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Abstract 

In graphical documents (e.g. maps, engineering drawings), artistic documents etc., the text 

lines are annotated in multiple orientations or curvilinear way to illustrate different locations or 

symbols. For the OCR of such documents, individual text lines from the documents need to be 

extracted. In this paper, we propose a novel method to segment such text lines and the method is 

based on the foreground and background information of the text components. To effectively 

utilize the background information, a water reservoir concept is used here. In the proposed 

scheme, at first individual components are detected and grouped into character clusters in a 

hierarchical way using size and positional information. Next, the clusters are extended in two 

extreme sides to determine potential candidate regions. Finally, with the help of these candidate 

regions, individual lines are extracted. The experimental results are presented on different 

datasets of graphical documents, camera-based warped documents, noisy images containing 

seals, etc. The results demonstrate that our approach is robust and invariant to size and 

orientation of the text lines present in the document. 

 

Key Words: Multi-oriented Text Line Segmentation, Artistic Documents, Graphical Document 

Analysis, Foreground-Background Information. 
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1. Introduction 

 

In Optical Character Recognition (OCR), the text lines in a document must be segmented 

before recognition. When the text lines in a document image are parallel to one another (single 

oriented documents) simple techniques like the projection profile, component nearest neighbour 

clustering method [2,4] etc. are good enough to segment individual lines. But there are many 

documents where text lines may be printed in several orientations (multi-oriented documents) or 

the text lines may be curved in shape. Examples of some such documents are shown in Fig.1. 

This paper deals with a novel technique to extract (segment) individual text lines from such 

multi-oriented or curved documents. 

 

     

(a)                                           (b) 

     

(c)                                                             (d) 

Fig.1. Examples of documents containing multi-oriented and curved text-lines. (a) and (b) Text 

images from newspapers (c) Map image  (d) Camera based warped image 
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     There are many techniques to extract text lines from single oriented documents [13], but the 

published work on extraction of multi-oriented and curved text lines are few. Li et al. [24] 

proposed an approach for handwritten textline segmentation using level sets. Here, Gaussian 

filtering is used to estimate the probability density function (PDF) of pixel values and then level 

sets are initialized on these high PDF values. Growing and merging of level sets is then 

performed iteratively. Goto and Aso [1] proposed a local linearity based method to detect text 

lines in English and Chinese documents. In the method proposed by Hones and Litcher [3], line 

anchors are first found in the document image and then text lines are generated by expanding the 

line anchors. These methods cannot handle variable sized text, which is the main drawback of the 

methods. Loo and Tan [6] proposed a method using irregular pyramids for text line 

segmentation. This algorithm uses the inclusion of background information, concept of 

“closeness”, density of a word region, majority “win” strategy and the directional uniformity and 

continuity among words in a sentence. Recently, Bukhari et al. [23] proposed a line segmentation 

approach for camera based warped documents using active contour models. The segmentation 

technique uses several active contour models (baby snakes) and their convergence. Gatos et al. 

[12] proposed an algorithm based on text line and word detection for warped documents. The 

binary document is de-warped based on word rotation and translation according to upper and 

lower word baselines. Bai et al. [26] used a traditional perceptual grouping based algorithm for 

extracting curved line from logos and slogans. Chains of connected components are extended to 

the left and the right according to the local orientations of the text lines. Pal and Roy [5] 

proposed a head-line based technique for multi-oriented and curved text lines extraction from 

Indian documents containing Bangla and Devnagari scripts. Since the head-line feature is 

missing in English, this method can not be used for English line extraction. In other work Pal et 

al. [11] developed a system for English multi-oriented text line extraction estimating the equation 

of the text line from the character information. Main drawback of this method is that, it will not 

work for documents of curved text lines. 

In graphical documents, however, text characters do not appear isolated. These documents 

usually contain many graphical lines besides text characters information and the text often 

touch/overlap with these long graphical lines. Detection of such text characters is difficult even 

there exist many text/graphics separation algorithms in literature [9, 16]. Text line segmentation 
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techniques may provide useful information in this point of view. If some of the characters in a 

text line are missing, the remaining portion of text line (well-extracted characters) can direct us 

to locate the missing text characters. Thus, more emphasis can be provided to segment the 

touching/missing character. 

Extraction of individual text lines from artistic or technical documents having multi-oriented 

or curved text is a difficult problem. In graphical documents, the components of text lines can be 

of different sizes and font styles. Again, the inter-character distance varies time to time for 

annotation purpose. For example, in maps shown in Fig.1(c), the inter character distance in the 

word “OCEAN” is different for annotation and it has different orientation in different location to 

annotate the graphical lines. 

In this paper, we propose a line extraction technique from such artistic/technical documents. 

To handle documents of wide variations in terms of size, font, orientation, layout, etc., the 

proposed technique is based on the foreground and background information of the characters in a 

text line. Most researchers focus their attention only on foreground components and discard the 

background part (background part refers to those white areas of a binary image surrounding the 

actual black foreground). Here, we show how the background information can be utilized for 

multi-oriented line extraction. 

       

 

        The proposed approach is based on perceptual properties of text components. Text is a 

sequence of cavities following a regular distribution in a smooth path. These cavities/background 

information play an important role in our proposed method and guides our algorithm to extract 

individual lines from the documents containing multi-oriented and curved text lines. We use the 

background portion obtained between two consecutive characters of a line. To get this 

background portion we apply the water reservoir concept. Water reservoir is a metaphor to 

illustrate the cavity region of a component [7]. The use of background information and its 

computation through the water reservoir concept guides our proposed algorithm to segment text 

lines. In the proposed scheme, at first, individual components are detected and grouped into 

initial character clusters using their inter-component distance, size and positional information. 

Merging these initial character clusters, a proximity graph is created to have larger clusters. 
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Using inter-character background information, orientations of the extreme characters of a larger 

cluster are determined, and based on these orientations, two candidate regions are formed from 

the cluster. Finally, with the help of these candidate regions, individual lines are extracted. 

       The organization of the rest of the paper is as follows. A brief discussion on water reservoir 

concept used for line extraction is given in Section 2. The line extraction procedure is detailed in 

Section 3. We demonstrate our proposed algorithm on a variety of datasets including graphical 

documents and camera based documents in Section 4. Conclusions and future work are presented 

in Section 5. 

 

2. Water Reservoir Concept  

 

The water reservoir principle [7] is as follows. If water is poured from a side of a component, 

the cavity regions of the background portion of the component where water will be stored are 

considered as reservoirs of the component. Details of water reservoir and its different properties 

can be obtained in [7]. However, here we give a short description of different properties used in 

our proposed scheme to ease readability. 

Top (Bottom) reservoir: By top (bottom) reservoirs of a component we mean the reservoirs 

obtained when water is poured from the top (bottom) of the component. A bottom reservoir of a 

component is visualized as a top reservoir when water is poured from top after rotating the 

component by 180°. 

Left (Right) reservoir: If water is poured from the left (right) side of a component, the cavity 

regions of the component where water will be stored are considered as left (right) reservoirs. A 

left (right) reservoir of a component is visualized as a top reservoir when water is poured from 

the top after rotating the component by 90° clockwise (anti-clockwise). 

Water reservoir area: The area of a reservoir is defined by the area of the cavity region where 

water will be stored. The number of points (pixels) inside a reservoir is computed and this 

number is considered as the area of the reservoir.  

Water flow level: The level from which water overflows from a reservoir is called the water 

flow level of the reservoir (see Fig.2). 
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Reservoir surface width: The width of the reservoir at the flow-level of the reservoir is the 

reservoir surface width. In Fig.2, AC is the surface width of the reservoir. 

Mid-Point of water flow surface: This is defined as the mid-point of the reservoir surface 

width. In Fig.2, M is the mid-point of the water flow surface.  

Height of a reservoir: By height of a reservoir, we mean the depth of water in the reservoir.  

 

Fig.2. A top water reservoir and its different features are shown. Water reservoir portion is marked 
in grey. 

These background region based features obtained using the water reservoir concept help our 

line extraction scheme. 

 

3. Text Line Extraction 

An English text line can be divided into 3 zones: Upper zone, Middle zone or Busy zone and 

Lower zone. The Busy zone for an English text line is the zone between the mean-line and the 

base-line as shown in Fig.3(a). Busy zone is shown for curve line in Fig.3(b). This height 

information is important for the line extraction algorithm. It is used in our approach to determine 

the search zone (explained later) for the multi-oriented text line extraction. 

 

(a) 

 

(b) 

Fig.3: Different parts of a text line shown in (a) straight line and (b) curve line. 
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In our line detection algorithm, we assumed that, the inter-character distance in a word of a 

line is smaller than the distance of this line from its neighbouring lines. The proposed line 

detection process is divided into 4 steps. These steps are a) Initial character clustering. b)  

Grouping of character clusters to form larger cluster. c) Candidate point selection of large 

clusters and d) Extension of large clusters for line extraction. The flow chart of text line 

segmentation is given in Fig.4. The documents are digitized in grey tone with 300 dpi. We apply 

Otsu binarization [28] method to convert a grey document into two-tone image and component 

labeling is performed on this binary image to detect individual components. The proposed 

scheme uses these connected components to extract the separate text lines. The main part of the 

line segmentation approach is illustrated within the dashed rectangle. In the following sections, 

we detail each step. 

 

 

Fig.4. Flow chart of our approach for curved line extraction. 

 

3.1. Initial Character Clustering 

 

Our approach of line segmentation is similar to perceptual
 
grouping. Text line is a sequence of 

similar sized character components following a regular distribution in a smooth path. The 
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grouping of characters in text line is done in hierarchical ways in our approach. After detecting 

the text characters by connected component labeling, we group the neighbour characters in small 

clusters using the size and local linearity. Neighbour characters are selected using boundary 

growing algorithm which is performed as follows. 

The external contour points of each character component are detected by a contour tracing 

algorithm. These contour points are expanded outwards iteratively by one pixel (8 pixel 

neighbour configuration) for boundary growing. Number of iteration to find nearest components 

is decided considering the size of the characters of the word. It is decided as Q = q x Sc. The 

multiple factor q is selected based on the type of dataset. We considered different values of q 

(e.g. 2,3,..8) in the experiment of different datasets to set q. In text documents, q is set to 4. In 

graphical documents (e.g. maps) where text characters are very sparse, this value is set to 6. 

These values are set based on the experiment. If after Q iterations of boundary growing, a 

character component does not touch other components, then no neighbour is found for the 

character.  

Next, the size (Sc) of individual components (characters) is computed for character clustering. 

The size Sc is calculated by finding the radius of a minimum enclosing circle of the component. 

For each component (say, D1) we find its two nearest components using a boundary-growing 

algorithm (discussed later). Let the two nearest components of D1 be D2 and D3. Also let, c1, c2 

and c3 be the centers of minimum enclosing circle (MEC) of the components D1, D2 and D3, 

respectively. The components D1, D2 and D3 will form a valid 3-character cluster if they satisfy 

both the size similarity and the local linearity. These are described as follows. 

a) Size similarity: The size similarity is tested as follows. Let, HDi be the size of a component 

Di. The component D1 will be similar in size to its neighbour component D2 if  

HD2/1.5 ≤ HD1 ≤ 1.5*HD2 

b) Local linearity: Local linearity (orientation) is tested based on the angular information of c1, 

c2 and c3. If the angle c2c1c3 formed by the points c2, c1 and c3 lies between 150º-180º, then we 

assume these 3 components are linear in nature. The angle between 2 neighbor components is 

measured and the range of the angle is considered between 0º to 180º. Tang (150º-180º) is 

empirically chosen from experimental results for linearity detection. The components are 
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neighbour when the features considering size and local linearity match and these two features are 

considered one by one. Here size is computed prior to local linearity feature. 

     Initial 3-character clustering of the image Fig.5(a) is shown in Fig.5(b). Each of these 3-

character clusters is marked by circular ring. From the figure, it is to be noted that, there is no 

cluster among the components (o-p-e) and (r-l-i) because they fail to satisfy the angular criteria. 

The clusters (r-s-C), (s-C-r) and (n-g-R) are not formed because the inter-character spacing is 

large. 

               

(a)                                        (b)                                        (c)   

Fig.5. (a) Image shows different words from a map. (b) Initial clusters are marked by circular rings. 

(c) Large clusters are shown by lines. 

 

3.2. Grouping of Initial Clusters 

 

From the initial clustering, several 3-character clusters are obtained which will be grouped 

together by iterative growing. From the second text-line of Fig.5(b), we have different 3-

character clusters such as (D-a-r), (a-r-l), (l-i-n) and (i-n-g). A graph analysis is performed to 

grow these clusters. A graph (G), described below is used here with all the components of 

different clusters, where components of all the clusters are considered as nodes. An edge between 

two component nodes is added if they are from the same initial cluster. 

Formally, a graph G = (V, E) is created for growing these small 3-character clusters. Here, V = 

component and E = edges between components. Let there be Ts components in the document, 

thus, |V| = Ts. An edge, eij in E is formed by a component pair (Ci, Cj) if components Ci and Cj 

are neighbors. 

Sometimes, by adding edges in such a way, a node may have 3 or more edges. This situation 

occurs when two or more text-lines cross each other or they are very close. The nodes having 3 or 

more edges are not considered in this step. For illustration, see Fig.6. Here, the cluster including 
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the character ‘h’ of the word ‘Algorithm’ has two neighbours ‘t’ and ‘m’ from this word. 

Similarly, the character ‘s’ of word ‘analysis’ has neighbours ‘i’ from this word and ‘h’ from the 

word ‘Algorithm’. After grouping into initial clusters, ‘h’ will have 3 edges that are connected to 

its 3 neighbours (‘h-t’, ‘h-m’ and ‘h-s’). This node ‘h’ is marked for removal and is not 

considered for initial cluster grouping, since it may generate erroneous results in line extraction. 

 

Fig.6. Example of text when a character (may) have 3 neighbours. Here, the character ‘h’ has 3 

neighbouring characters ‘t’, ‘m’ and ‘s’. 

 

The angle of each node (of degree 2) is calculated with respect to two connected nodes. If the 

angle is less than Tang, this node is also marked for removal. For example, in Fig.5(c), the 

component ‘l’ of (D,a,r,l,i,n,g) does not satisfy the angle criterion with its neighbour components 

‘r’ and ‘i’. 

Thus, if for a node, either number of edges is greater than 2 or its angle with neighbour 

characters is less than Tang, then the node is removed and all the edges of the corresponding node 

are deleted from G. Thus local linearity criterion between each of 3 character clusters is 

validated. Because of removal of some edges from the graph, G will be split into sub-graphs or a 

set of components. In each of these sets, we will have a chain of components which are linear in 

fashion. In other words, paths of characters are searched in the graph according to piece-wise 

linearity criterion. Each sub-graph is considered as a large cluster. 

These large clusters represent different parts of text lines. These clusters are grown to merge 

other clusters in the same text line. Since, the clusters in the same line can be in different 

orientations, we use the cluster growing in local curvilinear direction. The continuation path of 

each cluster is followed by extending two extreme sides of the cluster. Hence, the orientation of 
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the extension is computed from the extreme characters of the cluster group. For this extension 

purpose, we select candidate points from both ends of each cluster to follow the orientation. The 

selection of candidate points and the extension of the cluster are described in the following. 

 

3.3. Candidate Point Selection 

 

Using inter-character background information, orientations of the extreme characters of a 

cluster group are decided and based on these orientations, two candidate regions are formed from 

the cluster. For each cluster group we find one pair of characters from both of the two extreme 

sides of the cluster. Let, ‘NG’ and ‘IN’ be two such pairs of extreme characters of a cluster group 

and these pairs are shown in the 1st column of Fig.7. To find background information, the water 

reservoir concept is used. To do so, first convex hull of each character is found (a convex hull is 

shown in the 2nd column of Fig.7) and this is done to fill up the cavity regions of the character, if 

any. Next, the resultant components are joined (shown in 3rd column of Fig.7) by a straight line 

through their centres of MEC (Minimum Enclosing Circle). This joining is performed to make 

the character pair into a single component to find the water reservoir in the background part 

between them. It may be noted that, the line obtained by joining the centres of the MEC of two 

characters does not show the proper orientation of the characters always (e.g. when one character 

has ascender/descender parts and the other does not have ascender/descender parts) where as 

water reservoir concept can take care such characters properly. Because of this the water 

reservoir concept has been used here. 

 

Reservoirs obtained in different directions Two pairs of 

Components 

Convex 

Hull of the 

components 

Line joining 

through  

MEC centre 

 

N1-N5 

 

N2-N6 

 

N3-N7 

 

N4-N8 
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Fig.7. Water reservoir computation is shown on two extreme character pairs of the cluster 

“INTRODUCING” shown in Fig.10(a). The convex hull is marked by red and the water reservoir 

area is marked by light grey. 

 

       

Fig.8. Directions of water reservoir computation. 

 

Subsequently, the water reservoir area of this joined character is computed in 8 directions at 

45º intervals as shown in Fig.8. Computation of the water reservoir when water is poured in the 

N7 (N3) direction is equivalent to the computation of top (bottom) reservoir. The areas of water 

reservoirs in direction N3 and its opposite direction N7 are added to get the total background area 

with respect to the orientation N3N7. This is done for other orientations N1N5, N2N6 and N4N8. 

The orientation, in which the maximum area is found, is detected and water flow-lines of the 

corresponding reservoirs are computed. The mid-points of the water flow-lines (discussed earlier 

in Section 2) of the two reservoirs are the candidate points. For illustration, see the last four 

columns of Fig.7, where water reservoirs in four orientations (N1N5, N2N6, N3N7 and N4N8) are 

shown. From the figure, it can be noted that, the maximum reservoir area is found for the pair 

‘NG’ in N3N7 (top-bottom) directions whereas for the pair ‘IN’, the maximum reservoir area is 

obtained in the N1N5 (left-right) direction. This is because of the different orientations of these 

two extreme pairs of the cluster “INTRODUCING”.  

For a pair, we get two candidate points and an orientation. The candidate points obtained from 

the character pairs ‘NG’ and ‘IN’ are shown in Fig.9. The orientation is obtained from the 

directions in which we get a maximum reservoir. For example, if we get a maximum reservoir 

area in the N3 and N7 directions, then N3N7 is the orientation. This orientation represents the 

direction of the extreme characters of a cluster, and it helps us to extend the cluster group for text 

line extraction. Generally, cluster groups should be extended in perpendicular to this orientation 

to obtain its neighbouring clusters of a text line. We also compute the distance between two 
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candidate points and this distance gives the height information of the busy zone of the text line. 

The number of water reservoir direction is tested with different values (4, 8 and 12) of discrete 

angles in the experiment. If we use more direction for water reservoir than 8 directions, then 

computation time will be more. From our experiment we noted that water reservoir with 8 

directions solves our purpose. 

 

 

Fig.9: Candidate points are marked by dot. Red zones denote convex hull and light grey zones 

denote the water reservoir area. 

 

3.4. Extension of Cluster Group 

 

For each extreme character pair of a cluster group, we can know its candidate points and 

orientation. Let two candidate points of one extreme side of a cluster be M1 and M2 and its 

orientation be D. The distance between M1M2 is noted and this distance is called height info (HI). 

We find a line which is perpendicular to D and passing through the mid-point of M1M2. Let this 

line be XY and we call it the estimated line of extension. Note that, this line is detected based on 

the information of the extreme characters of a cluster and as a result, our line extraction scheme 

gives good results. Now, the line XY is extended in an outward direction until it reaches the 

bounding box of the cluster group. The point where the extended line meets the bounding box is 

noted and we call it a key point. This is done for the other parts of the other extreme sides of the 

cluster and we detect another key-point. So, for a cluster we have two key-points. Key points of 

the cluster ‘INTRODUCING’ are shown in Fig.10(c) and marked by ‘K’. 

          Now, for each extreme side of a cluster we have the following: (a) estimated equation of the 

line of extension and (b) a key-point (K). For cluster extension to get individual line, we generate 

a candidate region for each key point of a cluster. Candidate region generation is performed as 

follows. 
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(a) 

    

(b)                                                              (c) 

Fig.10. Example of candidate region detection from a cluster. (a) Two clusters “INTRODUCING” 

and “Card” are shown. (b) Candidate points of the two extreme pairs of characters for the cluster 

“INTRODUCING” are shown. (c) Key points and candidate regions of cluster “INTRODUCING” are 

shown. Key points are marked by ‘K’. The candidate region is marked by hatched-line box. 

  

Generation of candidate regions: Estimated equation of line of extension is extended up to a 

distance TR= q×HI in the outwards direction from the key point K. The path obtained during this 

extension is called as extended candidate path of K of the cluster. The value of q is discussed in 

Section 3.1. A rectangular mask of length q×HI and width HI is placed on the extended candidate 

path in such a way that the mask will be divided into two halves by the extended candidate path. 

This region of the rectangular mask is considered as the candidate region of the cluster for the key 

point K. In a similar way, the candidate region of the cluster for the other key point is computed. 

Candidate regions for two key points of a cluster “INTRODUCING” are shown in Fig.10(c) and 

they are marked by hatched line.  
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The reason to choose a TR equal to q×HI is as follows. In printed text HI generally represents 

the busy-zone height of a text line. So, if we assume TR as q×HI it is most likely that a part of 

the neighboring cluster will fall in one of the candidate regions of the current cluster. 

 

Line Extraction: Candidate regions are used for line extraction and line extraction is performed 

as follows. Let α be the set of candidate clusters and isolated characters of an input image. We 

use a bottom-up approach for line extraction and the approach is as follows. First, an arbitrary 

cluster (say, topmost left cluster) is chosen from α and a line-group L is formed using this cluster. 

Two candidate regions are detected from this cluster. For each line-group we maintain two 

candidate regions (CR): left and right CR. Next, we check whether there exists any extreme 

character of a cluster or individual component whose portion falls in these CRs of the line-group 

L. Suppose, from α, we get a cluster (say, Nc) of which an end character falls in CR. If the HI of 

that end character of Nc and that of corresponding CR is similar and their corresponding 

orientation are also similar, then we include it in L. The candidate regions of the cluster Nc are 

noted and the CRs of L are modified based on the new cluster Nc. The CRs are modified as 

follows. If the right (left) candidate region of Nc falls in the left (right) CR of L then the left 

(right) candidate region of Nc is assigned as left (right) CR of L. Sometimes a portion of some 

isolated characters of α may also fall in the CRs. We consider such isolated characters for 

inclusion in L. If a portion of an isolated component falls in any CR of L, the component will be 

selected to join the line-group L, if the size similarity and linearity condition discussed in Section 

3.1 are satisfied. If an isolated character is included in L, then the corresponding CR is updated 

considering the included character as the extreme character of the line-group. The extension of 

this line-group continues at both sides, till it does not find any component/cluster in any CR, or it 

reaches the border of the image.  

When several clusters are found in the candidate region, we check size and orientation 

similarity for each cluster with that of candidate region of L. The cluster having best matching in 

terms of size and orientation is selected to be included. To decide the best matching cluster, at 

first, the cluster having minimum height difference is chosen. If the chosen cluster satisfies the 

local linearity properly with that of L then the chosen cluster is considered as best matching 
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cluster. Algorithmic steps of the extension of clustering group of the proposed scheme are given 

in Algorithm 1. 

Components clustered into a single line-group are the members of a single text line. To get 

other text lines we follow the same steps and finally we get T number of line-groups if there are T 

text lines in a document. Finally, the punctuation symbols/small components which were left 

before are included into the nearest text lines according to the proximity. In pre-processing of 

line extraction, small symbol components (‘.’, ‘,’ etc.) and background noise are filtered out 

based on their aspect ratio and pixel density. To include these punctuation symbols/small 

components in the line-group of their respective text lines we use a boundary growing technique. 

A punctuation symbol/small component is grown along its border until it touches any component 

of a line. A component is included to the text line to which it touches first during its boundary 

growing.  Different results of the process are described in Fig.11. 

 

Algorithm 1: Extension of Cluster Group (Gc). 

 

Step 1: Let M1 and M2 be the candidate points for one extreme side of a cluster (Gc) and D be the 

orientation of line obtained by joining M1 and M2. Let HI be the distance between M1 and M2. An 

equation XY is estimated perpendicular to D and passing through the mid-point of M1M2. 

Step 2: The intersection point of XY and bounding box of Gc is detected to find the Key-Point 

(K) as shown in Fig.10(c). 

Step 3: XY is extended up to length TR=q×HI in the outwards direction from the key point K, q 

is the multiplying factor of neighbor search area to get candidate region. 

Step 4: A Candidate Region (CR) of rectangular size (TR×HI) is considered at K as shown in 

Fig.10(c). 

Step 5: If extreme character of another cluster falls in CR, we check the height and orientation 

information of the new cluster with respect to CR. If their sizes are similar and orientation of the 

candidate points of the new cluster is also similar to that of orientation D of Gc, then the cluster is 

included with Gc. When several clusters fall in the CR, the best matching cluster is considered for 

inclusion. Instead of a cluster, if an isolated character falls in CR, then it will be included in Gc if 

the character has similar size and local linearity with respect to Gc. Update Gc to get new M1, M2 
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and D from the resultant cluster. If no cluster is found to include with Gc then `exit’. Else, goto 

Step 1. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Fig.11. Different steps of our proposed algorithm are shown with a given camera based warped 

document shown in (a). (b) Large clusters. (c) Large clusters are merged to form text lines using 

water reservoir concept. (d) Other punctuations/small components are included in their 

respective text lines. 

 

4. Experimental Results: Different Case Studies 

 

For the experimentation of the present work, we considered real data from maps, newspapers, 

magazines etc. as well as synthetic data generated through the computer. The scanned text 

images that are obtained in gray scale are transformed into binary images. We have used a 

histogram based global binarization algorithm [28] to convert the data image into two-tone (0 

and 1) images (Here ‘1’ represents object point and ‘0’ represents background point). The 

digitized image may contain spurious noise points, small break points and irregularities on the 

boundary of the characters, leading to undesired effects on the system. Since our method is based 

on cavity, so if there is a broken part, our method may not work. Hence we used a method to join 

the broken parts using the algorithm due to Roy et al. [27]. Since we consider in our work only 

small broken part, if there is a small broken part in the component this algorithm can join that 

part and our proposed method works well. We have done a quantitative experiment on this and 

noted that our method could not join 0.74% of the broken characters. We also noted that our 

method wrongly joins 0.32% cases. 

We have used different datasets for our experimental results computation. To get the idea of 

the font sizes, we considered 10, 12, 16, 20, 26 and 30 point-size characters for the experiment. 

The results are discussed in the following sections. Some of the datasets have ground truth and 

some do not have ground truth. If ground truth is not available, then the result is checked 

manually by viewing the results. To check visually whether a text line is extracted correctly or 

not, we render all components that are clustered in an individual line by a single color. The colors 

for different text lines are selected with a random function generator.  

 

4.1 Text Documents   
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Our experiments involve text documents which are obtained both from scanner and camera. 

The scanned dataset is taken from documents where text lines are parallel to each other and the 

text lines are horizontal. We considered 50 such documents to test. The camera based documents 

are taken from the CBDAR 2007 document image dewarping contest [14].  This document 

dataset consists of images captured with a hand held camera in uncontrolled environments. From 

this dataset, we considered 30 images containing text data. Some of them include graphical 

diagrams also. As our system can accept graphical diagrams, we used these documents without 

any other pre-processing and evaluated our approach on these documents. Segmented results of 

some of the images are shown in Fig.12. Detailed quantitative results obtained from our different 

dataset (text documents, geographical maps, engineering drawings and seal documents) are given 

in Fig.17. 

The errors occurred mainly due to the presence of broken text components. If characters in a 

text line are broken, and those broken components cannot be joined through pre-processing [27], 

then our approach may fail. In this case, neighborhood component selection will not be proper 

due to the size similarity feature. Hence, direction from the water reservoir concept cannot 

determine the candidate region properly and errors occur.  

 

4.2 Graphical Documents   

We have considered 20 different real geographical maps and 6 engineering drawing images to 

test our method. Images were digitized by a flatbed scanner at 300 dpì. They contain text lines of 

different scale and orientation. We have used one dataset of synthetic maps which are generated 

using an automatic system described in Delalandre et al. [22]. The backgrounds (graphical lines, 

boundaries etc.) of these maps are taken from a few real maps and the text words of country/river 

names are placed in the foreground using a set of rules. We show two different test images of the 

same background map in Fig.13(a) and (b). The graphical long lines i.e. geographical borders and 

rivers shown in these maps are kept fixed. The text portions are randomly placed and oriented to 

generate different synthetic documents. 

Some real geographical maps are selected from historical archive. See Fig.13(c), where a 

portion of the document is shown. These images contain text printed in dark colour compared to 

the background. To obtain the text image, we get foreground information by converting the color 
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image to a gray-level one and apply a threshold to this image for segmenting. The conversion to 

gray level is performed by transforming the RGB color model to YIQ model, where the 

luminance channel (Y) represents the gray-level image. It is achieved by the conversion equation,  

Y = 0.299×R + 0.587×G + 0.114×B 

 

    

(a)                                                               (b) 

      

(c)                                                                                (d) 

Fig.12. Line segmentation result in (a) & (b) Normal text document. (c) & (d) Camera-based warped 

text documents. 
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In maps, long graphical lines touch or overlap with text in some places. To extract all the text 

components from graphical documents, we need to remove long graphical objects that are present 

in the image as shown in Fig.1(c). In the literature [9, 16], different algorithms for extraction of 

these text characters are explained. Connected component analysis on the image will be useful 

for extracting isolated characters in the document. For each connected component, we use a 

minimum enclosing boundary box which describes the height and width of the character shape. 

The text components are separated analyzing the rectangular size (size of bounding box) and the 

area of the connected components. For this purpose histogram of the bounding box size of the 

components is generated. Through a correct threshold selection (T) obtained dynamically from 

the histogram, the large graphical components are discarded, leaving the smaller graphics and 

text components. In our experiment, the threshold T is considered as, T = n ×max(Amp, Aavg), 

where Amp and Aavg are the mode and average of the bounding box size. The value of ‘n’ was set 

to 3 empirically according to Tombre et al. [9]. This resultant image is fed to our system for line 

segmentation.  

 

     

(a) (b) 
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(c) 

Fig.13. (a) and (b) Synthetic Maps of the same graphical background but different foreground. 
(c) A real Historical Map showing its curvilinear text lines in a zoomed window. 

 

As mentioned before, there may exist some small graphical objects which are not text 

components. Also, some text components which are touched by graphical objects may be 

removed by the size threshold criterion. Due to this reason, we may not extract all the text 

characters by the text/graphics separation approach mentioned earlier. The text characters which 

touch graphical lines are missed out from the text lines extracted in the final result. To get an 

idea of our text line extraction results in graphical documents, some of the images are shown in 

Fig.14. Most of the errors in maps occurred due to missing of character components in their 

corresponding lines. It is noticed that, if some characters are in middle of a word, then our 

algorithm can extract the rest of the characters and group them in a single line. For example in 

Fig.14(b) the word “MEDITERRA_EAN SEA” is recovered though some of its characters like 

`N’ in the middle are missing. We can use this extracted text line information to obtain the 

missing characters. Using some post-processing steps such as top-bottom line fitting of the text-

line, the missing characters of the words could be found. We get some false positives in maps 

due to the presence of small components (non-text) in a line. In the engineering drawing dataset, 

the errors occurred when words were located very close together. As we are not considering the 

graphical information which is separated from the text portion, the boundary/box information of 

the text is ignored. Due to this reason, the words from different text blocks are combined 

together. 
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4.3 Seal Documents 

 

For experiments with real noisy data, documents containing seals were considered (see 

Fig.15). These were collected from different sources, for example historical documents, postal 

letters, official documents from universities etc. In these documents, text lines are in different 

orientations and they overlap with seal many times. We tested a database of 50 documents 

containing seals of English characters. The documents were digitized by a flatbed scanner at 200 

dpi. In our database there are mainly 3 types of seal shapes, e.g. circular, elliptical and 

rectangular. Text information is annotated in straight or curve way according to the shapes of 

seals. The seals are posted in different orientations and in different locations. Frequently, there is 

missing of seal information due to noise or overlapping signatures. Sometimes, due to stamping 

on to text documents, many additional text characters of the document itself are also present 

inside the seal region.  

  

 

 

 

 

(a) (b) 
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(c)                                                                           (d) 

Fig.14. (a), (b), (c) Text line results from three different maps, (d) Engineering drawing are shown. 

 

The characters in a string may touch frequently due to background noise, which creates 

problems for the extraction of isolated text characters. When more than one characters in a string 

touch, they make a touching component. The size of a touching component is usually bigger than 

an isolated component. As our text line segmentation approach is performed by clustering the 

character components based on their size and positional information, touching components may 

not be clustered in the text line because of the size difference of touching components and 

isolated characters. To tackle this problem, the touching components are decided first using the 

number of valley formed in these components. For the touching components, the orientations of 

each extreme side are used for character clustering. To decide a component as touching or 

isolated, we checked the number of concavity regions of each component. If the number of 

concave regions in a single component is more than 4, then we assume that the component is a 

touching component. Here, the height information (height of minimum enclosing rectangle) is 

considered for checking size similarity criteria mentioned in Section 3.1 for character clustering. 
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(a)                                                               (b) 

                         

(c)                         (d)                        (e)                        (f)  

Fig.15. (a)-(f) Line segmentation results obtained from different seal documents. 

 

4.4 Results with synthetic noise 

We have tested our approach with the documents added with synthetic noises. A set of graphical 

documents are degraded with Gaussian noise of different noise levels (10%, 20% and 30%). For 

lines segmentation in noisy documents, our approach is as follows. In the binarized image we 

apply a Gaussian smoothing technique to remove some of the noises. Since our method is based 

on cavity, so if there is a broken part, our method may not work. Hence we used a method to join 

the broken parts using the algorithm due to Roy et al. [27]. If there is a small broken part in the 

component this algorithm can join the broken part and our proposed method work well. Next we 

use our approach for line segmentation. To get an idea of such line segmentation results, we 

show a document image in Fig.16(a) where the document is added with 20% Gaussian noise. We 

have also tested method with Kanungo noise with parameter (0.9, 0.9, 0.5, 0.2, 0.0, 1.0) and 

result is provided in Fig.16(b).  
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(a)                                                               (b) 

Fig.16. Line segmentation results are shown on a document after addition of (a) Gaussian noise 

and (b) Kanungo Noise. 

 

4.5 Discussion and Error Analysis 

To give an idea about different ranges of accuracy of the system on different types of 

documents, we divide the accuracy into three categories: (a) 100% (b) 95-99.9% and (c) <95%. 

The accuracy of the line extraction module is measured according to the following rule. If out of 

N components of a line, M components are extracted in favor of that line by our scheme, then the 

accuracy for that line is %)100( NM × . So if all components of a text line are extracted correctly 

by the proposed algorithm, we say that the accuracy for the line is 100%. 

Fig.17 shows the overall result of line segmentation using our approach. To evaluate the 

performance of the system with the retrieved text lines, we use common ratio of precision (P) and 

recall (R). The precision measures the quality of the extracted lines in terms of the ability of the 

system to include only relevant text lines in the result. For a given retrieval result, the precision 

measure (P) is defined as the ratio between the number of relevant extracted lines and the number 

of retrieved lines. Whereas recall measures the effectiveness of the system in retrieving the 
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relevant text lines. The recall (R) is defined as the ratio between number of relevant retrieved 

lines to the total number of relevant lines in the collection. Precision and recall are computed as 

follows. 

Precision = {relevant line} ∩ {retrieved line}/{retrieved line} 

Recall = {relevant line} ∩ {retrieved line}/{relevant line} 

We show in Table 1 the precision recall accuracy of different datasets obtained from our 

experiments. The precision recall performance is computed with the text lines where components 

in text lines are more than 95%. 

 

Table 1. Precision Recall measure of our approach obtained in different datasets. 

 Horizontal 

Text 

Warped  

Text 

Geographical 

Maps 

Engineering 

Drawing 

Seal 

Documents 

Precision 99.12% 97.42% 98.48% 95.0% 88.93% 

Recall 98.70%   94.97%  95.96%  98.15%  78.22% 

 

In our proposed methodology of text line separation, the assumption was taken that the text is 

present in foreground layer of the documents. Thus, the images were binarized by Otsu threshold 

to convert the image into two-tone images. If the image is in reverse contrast, i.e. black 

background and white foreground, our present method can not handle. Our method, thus, 

depends on efficiency of binarization approach. Also, our system will not work well with color 

information in the document. We have converted color images to binary images using a typical 

color to gray image conversion technique and used the binary images for different experiments. 

More focused color segmentation methods, precisely for documents can be useful for better 

results. 
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Fig.17. Text line segmentation accuracy of our proposed method from different documents. Y-axis 

represents the number of lines and X-axis represents the accuracy. 

 

       Most of the errors in our approach are due to over-segmentation of the characters in the text 

line. We show in Fig.17, the text line segmentation accuracy in different dataset used in our 

experiment. In the datasets of normal scanned text documents, the text lines are segmented very 

well. In CBDAR dataset, the warped lines are segmented properly and separated from graphical 

portions if they exist. The orientation of text line information can be useful in future for de-

warping the document. In seal document dataset, text line segmentation accuracy is affected 

mainly due to broken text components in the seal and the presence of long graphical lines over 

text regions. Also, the text lines in these documents are not separated by large inter-line distance. 

Sometimes, more than one character clusters appear in the candidate region. Thus, error occurs 

when a cluster end is very close to another cluster, which is a member of a different text line. 

Hence, text lines are over segmented. From the quantitative analysis, we noted that only 1.12% 

errors occur because of such situation. To reduce such errors, we have considered height and 
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orientation information. In maps, when the characters of a word are distantly spaced, then our 

line extraction method sometimes fails to join the cluster ends due to threshold selection. In 

future we plan to work to take care of such errors. 

Instead of the few drawbacks that occur mainly from connected components detection, 

our line segmentation approach can handle documents where the characters are sparse and dense. 

As the algorithm depends on the background information for growing of the text lines, the 

method is invariant to character font and style. Also, another advantage of the method is that, it 

does not depend on the orientation of the text lines. We have tested it in graphical documents 

containing maps, electrical diagrams, etc. The extracted text line can be useful for post-

processing to find missing/touching characters in graphical documents. We have demonstrated 

the robustness of the approach with a range of documents from degraded text documents to 

complicated seal document. 

 

5. Conclusion 

    We have presented a new approach for text line segmentation. A key characteristic of our 

approach is the use of foreground and background information. The background information is 

taken care using Water Reservoir approach, which guides our process to follow the text line. The 

approach is based on perceptual laws of text characters in a line and it is easy to apply.  

     We have demonstrated our approach of invariance towards rotation, scale, affine to real world 

images. We demonstrated the robustness of this approach with different dataset with high degree 

of curvilinearity. For this purpose, we considered camera based documents, graphical documents 

(map, engineering drawing) and seal documents. Our experiment shows that the approach can be 

used without de-warping or rotating the documents. One of the significant advantages of the 

proposed method is its flexibility. Our scheme is independent of font, size and style of the text 

characters. 

     

 

References 



 30 

[1] H. Goto and H. Aso, “Extracting curved lines using local linearity of the text line”, 

International Conference on Document Analysis and Recognition (IJDAR), vol.2 pp. 111-

118, 1999. 

[2] G. Nagy, S. Seth and M. Viswanathan, “A prototype document image analysis system for 

technical journals”, Computer, vol.25, pp. 10-22, 1992. 

[3] F. Hones and J. Lichter, “Layout extraction of mixed mode documents”, Machine vision and 

applications, vol.7, pp.237-246, 1994. 

[4] L. O'Gorman, “The document spectrum for page layout analysis”, Transactions on Pattern 

Analysis and Machine Intelligence, vol. 15, pp. 1162-1173, 1993. 

[5] U. Pal and P. P. Roy, “Multi-oriented and curved text lines extraction from Indian 

documents”, IEEE Trans. on SMC - Part B, vol.34, pp.1676-1684, 2004. 

[6] P.K.Loo and C.L.Tan, “Word and sentence extraction using irregular pyramid”, Workshop 

on Document Analysis System (DAS), pp. 307-318, 2002. 

[7] U. Pal, A. Belaïd and Ch. Choisy “Touching numeral segmentation using water reservoir 

concept” Pattern Recognition Letters, vol.24, pp. 261-272, 2003.  

[8] P. P. Roy, U. Pal and J. Lladós, "Touching Text Character Localization in Graphical 

Documents Using SIFT", Revised Selected Papers of Workshop on Graphics Recognition 

(GREC), Lecture Notes in Computer Science (LNCS), pp. 199-211, 2010.  

[9] K. Tombre, S. Tabbone, L. Peissier, B. Lamiroy, and P. Dosch. “Text /graphics separation 

revisited”, Workshop on Document Analysis System (DAS), LNCS, Springer-Verlag, 

London, UK, vol. 2423, pp. 200-211, 2002. 

[10] F. Kimura and M. Shridhar, “Handwritten numeral recognition based on multiple 

algorithms”, Pattern Recognition, vol. 24, pp. 969-983, 1991. 

[11] U. Pal, S. Sinha and B. B. Chaudhuri, “English Multi-Oriented Text Line Extraction”, 

Image Analysis, Springer Verlag, Lecture Notes on Computer Science (LNCS-2749), pp. 

1146-1153, 2003. 

[12] B. Gatos, I. Pratikakis, and K. Ntirogiannis. Segmentation based recovery of arbitrarily 

warped document images. In Proceedings of International Conference on Document 

Analysis and Recognition (ICDAR), 2007. 



 31 

[13] L. Likforman, A. Zahour and B. Taconet. “Text Line Segmentation of Historical 

Documents: a Survey”. International Journal on Document Analysis and Recognition 

(IJDAR). pp. 123 – 138, 2007. 

[14] F. Shafait and T. M. Breuel. “Document image dewarping contest”. In 2nd international 

Workshop on Camera-Based Document Analysis and Recognition (CBDAR). Curitiba, 

Brazil. Sep. 2007. 

[15] OpenCV library : http://sourceforge.net/projects/opencvlibrary/ 

[16] L.A. Fletcher and R. Kasturi. “A Robust Algorithm for Text String Separation from Mixed 

Text/Graphics Images”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol (10), pp. 910-918 , 1988.  

[17] H.C. Park, S.Y. Ok, Y.J. Yu and H.G. Cho. “Word Extraction in Text/Graphic Mixed 

Image Using 3-Dimensional Graph Model”. International Journal on Document Analysis 

and Recognition (IJDAR), vol (4), pp. 115 130 , 2001.  

[18] C.L. Tan and P.O. Ng. “Text extraction using pyramid”. Pattern Recognition, vol (31), pp. 

63-72 , 1998.  

[19] S. He, N. Abe and C. L. Tan. “A clustering-based approach to the separation of text strings 

from mixed text/graphics documents”. International Conference on Pattern Recognition 

(ICPR), pp. 706-710, 1996.  

[20] M. Burge and G. Monagan. “Extracting Words and Multi Part Symbols in Graphics Rich 

Documents”. International Conference on Image Analysis and Processing (ICIAP), 1995.  

[21] M. Deseilligny, H. Le Men and G. Stamon. “Characters string recognition on maps, a 

method for high level reconstruction”. International Conference on Document Analysis and 

Recognition (ICDAR), pp. 249-252, 1995.  

[22] M. Delalandre, T. Pridmore, E. Valveny, E. Trupin and H. Locteau. “Building Synthetic 

Graphical Documents for Performance Evaluation”. Workshop on Graphics Recognition 

(GREC) , Lecture Note in Computer Science (LNCS), vol (5046), pp. 288-298 , 2008.  

[23] S. S. Bukhari, F. Shafait, and T. M. Breuel. “Segmentation of curled textlines using active 

contours”. In 8th IAPR Workshop on Document Analysis Systems (DAS), pp. 270–277, 

2008. 



 32 

[24] Y. Li, Y. Zheng, D. Doermann, and S. Jaeger. “Script independent text line segmentation in 

freestyle handwritten documents”. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 30(8):1313–1329, 2008. 

[25] A. Clavelli and D. Karatzas. “Text segmentation in colour posters from the Spanish civil 

war era”. International Conference on Document Analysis and Recognition (ICDAR), pp. 

181-185, Spain, 2009. 

[26] N. N. Bai, K. Nam and Y. Song. “Extracting curved text lines using the chain composition 

and the expanded grouping method”. Document Recognition and Retrieval XV, USA, 

2008. 

[27] K. Roy, U. Pal and B. B. Chaudhuri, “A System for Joining and Recognition of Broken 

Bangla Numerals for Indian Postal Automation”. In Proc. of 4th Indian Conf. on Computer 

Vision, Graphics and Image Processing, pp 641-646, 2004. 

[28]  N. Otsu, “A threshold selection method from grey level histogram”. IEEE Trans on SMC, 

vol (9), pp.62-66, 1979. 

 


