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Abstract

The automatic transcription of unconstrained continuous handwritten text re-
quires well trained recognition systems. The semi-supervised paradigm intro-
duces the concept of not only using labeled data but also unlabeled data in the
learning process. Unlabeled data can be gathered at little or not cost. Hence
it has the potential to reduce the need for labeling training data, a tedious
and costly process. Given a weak initial recognizer trained on labeled data,
self-training can be used to recognize unlabeled data and add words that were
recognized with high confidence to the training set for re-training. This process
is not trivial and requires great care as far as selecting the elements that are to
be added to the training set is concerned. In this paper, we proposes to use a
BLSTM NN handwritten recognition system for keyword spotting in order to
select new elements. A set of experiments demonstrate the applicability of self-
training on modern and historic data and the benefits of using keyword spotting
over previously published self-training schemes.
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1. Introduction

The automatic transcription of handwritten text, such as letters, manuscripts,
or books has received substantial attention over the last decades [1, 2]. Still,
the recognition of unconstrained text cannot be considered a solved problem.
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Most state-of-the-art handwriting recognition systems follow the learning-based
approach to pattern recognition, i.e., given a large set of input-output pairs,
the underlying mapping is learned automatically. To cope with the high variety
encountered in the different styles of handwritten text, a large number of such
training data is required to build a robust recognizer.

Nowadays even extremely well trained systems are unlikely to produce a
perfect transcription. Yet, the output can still be useful as a starting point
for manual post-processing and error correction, which reduces the overall work
done by humans [3]. Generally it can be said, the better a system is supposed to
be, the more training data is needed. Training data for handwriting recognition
systems, i.e., images of text lines labeled with their machine-readable transcrip-
tion, however, has to be created manually in a tedious and costly process.

The research described in this paper is about reducing the amount of human
work that is put into generating training sets by making use of unlabeled data
which is usually abundant and can be gathered at little or no cost. This is done
by exploiting the well known fact that such unlabeled data contain valuable
information as well. Approaches to learning that make use of both types of
data, labeled and unlabeled, are called semi-supervised learning.

Semi-supervised learning has received remarkable attention in the last few
years. Most of the existing works, however, deal with the standard classification
scenario where a single point in a feature space has to be mapped into the label
space [4, 5]. In the current paper, a more general problem is considered in the
sense that a (possibly long) sequence of feature vectors has to be mapped to a
(usually much shorter) sequence of labels, i.e., words or characters. Previous
research on sequential data has been mostly done with moderate success using
Hidden Markov Models [6, 7].

For the specific task of semi-supervised learning for handwriting recognition,
only few publications exist. In [8, 9], the authors adapt a recognition system to
a single person by using unlabeled data. In contrast, we consider in this paper
the more general task of writer independent handwriting recognition.

A promising approach to semi-supervised learning for writer independent
handwriting recognition is self-training [10]. Under this paradigm one starts
with an initial system trained on the available labeled data. This system is then
used to select words from the set of unlabeled data that have been recognized
with high confidence. The most confidently recognized samples are assumed to
be correct and added to the training set. Using the augmented training set,
a new system is created. This procedure of enlarging the training set can be
continued for several iterations. A crucial point in this process, however, is to
decide which elements should be added and which not. If, on the one hand, the
data is selected too strictly, not enough samples might be added to change the
training set substantially. On the other hand, if large amounts of incorrectly
labeled data are added, the recognition accuracy of the created systems might
decrease.

Self-training for handwriting text line recognition has been proposed in [11].
The authors use a complete text transcription system that recognizes every line
of the unlabeled data using a large language model. Words recognized with a
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sufficient confidence are used for retraining. This paper is an extension of a pre-
viously published version [12] in which we proposed to select the elements used
for retraining via keyword spotting. It has been shown that keyword spotting re-
duces the computational costs dramatically compared to text line transcription.
Secondly, keyword spotting does not need any language information. Hence, this
approach is specifically suited in cases where little or no language information
is available.

The extension of this paper over [12] is twofold. Firstly, we give a more
detailed explanation and introduction into the field of semi-supervised learning.
Secondly, we test the proposed approach on a new database of historic text. This
is a particularly interesting application, since general text recognition systems
for historic data do not exist but often have to be created individually for each
manuscript with huge costs. Hence, semi-supervised learning without the need
for any language information would help tremendously.

The rest of the paper is structured as follows. The next section provides
information about the task of handwriting recognition, including preprocessing
and a description of the recognition system. An introduction to semi-supervised
learning in general and self-training in particular together with related work are
reviewed in Section 3. In Section 4, keyword spotting and approachesto using a
recognition system for keyword spotting are introduced. Details about proposed
approach are given in Section 5. Section 6 presents an experimental evaluation
and conclusions are drawn in Section 7.

2. Handwriting Recognition

2.1. Preprocessing

To focus on the recognition task, we omit the description of all processing
steps up to text line extraction. For details see [13]. Once extracted, the text
lines are normalized in order to cope with different writing styles. First, the
skew angle is determined by a regression analysis based on the bottom-most
black pixel of each pixel column. Then, the skew of the text line is removed by
rotation. Afterwards the slant is corrected in order to normalize the directions
of long vertical strokes found in characters like ’t’ or ’l’. After estimating the
slant angle based on a histogram analysis, a shear transformation is applied to
the image. Next, vertical scaling is applied to obtain three writing zones of
the same height, i.e., lower, middle, and upper zone, separated by the lower
and upper baseline. To determine the lower baseline, the regression result from
skew correction is used, and the upper baseline is found by vertical histogram
analysis. For more details on the text line normalization operations, we refer
to [14]. Finally the width of the text is normalized. For this purpose, the average
distance of black/white transitions along a horizontal straight line through the
middle zone is determined and adjusted by horizontal scaling. The result of the
preprocessing steps can be seen in Fig. 1.

A normalized text line image is represented by a sequence of N feature
vectors x1, . . . , xN with xi ∈ Rn. This sequence is extracted by a sliding window
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(a) The original text line image.

(b) The normalized text line.

Figure 1: A visualization of the text line preprocessing.

moving from left to right over the image. At each of the N positions of the
sliding window, n features are extracted. The sliding window has a width of
one pixel. It is moved in steps of one pixel, i.e., N equals the width of the text
line. From each window n = 9 geometric features are extracted, three global
and six local ones. The global features are the 0th, 1st and 2nd moment of the
black pixels’ distribution within the window. The local features are the position
of the top-most and that of the bottom-most black pixel, the inclination of the
top and bottom contour of the word at the actual window position, the number
of vertical black/white transitions, and the average gray scale value between
the top-most and bottom-most black pixel. To compute the inclination of the
top and bottom contour, the sliding window to the left of the actual one is
considered. For further details on the feature extraction step, we refer to [14].

2.2. BLSTM Neural Networks

The considered keyword spotting system is based on a recently developed re-
current neural network, termed bidirectional long-short term memory (BLSTM)
neural network [15]. Instead of simple nodes, the hidden layers are made up of
so-called long short-term memory (LSTM) blocks. These memory blocks are
specifically designed to address the vanishing gradient problem, which describes
the exponential increase or decay of values as they cycle through recurrent net-
work layers. This is done by nodes that control the information flow into and
out of each memory block. The input layer contains one node for each of the
nine geometrical features, the hidden layer consists of the LSTM cells, and the
output layer contains one node for each possible character plus a special ε node,
to indicate “no character”.

The network is bidirectional, which means that the sequence of feature vec-
tors is fed into the network both ways, forward and backward. This is because
the form of a handwritten character does not only depend upon the previous
but also upon the following character. The bidirectional architecture is realized
by two input and two hidden layers. One input and one hidden layer deal with
the forward sequence, and the other input and hidden layer with the backward
sequence. The output layer sums up the activation levels from both hidden lay-
ers at each position in the text line. The output activations of the nodes in the
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output layer are then normalized to sum up to 1. Hence they can be treated as a
vector indicating the probability for each letter to occur at a particular position.
The output of the network is therefore a matrix of probabilities for each letter
and each position. A likelihood is assigned to each path through the matrix by
multiplying all probability values along the path. The letters visited along the
optimal path, i.e., the one with maximum likelihood, give the recognized letter
sequence. Note, however, that the optimal path may not correspond to any
existing word. Given a dictionary of all recognizable words, the Connectionist
Temporal Classification (CTC) token passing algorithm returns a sequence of
words from the dictionary whose likelihood is (locally) optimal. This sequence
is the final output of the recognizer. For more details about BLSTM networks
and the CTC token passing algorithm, we refer to [16, 15].

3. Semi-supervised Learning and Self-Training

Supervised learning algorithms use data elements and their class labels to
construct the class regions in the input space. In semi-supervised learning,
unlabeled data, elements without a class label, are given as well. Hence an al-
gorithm can try to extract usful information from unlabeled data, which is their
distribution. One of the most common semi-supervised learning assumptions is
therefore the semi-supervised smoothness assumption, which states that, if two
data points are close to each other and lie in a region with a high density of
input data, then they should belong to the same class [10].

A motivation of using unlabeled data comes from the fact that unlabeled data
is often easy and cheap to acquire while labeled data is sparse and expensive. In
handwritten text recognition, unlabeled data are images of written text, which
are ubiquitously available. Labeled data, in contrast, are text lines together
with a correct transcription.

3.1. Related Work

This section gives a brief overview of related work in the area of semi-
supervised learning. More extensive reviews can be found in [4, 5, 10]. From a
chronological point of view, the first methods that uses unlabeled data have
been proposed at least five decades ago [17, 18, 19] using the Expectation-
Maximization (EM) algorithm [20].

One of the most straight-forward approaches to semi-supervised learning is
through self-training [17, 18, 19, 21, 22]. Due to its descriptive nature, it is gen-
erally applicable to every form of learning-based classification and recognition
system. It is an iterative learning scheme whose underlying idea is similar to EM.
A weak, initial recognizer is trained using the labeled data only. Afterwards,
during the self-training iterations, the recognizer is used to label the entire set of
unlabeled data and assign a confidence measure to each classification. The most
confidently classified elements are assumed to be labeled correctly and added to
the training set, which is then used to train a new recognizer.

Theoretical background whether or not semi-supervised learning works and
under what circumstances, is limited and restricted to a few cases. Some work
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exists showing that unlabeled data can help. However, formal properties can be
proven only under very restrictive settings. An analysis about the generaliza-
tion error in a probably approximately correct (PAC) [23] framework has been
attempted in [24]. Still, the resulting error bounds are “usually ridiculously far
from being tight” [5]. Furthermore, a rather negative picture of the usefulness
of unlabeled data is painted in [25]. Generally it can neither be guaranteed that
unlabeled data help nor that it does not even have a negative influence. In fact,
when the model assumptions of the mixture models of the input distributions
are wrong, “unlabeled data is dangerous” [26].

3.2. Semi-Supervised Learning for Handwriting Recognition

Straight-forward semi-supervised learning frameworks flexible enough to han-
dle the restrictions imposed by the many-to-few mapping of sequential data are
self-training and co-training. For recordings of a TV news channel, self-training
for speech recognition has been successfully applied in [27, 28, 29, 30]. In the
domain of handwritten text, only few works have been published. A semi-
supervised adaptation to a specific writer is presented in [9, 31], where the
system is adjusted to increase the recognition accuracy of a specific writer at
the cost of reducing the unconstrained recognition accuracy. To the best knowl-
edge of the authors, the only work on semi-supervised learning for unconstrained
handwriting recognition, is earlier work done by the authors of this paper [32].

4. Keyword Spotting

Keyword spotting is the task of retrieving all instances of a given word
or phrase from a collection of documents. Due to the multitude of possible
scenarios the details on how this is done can vary immensely. In general, keyword
spotting can be classified in various ways. A popular sceme is to differentiate
between query-by-example and query-by-string. In the former case, a region of
a document is defined by the user and the system should return all regions
containing the same text. Query-by-string, on the other hand, supports search
queries of arbitrary character combinations, regardless of whether they occur in
the dataset or not. Since this needs obviously a model for every character, these
methods are often associated with learning-based approaches, while query-by-
example can be done without any learning step.

A further criterion used for structuring keyword spotting approaches is the
type and pre-segmentation of input data, since methods differ for single words,
entire text lines, or even whole, unsegmented pages. The return value is usually
a spotting score (the higher, the more likely it is that the keyword occurs in
the input document) and for line- and page-based approaches sometimes also a
position or bounding box.

For these last two cases we want to determine, for a fixed region R, the
probability of the keyword w to occur in that region, which is the probability
to be in any of the subregions r ⊂ R. This is often approximated by finding the
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probability of the keyword at its most likely place.

score(w|R) =
∨
r⊂R

p(w|r) (1)

≈ max
r⊂R

p(w|r) (2)

4.1. BLSTM NN based Keyword Spotting

In this paper we use the BLSTM NN-based text line recognition system of
[15] for keyword spotting. As stated in Section 2, the neural network act as a
mapping of the input sequence to a sequence of posterior character probabilities
which serves as the input into the CVC Token Passing algorithm.

For keyword spotting, however, the CTC Token Passing algorithm is not
performed and the character probability sequence is extended by an additional
entry with a constant value of 1. By adding this symbol at the beginning and
at the end of the keyword, the algorithm finds the best path through the output
matrix that passes through the symbol added at the beginning, then through
all the characters of the keyword, and then through the symbol added at the
end. In other words, the path traverses through the letters of the keyword at
their most likely position while the rest of the text line has no influence. This
way, we get a keyword spotting score that reflects the product of all character
probabilities of the optimal subsequence that starts with the space before the
first character of the keyword and ends with the space after the its last character.

Note that the spotting score is a product of character probabilities and de-
pends therefore on the length of the keyword. Hence, to normalize this score,
in order to make results comparable to results from other keywords, the loga-
rithmic spotting score is divided by the keyword’s length (the number of letters
in the keyword). The output of the retrieval system is a ranked list of lines, or
positions, together with the likelihood of the keyword. An example output of
the system is shown in Fig. 2. For more details, we refer to [33, 34].

4.2. Combination of Several Systems

To increase the performance of different keyword spotting systems, com-
bination techniques can be applied. We exploit the fact that BLSTM neural
networks are initialized before training with random values. Clearly, two dif-
ferently initialized networks are likely to produce a different output, even when
trained on the same training data, which renders the generation of an ensemble
of different keyword spotting systems a straight forward task. Hence the com-
bination on an ensemble of neural networks, even when trained on exactly the
same data, is likely to perform better than any single neural network.

In [35], the authors investigate different combination techniques for keyword
spotting algorithms in general and BLSTM neural network based systems in
particular. By averaging the returned likelihood of all systems before rank-
ing the output, a significant increase in the keyword spotting performance was
obtained. We follow the same approach in this paper. Instead of one neural
network, an ensemble of several neural networks is used, each of which spots a
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(a) Returned log Likelihood: -1.7125

(b) Returned log Likelihood: -8.4097

(c) Returned log Likelihood: -11.0900

Figure 2: Search results for the word “found”.

given keyword separately. Afterwards, the normalized likelihood scores of the
networks are averaged. Note that the returned keyword spotting score of a net-
work returns the likelihood of a word at its most likely position in the text line,
regardless of whether or not the positions found by the different systems are the
same.

To infer the final position of a word, the networks are ranked according to
their performance on a validation set and the keyword position returned by
the best network is used. In case of multiple occurrences of a keyword on the
same line, only the best one is returned. However, to return all keywords, the
algorithm can be repeated on the remaining parts of the text line.

5. Proposed Approach

In this paper we propose to perform self-training to improve the perfor-
mance of a handwriting recognition system by using keyword spotting to find
words in the set of unlabeled data that are used for retraining. This is different
from previous approaches, where a recognition system was used to recognize the
unabeled text lines.

To be used for semi-supervised learning, the final application and the spe-
cific recognizer dictate the type of keyword spotting to be considered. In the
application at hand we focus on learning-based approaches for pre-segmented
text lines. Hence, we want to find words in the set of unlabeled data by using
keyword spotting instead of a full fledged recognizer. For the popular recogni-
tion systems based on HMM and BLSTM NN, fast keyword spotting approaches
without the need of a language model have been proposed [33, 36].

Of course, the best keyword spotting system is a complete text recognizer,
given enough time and a sufficient language model. Since the proposed methods
do not consider any context and language information, the results may not be as
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accurate. Yet, in this paper, we demonstrate that it is possible to design a setup
for semi-supervised learning based on keyword spotting that does not suffer from
a performance decrease, compared to a system based on text line recognition,
while at the same time, the benefits of having a reduced computation time are
dramatic.

In fact, keyword spotting is several orders of magnitude faster than text line
transcription. To give a quantitative evaluation of the run time, consider that
it takes several minutes to decode a text line, while a keyword can be spotted
with the same system in about one millisecond [33].

Independent of the specific method, the selection of new elements used for
retraining the system has to be done with great care. When only those few
elements whose label can be estimated with the highest confidence are added, the
training set does not change substantially. Furthermore, the most confidently
recognized elements are often in the center of the area of the input space that
is already assigned to one class, hence the risk of selecting elements that do not
make a difference is very high. Increasing the number of elements, on the other
side, comes at the risk of adding noise to the training data and too much noise in
the training data will impede the recognition. Hence, a good trade-off between
data quality and data quantity is crucial to the success of the approach.

A further advantage of using keyword spotting for self-training is that the
expected noise of the added elements is an input parameter and can be controlled
directly, rather than measuring it afterwards. This allows for a more detailed
analysis of the achieved performance gain.

5.1. Precision Based Thresholds

The proposed procedure works as follows. All words in the keyword list
are spotted on the validation set. Then, threshold θ is set to the normalized
likelihood score value that produces a precision of θval(prec) on the validation
set (cf. Fig. 3). Finally, all words in the keyword list are spotted on the entire
set of unlabeled data and every word that has been spotted with a matching
score higher than θ is added to the training set. In Fig. 4, an overview of the
proposed system is given.

5.2. Combining Several Precisions

The set of words Sθ that are added to the training set are chosen according
to their spotting score θ, which, in turn is computed from the desired precision
value θ = θprec. Obviously, sets resulting from different spotting thresholds
form a chain:

Sθ1 ⊂ Sθ2 ⊂ . . . ⊂ Sθn for θ1 > θ2 > . . . > θn

Given several precision thresholds, it is possible to add different sets to the
re-training data. This has the effect, that some of the elements are added
multiple times, depending upon how confidently they are spotted. Thus, in a
combination Sθ1 + Sθ2 all keywords spotted with a precision higher than θ1 are
weighted twice.
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Figure 3: Determining the likelihood threshold using the validation set and the desired preci-
sion.

6. Experimental Evaluation

6.1. Comparison with standard approach

To compare the proposed approach to existing self-training approaches that
perform a complete text line recognition using a language model, we performed
experiments on a dataset of continuous text lines containing modern English
data.

6.1.1. Setup

We used the IAM off-line database, which consists of 1 539 pages written by
657 writers [13]1. The text segments originate from the London/Oslo/Bergen
(LOB) corpus [37] and form a representative cross-section of modern English
language. The database is split up into a working set of 6 161 text lines, a
validation set of 920 text lines and a writer independent test set of 929 text
lines. The three sets are writer disjunct, i.e., a person who has contributed to
any one of the three sets did not contribute to any of the two other sets. The
working set is randomly split up into a training set consisting of 1 000 labeled
text lines and a set of 5 161 unlabeled text lines.

In the first set of experiments, the effects of using several different precision
thresholds are compared to each other. Five precision thresholds are investi-
gated, θ1prec = 0.5, θ2prec = 0.8, θ3prec = 0.9, θ4prec = 0.95, and θ5prec = 0.99.

1http://www.iam.unibe.ch/fki/databases
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Figure 4: Overview of the proposed system. An initial, labeled training set is used to train
an ensemble of BSLTM neural networks (1). With these networks, keywords are spotted on
the validation set using a combination technique. The performance is is used to compute the
threshold ϑ, according to a desired precision value (2). Next, the ensemble is used to spot the
same keywords on the set of unlabeled data. All positions that are found with a likelihood
greater than ϑ (3) are considered to be correct. Finally, these words are added to the training
set (4).
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In a second set of experiments, the extension of combining several thresholds
is investigated in which several instances of the same word can be added to the
training set several times. The following six setups are used.

A = S0.8 + S0.9

B = S0.8 + S0.95

C = S0.8 + S0.99

D = S0.8 + S0.95 + S0.99

E = S0.8 + S0.99 + S0.99

F = S0.8 + S0.9 + S0.95 + S0.99

All of these setup start with the basic set of S0.8 and give additional weight
to the most confident recognition. In order to to this, sets A, B, and C each add
one of the previously used subsets of S0.8, namely S0.9, S0.95, or S0.99. Setup
D and E extend the idea to combine three sets and setup F finally adds up all
four sets.

6.1.2. Results

The performance of the systems as a function of the self-training iterations
is shown in Fig. 5. In Fig. 5(a), the performance of using single precision values
as retraining decision is given. Fig. 5(b) shows the extension that combined the
sets from several thresholds. Finally, Fig. 5(c) displays, as a comparison, the
performance of the transcription-based self-training system that makes use of a
language model.

Several observation can be made. First of all, we note that all investigated
retraining rules achieve a statistically significant performance increase compared
to the one trained on the initial training set.

The performance of the retraining rules that make use of a single precision
value in Fig. 5(a) clearly demonstrate the importance of a good balance between
data quality and data quantity. The most conservative retraining rule that only
used images that are found with a precision of prec = 0.99 has the lowest
performance. By relaxing the precision threshold, the performance increases
until it reaches a maximum at prec = 0.8. The least restricting retraining rule
prec = 0.5 again performs significantly worse.

From Fig. 5(a) and Fig. 5(b) it becomes apparent that retraining rules based
on a single precision value perform overall not as good as the retraining rules that
combine the retraining sets of several precision values. Interestingly, the spe-
cific combination of the thresholds does not seem to have a substantial impact.
The networks retrained using the worst combination, D = S0.8 ∪ S0.95 ∪ S0.99

reach an average recognition accuracy of 59.82%, while retraining using the best
combination, F = S0.8 ∪ S0.9 ∪ S0.95 ∪ S0.99 leads to an accuracy of 60.48%.

The comparison with the reference system shows that the keyword spotting
based retraining rules perform worse than the best transcription based retraining
rules during the first 3 iterations. However, the performance increase using
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keyword spotting based self-training continues longer and the final results after
the fourth iteration are better than the reference system.

As a final comparison and to evaluate how good the BLSTM NN system can
get on this database, we trained ten neural networks on the entire working set
of 6 161 labeled text lines and reached an accuracy of 71%.

6.2. Application for Historical documents

Additionally we wanted to investigate the applicability of the proposed ap-
proach for historical data. For historic data, modeling the underlying language
poses several challenges because, among other problems, not enough texts are
available to form a large corpus. Also the lack of a unified spelling system
reduces the number of instances of each word and written texts are often in
the form of poetry or administrative texts. For such highly specialized texts, a
general language model does not seem highly appropriate.

For historic texts, generating a valid ground can be quite costly, since lin-
guistic experts are needed to translate the text. Hence, for these experiments,
we focus on the final recognition accuracy as a function of the size of the input
data.

6.2.1. Setup

We use the PARZIVAL database presented in [38] for our experimental evalu-
ation. This database contains digital images of medieval manuscripts originating
in the 13th century. Arranged in 16 books, the epic poem Parzival by Wolfram
von Eschenbach was written down in Middle High German with ink on parch-
ment. There exist multiple manuscripts of the poem that differ in writing style
and dialect of the language. The manuscript used for experimental evaluation
is St. Gall, collegiate library, cod. 857 that is written by multiple authors [39].
Figure 6 shows a sample from this database.

For each of the individual setups, we trained 10 initial neural networks and
tested them individually on a validation set. The four networks with the lowest
word error rate were then used in the self-training iterations. To keep the com-
putational costs within reasonable bounds, the retraining of each neural network
was limited to a maximum of 50 epochs. It stopped sooner if no improvement
in label error rate was achieved for 11 epochs.

Inspired by the results on the IAM database, we chose to investigate the
following self-training rules

Single Precision Threshold Combined Precision Thresholds
S0.8 A = S0.8 ∪ S0.9

S0.9 D = S0.8 ∪ S0.95 ∪ S0.99

S0.99 F = S0.8 ∪ S0.9 ∪ S0.95 ∪ S0.99

We chose to test five different sizes of labeled training data. For this, we
numbered all text lines and assigned to each text lines its number modulo 6.
Then, the assignment to the different sets was done according to the following
identification scheme
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Figure 6: A sample from the PARZIVAL DB

Table 1: The number of text line for the different setups

Setup labeled set unlabeled set validation set testing set
tr4 2985 0 764 764
tr2 1493 1492 764 764
tr1 747 1492 764 764
tr.2 347 1492 764 764
tr.4 187 1492 764 764
tr.8 94 1492 764 764

line number modulo 6 assigned set
0 tr4, tr2, tr1
1 tr4, tr2
2 tr4, unlabeled
3 tr4, unlabeled
4 validation set
5 testing set

This means, testing set and validation set each gets assigned 1
6

th
of the data

and the set of unlabeled data gets one third of the text lines. Set tr4 gets 4
6

th

of the text lines and serves as a reference setup where all text lines are labeled.

For the experiments, we have tr2 with 2
6

th
and tr1 with 1

6

th
of the text lines

as labeled data. We further reduced the number of labeled text lines using tr.2

( 1
12

th
labeled lines), tr.4 ( 1

24

th
labeled lines), and tr.8 ( 1

48

th
labeled lines). The

absolute numbers of the text lines for the different setups are given in Table 1.
The keywords spotted are all words of size larger than two characters that
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(a) tr1 (b) tr.2

(c) tr.4 (d) tr.8

Figure 7: The detailed performance of the proposed algorithm on the PARZIVAL dataset for
selected setups.

are found in the training set.

6.2.2. Results

To analyze the impact of self-training, we evaluated the recognition per-
formance of the neural networks before and after each self-training iteration.
The recognition has been done using a closed-vocabulary setup and with a bi-
gram language model. The language model is trained on the combination of
the labeled text lines and the validation set and smoothed using Kneser-Ney
smoothing [40] using the SRILM toolkit.

The detailed results of the experiments for selected system can be seen in
Fig. 7 where the word recognition accuracy of the testing set is shown as a

Figure 8: The initial recognition accuracy and the final recognition accuracy after 3 iterations
of self-training.
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Table 2: The word recognition accuracies in % before as well as after three self-training
iterations for each self-training rule.

initial S0.8 S0.9 S0.99 A D F
tr.8 38.22 59.60 62.71 52.52 60.65 60.73 59.57
tr.4 51.79 66.07 68.22 63.52 67.06 67.00 66.90
tr.2 69.36 72.85 77.01 75.09 74.06 74.42 74.67
tr1 80.2 80.16 81.81 82.35 80.42 80.50 80.35
tr2 83.71 82.98 84.39 84.66 83.44 84.19 83.81

function of the self-training iterations. The initial system is plotted at itera-
tion number 0. In Fig. 8, a comprehensive summary of all results is depicted.
This plot shows the initial and the final recognition accuracy (of the best self-
training rule after ) for the different sizes of labeled training lines as well as the
performance of the tr4 reference system. Exact numbers are shown in Table 2.

Observing the results of this experiment, the following observations can be
made. First, one can clearly see the correlation between the size of the training
data and the initial recognition accuracy on the validation set. A training set of
94 text lines results in a system that achieves a recognition accuracy of 38.22%,
while 2 985 lines in the training set lead to a system with 83.71%. Secondly, we
can observe in Fig. 8 that self-training can be successfully applied for all tested
sizes of the labeled training set. Furthermore we can see, that the achieved
increase is larger, for less trained systems. With just 94 labeled text lines, the
proposed approach achieves an remarkable increase in recognition accuracy from
38.22% to 62.71%.

One can also see, that the best performing self-training rule is not constant
for all setups. For less trained systems (tr.8, tr.4, and tr.2), more relaxed
retraining rules (S0.9) seem to be better, while for better trained systems (tr1
and tr2) stricter rules need to be applied. In fact, a very relaxed self-training
rule (S0.8) impedes the recognition rate for those systems that are already well
trained. The composed retraining rules (A, D, and F ) also lead to an increase in
recognition accuracy. However, they do not, contrary to the experiments on the
IAM database,consistently outperform the single precision threshold retraining
rules.

7. Conclusion

Words used for spotting are the ones found in the training set. Note, how-
ever, that due to the normalization of the likelihood, one global threshold can
be applied to all keywords as opposed to keyword specific thresholds. There-
fore, the overall best words are selected and if a keyword does not occur in the
database, all spotted positions can easily be rejected. This would also enable the
possibility to create lists of keywords automatically by using random character
combinations.
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An experimental comparison with an existing self-training approach shows
an average increase in recognition accuracy from 48.67% to 60.48% using a new
set of retraining rules could be achieved. In addition to being more resource-
ful, the new rules perform slightly better than current transcription-based ap-
proaches. This demonstrates that that the lack of a language model does not
necessarily decrease the accuracy gain achieved by self-training.

Further experiments demonstrate that self-training can successfully be ap-
plied to reduce the amount of work for the increasingly popular field of histori-
cal document processing. The recognition accuracy of a weakly trained system
with just 94 labeled text lines could automatically be increased from 38.22% to
62.71%.

Finally, these results also give interesting insights into how BLSTM neural
network learn character models. The results indicate that for weakly trained
systems, a perfect transcription is not necessary for training. Once a character is
well modeled by the network, noise in the training set, however, has a damaging
influence.

Future work includes an integration of this approach into a complete boot-
strapping framework for new recognition systems. In order to further increase
the performance, co-training approaches using different keyword spotting method-
ologies might also be investigated.
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