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Abstract. Presently, man-machine interface developmentis In this paper we present a system to understand hand-
a widespread research activity. A system to understand handrawn floor plans. Understanding a plan consists of rec-
drawn architectural drawings in a CAD environment is pre-ognizing building elements (doors, windows, walls, tables,
sented in this paper. To understand a document, we have tic.) and their topological properties. The input document is
identify its building elements and their structural properties.scanned and vectorized. The vectorization module @daet
An attributed graph structure is chosen as a symbolic repreal. 1993) generates an attributed graph representation of the
sentation of the input document and the patterns to recognizdrawing. We can distinguish two kinds of structural elements
in it. An inexact subgraph isomorphism procedure using reto recognize: those that have a fixed pattern and those that
laxation labeling techniques is performed. In this paper wecan be recognized by their textural properties. The mod-
focus on how to speed up the matching. There is a buildingels belonging to the first set are also represented with an
element, the walls, characterized by a hatching pattern. Usattributed graph structure, and a graph-matching process is
ing a straight line Hough transform (SLHT)-based method,performed to do the recognition. The elements of the second
we recognize this pattern, characterized by parallel straightype are characterized by a filling texture and, to recognize
lines, and remove from the input graph the edges belonginghem, we will search in the input graph for the features of
to this pattern. The isomorphism is then applied to the re-this texture by means of a Hough-based technique.
mainder of the input graph. When all the building elements  Attributed relational graphs have been widely used to
have been recognized, the document is redrawn, correctingepresent and recognize line drawings. Recognition is per-
the inaccurate strokes obtained from a hand-drawn input. formed using graph-matching procedures that find a sub-
graph isomorphism between a model graph and an input
Key words: Line drawings — Hough transform — Graph graph representing the input document. Some outstanding
matching — CAD systems — Graphics recognition examples of graph-matching techniques applied to line draw-
ing recognition can be found in the literature (e.g. Kuner
and Uberreiter 1988; Habacha 1991; Lee et al. 1990). The
subgraph isomorphism problem has been classically solved
by backtracking tree search procedures but, since it falls into
) the NP-complete complexity class, some heuristic techniques
1 Introduction have been proposed to prune the search space and speed
up the matching. Discrete relaxation (Henderson 1990) is
CAD systems are of great help to create and modify techa constraint propagation technique that allows the removal
nical documents efficiently. But, what about the reverseof inconsistent hypotheses before tree search expansion. Be-
problem, converting paper-based drawings for their integrasides the exponential computational load required by graph
tion into a CAD environment? The field afocument im-  matching, another obstacle is to deal with disturbed graphs
age analysigives a positive answer to the question thanksobtained from noisy data. In hand-drawn documents, this
to image processing and pattern recognition techniques agproblem is clearly noticeable because of the uncertainty in-
plied to scanned images of documents. Here, we focus oduced by hand-drawn strokes. To solve this drawback, an
hand-drawn floor plans for which we propose an alternativeinexact graph-matchingrocess has to be implemented, in-
CAD system input technique. This alternative input tech-troducing a modelization of graph distortion. So, an inexact
nique shows several advantages: it allows storage and modgaph-matching procedure will look for the best graph that
ification of paper-based plans and, thus, the user is offerethatches the model graph, i.e. the graph representing the
the possibility of creating new documents in a quick andminimal deformation regarding the model graph. The best
easy manner. known algorithm for inexact graph-matching is an exten-

sion of the model used in string edit distance (Wagner and
Correspondence tal. Llads
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Fig. 1. Line drawing representation by two level grapR& G)

Fisher 1974). It is based on the idea of introducing graphremoval reduces search space meaningfully and thus speeds
edit operations and computing the cheapest set of modificadp model matching.
tions required to transform one graph into another. With an  Section 2 gives a summary of the graph isomorphism
appropriate definition of the compatibility constraints, relax- procedure to detect patterns within a document. In Sect. 3,
ation labeling allows also to search for an inexact matchingwe explain how to improve the recognition by an SLHT-
In our case, the matching process uses Al algorithm  based method that finds textured areas. Section 4 shows the
(Mohr and Henderson 1986) based on discrete relaxatiosynthetized image after parameter estimation. Section 5 re-
techniques. ports a quantitative analysis of different examples. Section 6
The second type of structures to recognize in the lineaiis devoted to the conclusion.
drawing are those that do not have a fixed pattern, thus a
matching process cannot be used, but are characterized by
a filling texture. The problem of hatching pattern detection2 Overview of the graph-matching algorithm
is an important concern in the field of document analysis ) ] ] ]
(e.g. Kasturi et al. 1990; Boatto et al. 1992; Antoine et al. The input line drawing and the patterns to recognize are rep-
1992). An efficient extraction of hatched areas allows toresented using awo-level attributed grapi{2LG). The line
drastically reduce the information and to focus further in-information of the input image is represented, in the first
terpretation on the remaining lines. Hatched area detectioleVel, by a set of attributed undirected graphs, one for each
is often based om priori knowledge about their meaning connected component. The nodes of each graph represent
within the document (buildings, solid regions, walls, etc.) the characteristic points (junctions or end points of lines).
or attributes of their lines (e.g. slope or frequency). In thisThe attributes are their position, degree (number of lines
work, hatched areas represent walls and their attributes ad@ining in the node) and the angles between these lines. The
extracted from the document itself. The only knowledge is€dges of the graph represent the segments joining at charac-
that they consist of parallel even-spaced straight lines of anyeristic points. The attributes are the length and, depending
slope. We find these structures using a Hough-based reco@n Whether the segment is adjusted by a straight line or a
nition process that searches for some structural propertie§ircumference arc, the parameters that characterize the re-
Straight line Hough transform (SLHT) has been often usedsPective equation. The second-level graph is a hypergraph
to understand linear images. Some characteristic configuravhose nodes are first-level graphs and whose edges denote
tions in the original image (parallel edges, cross points, etc.jopological relationships between them. See in Fig. 1 an ex-
can be easily detected in the Hough spadedz-Krahe and @mple of a line drawing representation baG.
Pousset (1988) used SLHT to detect parallel straight lines in  In this paper, we will work with first-level graphs and
small-scale images. Wahl (1989) detected cluster patterns ifePresent them, using a standarized notation Gty E),
Hough space to carry out an interpretation of 3D polyhedrawhere V' is a set of nodes and’ is a set of edges. Let
scenes. Pao et al. (1992) used an SLHT-based method to€ V ande € E be a graph node and a graph edge, respec-
match continuous closed smooth curves. In our case, therdvely. We will denote their corresponding attributes as;
is a building element, the walls, characterized by a hatchin%v (node position)d, (node degree)f;, ..., vy*] (angles
pattern. We can search for the structural features of the wall§etween the lines joining af), m. (edge length) and., p,
in the input graph, using an SLHT-based method to detectf € is a straight line with equatiop. = xcosf. + ysinf.,
which graph edges belong to the textured areas filling wallsO! Z¢e, Yce, Tey if elis a mgcgmfergnce arc with equation
The detection starts by transforming each straight graph edgé: = (1‘ —2560@) +(y —Zyce)_ .Isa Clrcumferen(_:e arc with
to a parameter space. The peaks in this parameter space &@guatione; = (y — e,.)". Figure 2a shows an input image
detected by means of a clustering process. These peaks cdf: be recognized and Fig. 2b shows 2sG representation.
respond to parameter values that define the hatched aread/e can see some differences between the input image and
Moreover, this hatching pattern recognition step can also b&S graph-based representation due to the input segments ap-
seen as a previous filter for the graph-matching process thdroximation by straight lines and arcs.

allows to remove several edges of the input graph. The edge _Starting from this representation, matching is carried out
using subgraph isomorphism techniques, that is, finding the
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Fig. 2. alnput image.b 2LG representation after vectorization

Fig. 3. a, bSome model graphs to be matchegdd Isomorphism against
patterns

2LG (model graph) representing the pattern to be recog

isomorphism problem is equivalent to thensistent labeling
problem(Henderson 1990) which may be explained as fol-
lows: O is a set of objects to be identified,is a set of labels

that represent hypotheses on the identification of the objectg1 s
and R is a set of constraints between the pairs object label.

The goal is to obtain a sdlf of hypotheses that assigns a
label to each object satisfying the existing constraints. In ou
case, the objects to be labeled are the model nodes and t

labels are built from the input nodes. Therefore, the mode
graph can be interpreted as a constraint graph. These con
straints, based on the graph’s edges, represent geometric an

*a

%Eeveral applications have been developed from this idea.

algorithm. Given a model grapfiy(Vu, Ev) and the input
graphG,(V, E), the algorithm runs in two steps:

1. Node labeling A set L, of consistent labels is assigned
to each node € V) according to their local configura-
tion, i.e. the edges joining at these nodes and the angles
between them. Aonsistent label € L, associated to a
nodev € Vjy is defined ad = (w, el), wherew € Vj is
an input node; andl = [e1,...,eq,] (e; € Ey U{A}) is
a circular list of edges joining a, which match, fol-
lowing a counterclockwise order, with the edges joining
at v. Somee; may be an empty edge\Y when there is
any input edge matching the corresponding model edge.
According to this notation, Ebeling hypothesis a pair
(v,1) wherel is a consistent label for a nodec V.

. Arc consistency verification All the locally consistent
labels in each model node should be validated using the
labels of the neighboring nodes. A constraigtbetween
hypotheses of neighboring nodes is imposed. In our case,
the constraint#2 can be explained as follows: given
two labeling hypothese&l = (vq, (w1, elp)) and h2 =
(v2, (w2, elp)), wherewv; and v, are joined by an edge
e € Ey ,.72(h1, hy) is true if 1) there is a sequence
of K edges §1,...,bx] (b; € EyU{A},Vi=1...K)
which links v1 and v, and which approximates thes
path, and 2); and h, denote the same rotation for the
model nodes; andwvs.

Inexact graph-matching is attained by the inclusion of empty
edges and allowing some distortion when model nodes and
input nodes are compared. Figure 3c, d are the results of
inexact subgraph-matching with the patterns of Fig. 3a, b,
respectively. In these figures, the edges corresponding to a
solution have been bolded. See Ldadand Maiit (1995) for
further details on the isomorphism algorithm.

3 Hatching patterns recognition

Wall detection involves two purposes at the same time: rec-
ognizing a building element which does not have a pattern
graph and pruning the tree search before starting subgraph
isomorphism to speed up this process. Wall recognition will
be carried out by detection of textured areas filled with par-
allel even-spaced straight lines. We will make two additional
assumptions for these regions: there are two directions al-
lowed for the walls and these two directions must be or-

thogonal. It is possible to relax these assumptions and allow

more than two directions. In this case, since the detection of
ominant directions involves a supervised learning process,
the number of directions should be an input parameter to the
system.

Classical SLHT transforms each image pointy) into

et of points {, p) that fulfill the equationp = zcosf +
ysind. Detection of peaks in the parameter space constitutes

a powerful method to detect straight lines in the input image.

ee a complete survey in lllingworth and Kittler (1988) and
eavers (1993). With the aim to detect textured regions, we

use the idea of SLHT in the following definition:

topologic constraints to be accomplished by nodes in theiDefinition 1. Given an attributed grap&'(V, E), we define

junctions. Subgraph isomorphism is solved using A4

its graph-based Hough transformith parameter# andp as
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a function GBHY, : £ — [0, 7] x IR that, for each straight
edgee € FE with attributes values). and p., transforms
e into a point @., p.) in the 6-p parameter space. If the
considered attributes efaref,. and its lengthn., we define
analogously GBHY,,, in §-m parameter space.

representation of-m space. Notice that, since tifleaxis is
cyclic, in the clustering process, the distance between two
points must be defined in terms of a cyclic distance. On the
other hand, it can be seen that the cluster corresponding to
filling edges, characterized by its centé¢,(mg) in Fig. 5d,
actually contains two peaks. This is because, see Fig. 2, the
~ Figure 4 shows these two possible transformations in afnput document contains walls with two different widths.
ideal case. GBH{, gives, for each wall, two peaks with This fact results in a cluster containing two near peaks and,
the same) and a difference ip equal to the wall's width.  thus, the computed centré:(me) represents an average of
GBHTj, also gives a sequence of points with the s@aed  them. As will be seen, the more scattered the filling cluster,
even spaced. With this configuration we can calculate the orthe larger the computed range of variation for wall width.
thogonal dominant directions, the filling edges direction andrinally, Fig. 5d shows the three classes found with their

the wall's width. On the other hand, GBH,J, allows to cal-

corresponding dominant directiorty, 6y and 0 and the

culate the same parameters but in a more accurate mannefyerage lengthng of filling edges. Let €1, m1), (62, m2)
GBHTy,,, gives three peaks in the parameter space. TWo ofnd @3, mg3) be the three peaks detectedéinn space. We

them have the same: and a difference ofr/2 in 6 and
correspond to the orthogonal dominant directions. The third
peak corresponds to the filling edges, and the wall's width —
(L1 in the figure) is calculable from it, as can be seen in the
next section. The inaccuracy of hand-drawn design causes
that graph edges with the same a priori attribute values will
be slightly different after vectorization. This fact provokes
scattered points in Hough space and additional difficulty
in the detection of peaks. For this reason, we have used
GBHTy,,,, which is more robust because the information re- —
quired is concentrated only in three peaks. The properties of
the walls are extracted from them space. Then, the size

of the input graph is reduced and the subgraph isomorphism
against the models is done with the remainder of input graph,
i.e. input graph after removing its edges belonging to hatched
regions. Introducing this Hough-based procedure, the algo-
rithm of document interpretation and reconstruction runs in
five steps: it starts by GBHJ,, computation of the input
graph. Then, some structural features of walls are calculated
from peaks inf-m space. The next step is the extraction

of vertical and horizontal connected components that will
be defined as subgraphs of the input graph which outlines
the walls. With all this information, a new graph structure
that stores wall features is built. The final step carries out
an inexact matching between the remainder of input graph
and the model graphs of building elements. These steps are
described in the following sections. -

3.1 Parameter computing

A clustering process is applied ovérmn space, obtained as
output of GBHTy,,,, with the aim to detect the three peaks
mentioned above. Two of these three peaks should have a
difference of7/2 and correspond to orthogonal dominant
directions. The third peak is used to calculate the filling
direction and the wall's width. The well-knowkrmeansal-
gorithm is used to classify the points &fm space in three
classesCy, Cy and Cg. The centers of these three classes
are taken as the three peaks shown in an ideal case in Fig. 4.
Figure 5a show#-m space after GBH4,,, of Fig. 2b input
graph. Figure 5b show$-m space smoothed with a Gaus-
sian filter. We have stated experimentally that the algorithm
works faster and gives better results if k-means is initialized
from the maxima of smoothetim space. Peaks in the above
image can be better assessed in Fig. 5¢ which shows a 3D

can calculate the following information:

Dominant directions. 0, 6, and f3 are the angles cor-
responding to the three dominant directions of the input
edges. The first step is to find, out@f, 6, andfs, which
two directions are orthogonal. L&t; and6,, denote the
angles corresponding to these two directions. The third
direction will be the filling direction and its angle will
be denoted aér.
Graph rotation value. Let V,, and H, be the minimal
rotation angle which must be applied to a direction with
angle o to align it respectively with vertical and hori-
zontal directions. The rotatiof; that must be applied
to the input graph to align its dominant directions with
vertical and horizontal directions can be calculated as
follows:
1 1

erot = mln(z(‘/ﬁol + Hﬁnz)a 2(H001 + %oz)) . (1)
If we assumdf,; — 6,2 = /2 + 6, then the following
equalities must also be satisfied}_, — Hy_,| = 6 and
|Hp,, — Va,,| = 6. After finding 6o, we can know which
direction, 6,; or 6,,, corresponds to vertical direction
and which one corresponds to horizontal direction. Let
fv andfy be respectively the dominant directions closest
to vertical and horizontal directions.
Direction variation. Let Ay, Ay and Ag be the range
of variation allowed for the dominant directions.

Definition 2. Given an input grapld; (4, E), we define
the set of vertical edge&y C Ey asEy ={e€ E, 0. =
Oy + Ay}. Whered. is the orientation of input edge
e. Similarly, we can defingty as theset of horizontal
edgesand Er as theset of filling edges

The ranges of variatiorly, Ay and Ag can be calcu-
lated from the average deviation @nof each class’;
obtained after the clustering process. So, given a domi-
nant directiond;, its range of variation is calculated as
follows:

1
A= rdicy 2= 1 =0, @
peC;

where C; is the class whose centre is the dominant di-
rectioné;.

Wall width. Let (g, mg) be the class centre correspond-
ing to filling edges. It is used to calculate the wall width.
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Fig. 5. aGBHTy,,, obtained from the input graph. GBHT,,,, smoothed using a Gaussian filter3D view of the above imagel Clustering ofd-m space
using the k-means algorithm

Fig. 6. Average wall width calculation. A wall filled by an edge with lengttx has widtha or b, depending on whether it is a vertical wall or a horizontal

wall

Given an ideal filling edge with lengtig and orienta-
tion 6 (see Fig. 6), the width of the wall containing this
edge will bea or b, depending on whether it joins ver-
tical or horizontal edges, respectively. These values can
be estimated according to the following equations:

©)
(4)

Afilling edge, after GBHT,,,, is transformed into a point
(9r, mg) in the parameter space. In the estimation of av-
erage wall width we cannot know which value, or

b, must be taken, because both types of filling edges,
vertical and horizontal, contribute in the accumulation
point (Or, mg). We estimate an intervalf{imin, Wmax] for

a = mg COS@H — 0;:) = Mg sin(@,: — Gv),
b=mg sin(&H — 9;:) = Mg COSGF — 9\/).

wall width depending om andb values and the average
deviation of filling edge length. Since a large interval
[Whin, Wmax] is obtained when the filling cluster con-
tains peaks corresponding to walls of different widths,
a more accurate computation of each wall width is per-
formed after its extraction. This interval is calculated as
follows:

Wiax = (mg + Ap) maz(cosg, sing),
Whin = (mg — Ag) min(cosf, sinf) ,

®)
(6)

wheres = 6y — 6 and Ag is the average deviation im
corresponding to the filling edges class in the: space
calculated as follows:
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is defined asly, = {v € Vj, Je = (v1,v2) € Ev,v = v1
or v = v}. In the same manner, we define the subgraphs
Gu(Vh, En) andGr(VE, EE), using horizontal edges and fill-

o ing edges, respectively.

- fn:@;g G\’ andGy, s_hown in.Fig. 8a and b, re;pectively, (;io not
comp. § contain enough information to extract vertical and horizontal
» walls, because other picture elements contain vertical and
m © horizontal edges, too. It is necessary to search for pairs of
; vertical or horizontal edges joined by a filling edge. This
is the basic idea to build vertical and horizontal connected
components, defined according to the following definitions:

1
NUNUENNY

Definition 4. A vertical chain Lyc(Vic, Evc) is defined as
a connected subgraph 6%, such that its vertex sét,c can

be ordered in a sequence, [ v;,, ..., v;] such that, for all
j= 2...1, (Uij_lﬂ)ij) € Eyc.

Definition 5. Given Gy (W, Ev) defined according to def-
inition 3, a vertical connected componeig defined as a
3-tuple Cv = (L1, Lg, Ly), where L; and L, are vertical
chains andLg is a subgraph of5r whose edges joirnl;
and L,. A horizontal connected componeist accordingly
defined starting fronGy,.

According to definition 5, we will denot€&’y (Cy) as the
set of vertical (horizontal) connected components extracted
from Gy (GR).

Given two vertical connected componertiy, = (L,,
LF,”L21> and Cvj = <L1J,LFJ.,L2J.>, if Lli = Llj or
Ly, = Ly, thenCy, and Cy, are merged in{Ly,, Lr, U
Lg;, Ly, ULy;) or (L1, ULy, Lr, U Lg,, La,), respectively.
The connected components merging process is iteratively re-
peated until stability. Figure 7 shows an example of vertical
connected components extraction and merging. Horizontal
connected components are also merged following the same
idea.

Figure 8c and d show vertical and horizontal connected
Fig. 7. Vertical connected components extraction and merging. Given acomponets and their bounding boxes which constitute a first

graphG, we extract first its subgraph of vertical edgés,( and its sub- ; ; _
graph of filing edges ). Combining these two graphs, a S8y with approximation of walls. For each box, we calculate the fol

three vertical connected components is created. Two connected componeltg_Wlng fe_atures Whlch Cha,raCtenze ItS correspondlng wall:
are merged when they have a common vertical chain width, filling edge orientation and filling edge frequency.

Fig. 8. aSubgraph of vertical edgesy (Vi/, Ev). b Subgraph of horizontal Some O.f these attributes ha?‘ already been. CaICUIa.ted' but
edgesGr(Vi, En). ¢ Vertical connected components and their bounding W€ obtained them from a voting space with information on
boxes.d Horizontal connected components and their bounding boxes  all the edges in the input graph. Now we use only the edges
inside the wall to obtain these attributes, therefore it is pos-
sible to adjust them better.

9a

Fig. 9. a Walls graph;b walls reconstructiong document reconstruction
after subgraph isomorphism against some modktssult after overlapping
correction

4 Document redrawing and correction

1
Ar = card(Cg) Z frp —me. % . .

PECF A new attributed graph structure is created to represent the
walls. In this graph, the edges correspond to the wall bound-
ing boxes and the vertices correspond to the junctions be-
tween these boxes. Figure 9a shows this graph and Fig. 9b

shows the wall reconstruction, starting from the above graph

After walls parameter estimation, we filter the input graph&nd its attributes. ,

to obtainEy, Ey and Er. These edge sets are used to define  After wall recognition, edges belonging to walls are re-
three subgraphs of input gragh (Vi, E): moved from the input graph and a matching between the
remainder of the input graph and the set of model graphs
is carried out. After finding the models in the input graph,
we store only the position, scale and orientation for each

3.2 Connected component extraction

Definition 3. We defineGy (Wy, Ev) as thesubgraph of ver-
tical edges ofGG,. By was defined in definition 2 antfy
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Table 1. Quantitative analysis

Image Input graph Remainder graph  Reduction rate
Example size nodes edges size nodes edges in matching speed
1 400x% 780 (305 Kb) 471 676 53 Kb 349 418 75%
2 850x 610 (506 Kb) 685 971 128 Kb 578 813 58%
3 600x 700 (411 Kb) 182 245 19 Kb 135 162 57%

instance, calculating these parameters by means of an aligi@ble 2- Parameters defining walls

ment between the model nodes and their corresponding in- Wall
put nodes. The matching process has assigned an input nod&xample 6y £ Ay 4+ Ay Op £ Ar O width
w; € Vi to each model node; € V. Let v. be the centre 1 éﬁtsl“ giig iiﬁigs (1)-(5) Hggg}
of model nodes andv. the centre of their corresponding 3 17643 8813 AGLE 20 [2137]

input nodes. The pairsuf, v;) and ., w;) define a trans-
lation, rotation and scale that align with w;. Since the
matched subgraph is a distorted version of the model graph, Figures 10b and 11b show the result after extracting con-
each individual alignment between a model nagewith ~ nected components from the input graphs using the above
its corresponding input node; is likely to be slightly dif-  parameters. With this information, the walls graph has been
ferent from the others. Thus, the mean translation, rotatiorfomputed. Notice in Fig. 10b that there is a subgraph which
and scale among individual alignments define the positiongatisfy the conditions stated in definition 5, but does not be-
orientation and scale of each instance of model graph. long to any textured region. This kind of isolated connected
The document can be reconstructed from the wall graphgomponents have been removed and not considered in the
instantiating each model according to its attributes (seevall computation step. See in Figs. 10c and 11c the redraw-
Fig. 9c to see the result of this reconstruction). Notice thating of textured regions forming walls using the information
some elements appear overlapped, because this image is a §entained in the walls graph. It is remarkable in Fig. 11b
of instances of the model graphs. The last step is a correctiothat, since a narrow range of variation of filling direction
of element position to avoid overlapping. This correction ishas been obtained for this example (see Table 2), a small
done by computing the overlapping area between elementdumber of filling edges have been found. However, hatched
and translating them until this overlapping area is empty.regions have been properly reconstructed in Fig. 11c.
The result after this correction is shown in Fig. 9d. Finally, a matching between the remainder of the input
graph and the model graphs has been done. We have worked
with a database containing 20 model graphs. Figures 10d and
11d show the result after the recognition and reconstruction
of input documents. We can assess that the matching has
succeeded despite some accuracy errors such as gaps, split-
The process described in the previous sections has been agy points, missing edges, etc. As can be seen in Table 1,
plied to a test set containing seven hand-drawn sketches qhe graphs representing each document contain a large set
floor plans. In addition to the results dlsplayed N Flg gd,of nodes and edges_ This means that graph-matching m|ght
two examples from the test set have been chosen for detaileg@ike a long time to be computed. If the edges belonging to
study. In this section, Figs. 2a, 10a and 11a will be referredextured areas are removed, then the graph size is consider-
to, as example 1, 2 and 3, respectively. Table 1 reports somgply reduced and, thus, the time required by the matching is
data regarding the graphs extracted from these three exangxponentially reduced. In Table 1 the computation reduction
ples, the remainder graphs after removing edges belongingates are shown. In Fig. 10d we can see another problem
to textured areas, and the rate of reduction in the processinghat appears after document reconstruction. There are some
time, depending on whether the matching is done with themodels which do not fit within the walls because of the dis-
input graph or the remainder graph without walls edges.  tortion of the input hand-drawn document. In this case, it

Each document has been scanned, in a range betwegg necessary to warn the user, allowing them to change the
120 and 250 dpi, vectorized and represented®b. This  sjze of some elements.

representation allows to reduce the storage requirements (see

the rate of this reduction in Table 1). Afterwards, the hatch-

ing pattern recognition process described in Sect. 3 was aps Conclusion

plied. Table 2 displays the parameters stated in Sect. 3 and

computed for each example. Notice that, in the third exam-The problem of hand-drawn floor plan document analysis as
ple (Fig. 11), the range of variation for the three dominantan alternative CAD input technique has been discussed. An
directions is significatively smaller than in the previous ex- attributed graph-based structure has been proposed to repre-
amples. This is because the first two graphs are larger thasent the structural information of the document after its vec-
the third one and they have a number of edges not belongorization. Document recognition has been stated in terms
ing to textured regions, which disturb the clustering of theof a subgraph isomorphism between a graph representing
parameter space. On the other hand, we can see that fillindhe input document and a set of graphs representing some
direction @) is not restricted and can vary across docu-models for recognition. Computing subgraph isomorphism
ments. However, the method proposed in this paper is ableequires an exponentialy large amount of time. This prob-
to find this direction. lem is mainly noticeable when graphs represent disturbed

5 Results and discussion
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Fig. 10. alnput documentb connected components;walls redrawing after parameter computationdocument reconstruction after recognition
Fig. 11. alnput documenth connected components walls redrawing after parameter computatidnlocument reconstruction after recognition
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