

if and only if a walk with same label sequence exists
in both g1 and g2. Therefore, in order to find common
walks in g1 and g2, one can construct the product graph
gx first and then extract walks from gx. This leads to the
equation:

κ(g1, g2) =

|Vx|∑
i,j=1

[∞∑
n=0

λnA
n
x

]
(3)

We multiply the adjacency matrix Ax n-times with it-
self, weight the product with λn (n = 0, 1, ...) and sum all
the matrices obtained this way. Finally, we sum the indi-
vidual matrix elements to obtain the value of the kernel
function. Actually, for any adjacency matrix Ax, ma-
trix Anx gives the number of different walks of length n

between any two nodes. Therefore, κ(g1, g2) is in fact
the number of common walks of infinite lengths, where
each walk of length m is weighted by λm. In order to
compute the infinite sum, one utilizes the fact that for
γ ≥ 0, γ ∈ R, limn→∞

∑n
i=0 γ

iAix exists, if γ ≤ 1
a

, where
a = minimum degree found in g1 or g2. So the following
equation holds:

lim
n→∞

n∑
i=0

γiAix = (I− γAx)−1

which turns equation (3) into:

κ(g1, g2) =

|VP |∑
i,j=1

(I− γAx)−1 (4)

Finally the distance between two graph components is
computed by the Euclidean distance in the implicit fea-
ture space of the kernel function:

d(g1, g2) =
√
κ(g1, g1)− 2κ(g1, g2) + κ(g2, g2) (5)

In our case one of the two graph operands of eqn. (5)
comes from CGI and the other from CGM . Each of the
elements in CGI is assigned with the minimum of the
distances to all the components of CGM .

3. Experimental results

We have evaluated the performance of our method
on the SESYD (floorplans)1 database which is a syn-
thetically generated graphical document benchmark [1].
Actually, this dataset contains 10 different subdatasets,
each of which consists of 100 different synthetically
generated floorplans and 16 model symbols. All the
floorplans in a subdatasets are created on a same floor-
plan template by putting different model symbols in
different places in random orientation and scale. The
query symbol is always ideal and does not contain any
distortion. The average number nodes in the query
graph and the input graph are 12 and 1500 respectively.
Since we are focused on the document retrieval aspect
of the problem, we use the standard performance mea-
sures of precision (P), recall (R) and F-measure (F) for
evaluating the performance of our system. For a more
detailed discussion on performance evaluation of spot-
ting systems we refer to [10].

The influence of both parameters tα,tβ is similar. In-
creasing their values makes the product graph larger
which increases the recall value but reduces the preci-
sion normally reduces the F-measure. As the size of the
product graph increases, the computation time also in-
creases. For all the following experiments we set tα = 1,
tβ = 0.05, t1 = 0.7 and γ = 0.1. All the parameters are
chosen experimentally. Showing the details selection
procedures of the parameters is not possible due to the
page limitation. Unless otherwise stated, paths of length
two are considered to compute the product graph as this
configuration produced the best results.

In this paper we present initial results of combining
the product graph with the random walk based graph
kernel. The precision and recall values of the retrieval
only using the product graph are 19.4% and 92.23%,
respectively, while the F-measure is 29.64%. The intro-
duction of the walk kernel with product graph improves
the precision value to 38.11%, compromises the recall
to 60.08% which altogether improves the F-measure to
37.23%. The average time taken for spotting a query

1http://mathieu.delalandre.free.fr/projects/sesyd/index.html

Table 1. Results with SESYD dataset
Path length P R F

1 24.63 80.22 33.79
2 38.11 60.08 37.23
3 26.35 77.98 36.85
4 32.76 60.08 36.56

symbol in a floorplan is 0.95 sec (approx.) which proves
the method to be efficient for spotting symbol.

The next experiment is done to show how adding
more path information effects the results. Here we ex-
perimented with four different path lengths. From Table
1, its clear that using paths of length two improves the
performance compared to path length one. This is jus-
tified since paths of length two add more information
and structural discrimination. It’s also interesting to ob-
serve that increasing the path lengths after that does not
improve the results. This is due to the tottering effect
which reduces some discrimination.

The results shown in the experiments are still below
the state of the art method [2] but it seems encourag-
ing to work with the current strategy for a number of
reasons. The method provides good recall values which
means that the method is able to capture most of the
instances, but it shows lower precision, due to the pres-
ence of false positives. This happens since the method
works on independent components. Hence, it fails to
capture the global topological structure of a symbol i.e.
how the independent components are aligned in a sym-
bol. Modeling individual symbols in terms of the orga-
nization of those components is expected to eliminate
those false positives and hence improve the precision.

4. Conclusions

In this paper we have proposed a combination of
product graph and random walk graph kernel for sym-
bol spotting on graphical documents. A two layer archi-
tecture is proposed for efficient performance of the sys-
tem, as product graph is used to capture the candidate
components, and later a random walk graph kernel is
utilized to measure the similarity of the candidate com-
ponents. Dissimilar components are eliminated using a
threshold. Here, only using the graph kernel consumes
more time and introduction of product graph helps to
reduce the computational complexity. The method can
be executed online with moderate computation time and
does not need any preprocessing or indexing step. As
we have discussed in the section 3, there are many pos-
sibilities to enhance the present method. One of them
is to incorporate the independent components in a prox-

imity graph, to have the global spatial information of
the symbol included. The other interesting way could
be trying different kernels or more robust node labels.

5. Acknowledgement

This work has been partially supported by the
Spanish projects TIN2009-14633-C03-03, TIN2008-
04998, CSD2007-00018 and the PhD scholarship
2011FI B01022.

References

[1] M. Delalandre, T. Pridmore, E. Valveny, H. Locteau,
and E. Trupin. Building Synthetic Graphical Documents
for Performance Evaluation, pages 288–298. Springer-
Verlag, Berlin, Heidelberg, 2008.

[2] A. Dutta, J. Lladós, and U. Pal. Symbol spotting in line
drawings through graph paths hashing. In Proceedings
of 11th ICDAR, pages 982–986, 2011.

[3] T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels:
Hardness results and efficient alternatives. In Proceed-
ings of 16th COLT, pages 129–143, 2003.

[4] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized
kernels between labeled graphs. In Proceedings of 20th
ICML, pages 321–328. AAAI Press, 2003.

[5] J. Lladós, E. Martı́, and J. J. Villanueva. Symbol recogni-
tion by error-tolerant subgraph matching between region
adjacency graphs. IEEE TPAMI, 23:1137–1143, 2001.

[6] M. Luqman, T. Brouard, J.-Y. Ramel, and J. Lladós. A
content spotting system for line drawing graphic docu-
ment images. In Proceedings of 20th ICPR, pages 3420–
3423, 2010.

[7] M. Luqman, J. Ramel, J. Llados, and T. Brouard. Sub-
graph spotting through explicit graph embedding: An
application to content spotting in graphic document im-
ages. In Proceedings of 11th ICDAR, pages 870–874,
2011.

[8] B. Messmer and H. Bunke. Automatic learning and
recognition of graphical symbols in engineering draw-
ings. In R. Kasturi and K. Tombre, editors, Graph-
ics Recognition Methods and Applications, volume 1072
of LNCS, pages 123–134. Springer Berlin / Heidelberg,
1996.

[9] N. Nayef and T. M. Breuel. A branch and bound algo-
rithm for graphical symbol recognition in document im-
ages. In Proceedings of Ninth IAPR International Work-
shop on DAS, pages 543–546, 2010.

[10] M. Rusiñol and J. Lladós. A performance evaluation
protocol for symbol spotting systems in terms of recog-
nition and location indices. IJDAR, 12(2):83–96, 2009.

[11] M. Rusiñol, J. Lladós, and G. Sánchez. Symbol spotting
in vectorized technical drawings through a lookup table
of region strings. PAA, 13:1–11, 2009.

[12] K. Tombre and B. Lamiroy. Pattern recognition methods
for querying and browsing technical documentation. In
13th CIARP LNCS, vol. 5197, Springer-Verlag, 2008.

