toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Josep Llados; Jaime Lopez-Krahe; Enric Marti edit   pdf
doi  openurl
  Title A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform Type Book Chapter
  Year 1997 Publication Machine Vision and Applications Abbreviated Journal  
  Volume 10 Issue (up) 3 Pages 150-158  
  Keywords Line drawings – Hough transform – Graph matching – CAD systems – Graphics recognition  
  Abstract Presently, man-machine interface development is a widespread research activity. A system to understand hand drawn architectural drawings in a CAD environment is presented in this paper. To understand a document, we have to identify its building elements and their structural properties. An attributed graph structure is chosen as a symbolic representation of the input document and the patterns to recognize in it. An inexact subgraph isomorphism procedure using relaxation labeling techniques is performed. In this paper we focus on how to speed up the matching. There is a building element, the walls, characterized by a hatching pattern. Using a straight line Hough transform (SLHT)-based method, we recognize this pattern, characterized by parallel straight lines, and remove from the input graph the edges belonging to this pattern. The isomorphism is then applied to the remainder of the input graph. When all the building elements have been recognized, the document is redrawn, correcting the inaccurate strokes obtained from a hand-drawn input.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM Approved no  
  Call Number IAM @ iam @ LLM1997a Serial 1566  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ahmed Sheraz; Marcus Liwicki; Ernest Valveny; Gemma Sanchez edit   pdf
doi  openurl
  Title Statistical Segmentation and Structural Recognition for Floor Plan Interpretation Type Journal Article
  Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 17 Issue (up) 3 Pages 221-237  
  Keywords  
  Abstract A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number HSL2014 Serial 2370  
Permanent link to this record
 

 
Author S. Chanda; Umapada Pal; Oriol Ramos Terrades edit  doi
openurl 
  Title Word-Wise Thai and Roman Script Identification Type Journal
  Year 2009 Publication ACM Transactions on Asian Language Information Processing Abbreviated Journal TALIP  
  Volume 8 Issue (up) 3 Pages 1-21  
  Keywords  
  Abstract In some Thai documents, a single text line of a printed document page may contain words of both Thai and Roman scripts. For the Optical Character Recognition (OCR) of such a document page it is better to identify, at first, Thai and Roman script portions and then to use individual OCR systems of the respective scripts on these identified portions. In this article, an SVM-based method is proposed for identification of word-wise printed Roman and Thai scripts from a single line of a document page. Here, at first, the document is segmented into lines and then lines are segmented into character groups (words). In the proposed scheme, we identify the script of a character group combining different character features obtained from structural shape, profile behavior, component overlapping information, topological properties, and water reservoir concept, etc. Based on the experiment on 10,000 data (words) we obtained 99.62% script identification accuracy from the proposed scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-0226 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ CPR2009f Serial 1869  
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados edit  doi
openurl 
  Title Boosting the Handwritten Word Spotting Experience by Including the User in the Loop Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue (up) 3 Pages 1063–1072  
  Keywords Handwritten word spotting; Query by example; Relevance feedback; Query fusion; Multidimensional scaling  
  Abstract In this paper, we study the effect of taking the user into account in a query-by-example handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and two baseline word spotting approaches both based on the bag-of-visual-words model. We finally present two alternative ways of presenting the results to the user that might be more attractive and suitable to the user's needs than the classic ranked list.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ RuL2013 Serial 2343  
Permanent link to this record
 

 
Author Volkmar Frinken; Andreas Fischer; Markus Baumgartner; Horst Bunke edit   pdf
doi  openurl
  Title Keyword spotting for self-training of BLSTM NN based handwriting recognition systems Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue (up) 3 Pages 1073-1082  
  Keywords Document retrieval; Keyword spotting; Handwriting recognition; Neural networks; Semi-supervised learning  
  Abstract The automatic transcription of unconstrained continuous handwritten text requires well trained recognition systems. The semi-supervised paradigm introduces the concept of not only using labeled data but also unlabeled data in the learning process. Unlabeled data can be gathered at little or not cost. Hence it has the potential to reduce the need for labeling training data, a tedious and costly process. Given a weak initial recognizer trained on labeled data, self-training can be used to recognize unlabeled data and add words that were recognized with high confidence to the training set for re-training. This process is not trivial and requires great care as far as selecting the elements that are to be added to the training set is concerned. In this paper, we propose to use a bidirectional long short-term memory neural network handwritten recognition system for keyword spotting in order to select new elements. A set of experiments shows the high potential of self-training for bootstrapping handwriting recognition systems, both for modern and historical handwritings, and demonstrate the benefits of using keyword spotting over previously published self-training schemes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.077; 602.101 Approved no  
  Call Number Admin @ si @ FFB2014 Serial 2297  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title Embedding of Graphs with Discrete Attributes Via Label Frequencies Type Journal Article
  Year 2013 Publication International Journal of Pattern Recognition and Artificial Intelligence Abbreviated Journal IJPRAI  
  Volume 27 Issue (up) 3 Pages 1360002-1360029  
  Keywords Discrete attributed graphs; graph embedding; graph classification  
  Abstract Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2013 Serial 2305  
Permanent link to this record
 

 
Author Ernest Valveny; Robert Benavente; Agata Lapedriza; Miquel Ferrer; Jaume Garcia; Gemma Sanchez edit   pdf
doi  openurl
  Title Adaptation of a computer programming course to the EXHE requirements: evaluation five years later Type Miscellaneous
  Year 2012 Publication European Journal of Engineering Education Abbreviated Journal  
  Volume 37 Issue (up) 3 Pages 243-254  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; CIC; OR; invisible;MV Approved no  
  Call Number Admin @ si @ VBL2012 Serial 2070  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit   pdf
url  doi
openurl 
  Title A symbol spotting approach in graphical documents by hashing serialized graphs Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue (up) 3 Pages 752-768  
  Keywords Symbol spotting; Graphics recognition; Graph matching; Graph serialization; Graph factorization; Graph paths; Hashing  
  Abstract In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.042; 600.045; 605.203; 601.152 Approved no  
  Call Number Admin @ si @ DLP2012 Serial 2127  
Permanent link to this record
 

 
Author Alicia Fornes; Anjan Dutta; Albert Gordo; Josep Llados edit   pdf
doi  openurl
  Title CVC-MUSCIMA: A Ground-Truth of Handwritten Music Score Images for Writer Identification and Staff Removal Type Journal Article
  Year 2012 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 15 Issue (up) 3 Pages 243-251  
  Keywords Music scores; Handwritten documents; Writer identification; Staff removal; Performance evaluation; Graphics recognition; Ground truths  
  Abstract 0,405JCR
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper we present the CVC-MUSCIMA database and ground-truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50 different musicians. It has been especially designed for writer identification and staff removal tasks. In addition to the description of the dataset, ground-truth, partitioning and evaluation metrics, we also provide some base-line results for easing the comparison between different approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ FDG2012 Serial 2129  
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados edit   pdf
doi  openurl
  Title Text line extraction in graphical documents using background and foreground Type Journal Article
  Year 2012 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 15 Issue (up) 3 Pages 227-241  
  Keywords  
  Abstract 0,405 JCR
In graphical documents (e.g., maps, engineering drawings), artistic documents etc., the text lines are annotated in multiple orientations or curvilinear way to illustrate different locations or symbols. For the optical character recognition of such documents, individual text lines from the documents need to be extracted. In this paper, we propose a novel method to segment such text lines and the method is based on the foreground and background information of the text components. To effectively utilize the background information, a water reservoir concept is used here. In the proposed scheme, at first, individual components are detected and grouped into character clusters in a hierarchical way using size and positional information. Next, the clusters are extended in two extreme sides to determine potential candidate regions. Finally, with the help of these candidate regions,
individual lines are extracted. The experimental results are presented on different datasets of graphical documents, camera-based warped documents, noisy images containing seals, etc. The results demonstrate that our approach is robust and invariant to size and orientation of the text lines present in
the document.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2012b Serial 2134  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: