
Machine Vision and Applications (1997) 10:150–158 Machine Vision and
Applications
c© Springer-Verlag 1997

A system to understand hand-drawn floor plans
using subgraph isomorphism and Hough transform

Josep Llad́os1, Jaime López-Krahe2, Enric Mart ı́1

1 Computer Vision Center – Dep. Inform̀atica. Universitat Aut̀onoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
e-mail: josep@cvc.uab.es, enric@cvc.uab.es
2 Dep. Informatique, Lab. ai/mime, Univ. Paris 8, Saint Denis, 93526 Paris CEDEX 02, France
e-mail: lopez@ai.univ-paris8.fr

Received 6 June 1996 / Accepted 4 February 1997

Abstract. Presently, man-machine interface development is
a widespread research activity. A system to understand hand
drawn architectural drawings in a CAD environment is pre-
sented in this paper. To understand a document, we have to
identify its building elements and their structural properties.
An attributed graph structure is chosen as a symbolic repre-
sentation of the input document and the patterns to recognize
in it. An inexact subgraph isomorphism procedure using re-
laxation labeling techniques is performed. In this paper we
focus on how to speed up the matching. There is a building
element, the walls, characterized by a hatching pattern. Us-
ing a straight line Hough transform (SLHT)-based method,
we recognize this pattern, characterized by parallel straight
lines, and remove from the input graph the edges belonging
to this pattern. The isomorphism is then applied to the re-
mainder of the input graph. When all the building elements
have been recognized, the document is redrawn, correcting
the inaccurate strokes obtained from a hand-drawn input.

Key words: Line drawings – Hough transform – Graph
matching – CAD systems – Graphics recognition

1 Introduction

CAD systems are of great help to create and modify tech-
nical documents efficiently. But, what about the reverse
problem, converting paper-based drawings for their integra-
tion into a CAD environment? The field ofdocument im-
age analysisgives a positive answer to the question thanks
to image processing and pattern recognition techniques ap-
plied to scanned images of documents. Here, we focus on
hand-drawn floor plans for which we propose an alternative
CAD system input technique. This alternative input tech-
nique shows several advantages: it allows storage and mod-
ification of paper-based plans and, thus, the user is offered
the possibility of creating new documents in a quick and
easy manner.

Correspondence to: J. Llad́os

In this paper we present a system to understand hand-
drawn floor plans. Understanding a plan consists of rec-
ognizing building elements (doors, windows, walls, tables,
etc.) and their topological properties. The input document is
scanned and vectorized. The vectorization module (Lladós et
al. 1993) generates an attributed graph representation of the
drawing. We can distinguish two kinds of structural elements
to recognize: those that have a fixed pattern and those that
can be recognized by their textural properties. The mod-
els belonging to the first set are also represented with an
attributed graph structure, and a graph-matching process is
performed to do the recognition. The elements of the second
type are characterized by a filling texture and, to recognize
them, we will search in the input graph for the features of
this texture by means of a Hough-based technique.

Attributed relational graphs have been widely used to
represent and recognize line drawings. Recognition is per-
formed using graph-matching procedures that find a sub-
graph isomorphism between a model graph and an input
graph representing the input document. Some outstanding
examples of graph-matching techniques applied to line draw-
ing recognition can be found in the literature (e.g. Kuner
and Uberreiter 1988; Habacha 1991; Lee et al. 1990). The
subgraph isomorphism problem has been classically solved
by backtracking tree search procedures but, since it falls into
the NP-complete complexity class, some heuristic techniques
have been proposed to prune the search space and speed
up the matching. Discrete relaxation (Henderson 1990) is
a constraint propagation technique that allows the removal
of inconsistent hypotheses before tree search expansion. Be-
sides the exponential computational load required by graph
matching, another obstacle is to deal with disturbed graphs
obtained from noisy data. In hand-drawn documents, this
problem is clearly noticeable because of the uncertainty in-
duced by hand-drawn strokes. To solve this drawback, an
inexact graph-matchingprocess has to be implemented, in-
troducing a modelization of graph distortion. So, an inexact
graph-matching procedure will look for the best graph that
matches the model graph, i.e. the graph representing the
minimal deformation regarding the model graph. The best
known algorithm for inexact graph-matching is an exten-
sion of the model used in string edit distance (Wagner and

151

Fig. 1. Line drawing representation by two level graphs (2LG)

Fisher 1974). It is based on the idea of introducing graph
edit operations and computing the cheapest set of modifica-
tions required to transform one graph into another. With an
appropriate definition of the compatibility constraints, relax-
ation labeling allows also to search for an inexact matching.
In our case, the matching process uses theAC4 algorithm
(Mohr and Henderson 1986) based on discrete relaxation
techniques.

The second type of structures to recognize in the linear
drawing are those that do not have a fixed pattern, thus a
matching process cannot be used, but are characterized by
a filling texture. The problem of hatching pattern detection
is an important concern in the field of document analysis
(e.g. Kasturi et al. 1990; Boatto et al. 1992; Antoine et al.
1992). An efficient extraction of hatched areas allows to
drastically reduce the information and to focus further in-
terpretation on the remaining lines. Hatched area detection
is often based ona priori knowledge about their meaning
within the document (buildings, solid regions, walls, etc.)
or attributes of their lines (e.g. slope or frequency). In this
work, hatched areas represent walls and their attributes are
extracted from the document itself. The only knowledge is
that they consist of parallel even-spaced straight lines of any
slope. We find these structures using a Hough-based recog-
nition process that searches for some structural properties.
Straight line Hough transform (SLHT) has been often used
to understand linear images. Some characteristic configura-
tions in the original image (parallel edges, cross points, etc.)
can be easily detected in the Hough space. López-Krahe and
Pousset (1988) used SLHT to detect parallel straight lines in
small-scale images. Wahl (1989) detected cluster patterns in
Hough space to carry out an interpretation of 3D polyhedral
scenes. Pao et al. (1992) used an SLHT-based method to
match continuous closed smooth curves. In our case, there
is a building element, the walls, characterized by a hatching
pattern. We can search for the structural features of the walls
in the input graph, using an SLHT-based method to detect
which graph edges belong to the textured areas filling walls.
The detection starts by transforming each straight graph edge
to a parameter space. The peaks in this parameter space are
detected by means of a clustering process. These peaks cor-
respond to parameter values that define the hatched areas.
Moreover, this hatching pattern recognition step can also be
seen as a previous filter for the graph-matching process that
allows to remove several edges of the input graph. The edge

removal reduces search space meaningfully and thus speeds
up model matching.

Section 2 gives a summary of the graph isomorphism
procedure to detect patterns within a document. In Sect. 3,
we explain how to improve the recognition by an SLHT-
based method that finds textured areas. Section 4 shows the
synthetized image after parameter estimation. Section 5 re-
ports a quantitative analysis of different examples. Section 6
is devoted to the conclusion.

2 Overview of the graph-matching algorithm

The input line drawing and the patterns to recognize are rep-
resented using atwo-level attributed graph(2LG). The line
information of the input image is represented, in the first
level, by a set of attributed undirected graphs, one for each
connected component. The nodes of each graph represent
the characteristic points (junctions or end points of lines).
The attributes are their position, degree (number of lines
joining in the node) and the angles between these lines. The
edges of the graph represent the segments joining at charac-
teristic points. The attributes are the length and, depending
on whether the segment is adjusted by a straight line or a
circumference arc, the parameters that characterize the re-
spective equation. The second-level graph is a hypergraph
whose nodes are first-level graphs and whose edges denote
topological relationships between them. See in Fig. 1 an ex-
ample of a line drawing representation by a2LG.

In this paper, we will work with first-level graphs and
represent them, using a standarized notation, byG(V,E),
where V is a set of nodes andE is a set of edges. Let
v ∈ V ande ∈ E be a graph node and a graph edge, respec-
tively. We will denote their corresponding attributes as:xv,
yv (node position),dv (node degree), [γ1

v, . . . , γ
dv
v] (angles

between the lines joining atv), me (edge length) andθe, ρe,
if e is a straight line with equationρe = xcosθe + ysinθe,
or xce, yce, re, if e is a circumference arc with equation
r2
e = (x − xce)2 + (y − yce)2. is a circumference arc with

equatione2
r = (y − eyc)2. Figure 2a shows an input image

to be recognized and Fig. 2b shows its2LG representation.
We can see some differences between the input image and
its graph-based representation due to the input segments ap-
proximation by straight lines and arcs.

Starting from this representation, matching is carried out
using subgraph isomorphism techniques, that is, finding the

152

Fig. 2. a Input image.b 2LG representation after vectorization

Fig. 3. a, b Some model graphs to be matched;c, d Isomorphism against
patterns

2LG (model graph) representing the pattern to be recog-
nized in terms of a subgraph of the2LG (input graph) that
approximates the input line drawing at best. The subgraph
isomorphism problem is equivalent to theconsistent labeling
problem(Henderson 1990) which may be explained as fol-
lows:O is a set of objects to be identified,L is a set of labels
that represent hypotheses on the identification of the objects
andR is a set of constraints between the pairs object label.
The goal is to obtain a setH of hypotheses that assigns a
label to each object satisfying the existing constraints. In our
case, the objects to be labeled are the model nodes and the
labels are built from the input nodes. Therefore, the model
graph can be interpreted as a constraint graph. These con-
straints, based on the graph’s edges, represent geometric and
topologic constraints to be accomplished by nodes in their
junctions. Subgraph isomorphism is solved using theAC4

algorithm. Given a model graphGM(VM , EM) and the input
graphGI (VI , EI), the algorithm runs in two steps:

1. Node labeling. A setLv of consistent labels is assigned
to each nodev ∈ VM according to their local configura-
tion, i.e. the edges joining at these nodes and the angles
between them. Aconsistent labell ∈ Lv associated to a
nodev ∈ VM is defined asl = (w, el), wherew ∈ VI is
an input node; andel = [e1, . . . , edv] (ei ∈ EI ∪ {λ}) is
a circular list of edges joining atw, which match, fol-
lowing a counterclockwise order, with the edges joining
at v. Someei may be an empty edge (λ) when there is
any input edge matching the corresponding model edge.
According to this notation, alabeling hypothesisis a pair
(v, l) wherel is a consistent label for a nodev ∈ VM.

2. Arc consistency verification. All the locally consistent
labels in each model node should be validated using the
labels of the neighboring nodes. A constraintR between
hypotheses of neighboring nodes is imposed. In our case,
the constraintR can be explained as follows: given
two labeling hypothesesh1 = (v1, (w1, el1)) and h2 =
(v2, (w2, el2)), wherev1 and v2 are joined by an edge
e ∈ EM ,R(h1, h2) is true if 1) there is a sequence
of K edges [b1, . . . , bK] (bi ∈ EI ∪ {λ}, ∀i = 1 . . .K)
which links v1 and v2 and which approximates thee’s
path, and 2)h1 andh2 denote the same rotation for the
model nodesv1 andv2.

Inexact graph-matching is attained by the inclusion of empty
edges and allowing some distortion when model nodes and
input nodes are compared. Figure 3c, d are the results of
inexact subgraph-matching with the patterns of Fig. 3a, b,
respectively. In these figures, the edges corresponding to a
solution have been bolded. See Lladós and Mart́ı (1995) for
further details on the isomorphism algorithm.

3 Hatching patterns recognition

Wall detection involves two purposes at the same time: rec-
ognizing a building element which does not have a pattern
graph and pruning the tree search before starting subgraph
isomorphism to speed up this process. Wall recognition will
be carried out by detection of textured areas filled with par-
allel even-spaced straight lines. We will make two additional
assumptions for these regions: there are two directions al-
lowed for the walls and these two directions must be or-
thogonal. It is possible to relax these assumptions and allow
more than two directions. In this case, since the detection of
dominant directions involves a supervised learning process,
the number of directions should be an input parameter to the
system.

Classical SLHT transforms each image point (x, y) into
a set of points (θ, ρ) that fulfill the equationρ = xcosθ +
ysinθ. Detection of peaks in the parameter space constitutes
a powerful method to detect straight lines in the input image.
Several applications have been developed from this idea.
See a complete survey in Illingworth and Kittler (1988) and
Leavers (1993). With the aim to detect textured regions, we
use the idea of SLHT in the following definition:

Definition 1. Given an attributed graphG(V,E), we define
its graph-based Hough transformwith parametersθ andρ as

153

a function GBHTθρ : E → [0, π] ×R that, for each straight
edgee ∈ E with attributes valuesθe and ρe, transforms
e into a point (θe, ρe) in the θ-ρ parameter space. If the
considered attributes ofe areθe and its lengthme, we define
analogously GBHTθm in θ-m parameter space.

Figure 4 shows these two possible transformations in an
ideal case. GBHTθρ gives, for each wall, two peaks with
the sameθ and a difference inρ equal to the wall’s width.
GBHTθρ also gives a sequence of points with the sameθ and
even spaced. With this configuration we can calculate the or-
thogonal dominant directions, the filling edges direction and
the wall’s width. On the other hand, GBHTθm allows to cal-
culate the same parameters but in a more accurate manner.
GBHTθm gives three peaks in the parameter space. Two of
them have the samem and a difference ofπ/2 in θ and
correspond to the orthogonal dominant directions. The third
peak corresponds to the filling edges, and the wall’s width
(L1 in the figure) is calculable from it, as can be seen in the
next section. The inaccuracy of hand-drawn design causes
that graph edges with the same a priori attribute values will
be slightly different after vectorization. This fact provokes
scattered points in Hough space and additional difficulty
in the detection of peaks. For this reason, we have used
GBHTθm, which is more robust because the information re-
quired is concentrated only in three peaks. The properties of
the walls are extracted from theθ-m space. Then, the size
of the input graph is reduced and the subgraph isomorphism
against the models is done with the remainder of input graph,
i.e. input graph after removing its edges belonging to hatched
regions. Introducing this Hough-based procedure, the algo-
rithm of document interpretation and reconstruction runs in
five steps: it starts by GBHTθm computation of the input
graph. Then, some structural features of walls are calculated
from peaks inθ-m space. The next step is the extraction
of vertical and horizontal connected components that will
be defined as subgraphs of the input graph which outlines
the walls. With all this information, a new graph structure
that stores wall features is built. The final step carries out
an inexact matching between the remainder of input graph
and the model graphs of building elements. These steps are
described in the following sections.

3.1 Parameter computing

A clustering process is applied overθ-m space, obtained as
output of GBHTθm, with the aim to detect the three peaks
mentioned above. Two of these three peaks should have a
difference ofπ/2 and correspond to orthogonal dominant
directions. The third peak is used to calculate the filling
direction and the wall’s width. The well-knownk-meansal-
gorithm is used to classify the points ofθ-m space in three
classes,CV, CH andCF. The centers of these three classes
are taken as the three peaks shown in an ideal case in Fig. 4.
Figure 5a showsθ-m space after GBHTθm of Fig. 2b input
graph. Figure 5b showsθ-m space smoothed with a Gaus-
sian filter. We have stated experimentally that the algorithm
works faster and gives better results if k-means is initialized
from the maxima of smoothedθ-m space. Peaks in the above
image can be better assessed in Fig. 5c which shows a 3D

representation ofθ-m space. Notice that, since theθ axis is
cyclic, in the clustering process, the distance between two
points must be defined in terms of a cyclic distance. On the
other hand, it can be seen that the cluster corresponding to
filling edges, characterized by its center (θF,mF) in Fig. 5d,
actually contains two peaks. This is because, see Fig. 2, the
input document contains walls with two different widths.
This fact results in a cluster containing two near peaks and,
thus, the computed centre (θF,mF) represents an average of
them. As will be seen, the more scattered the filling cluster,
the larger the computed range of variation for wall width.
Finally, Fig. 5d shows the three classes found with their
corresponding dominant directionsθV, θH and θF and the
average lengthmF of filling edges. Let (θ1,m1), (θ2,m2)
and (θ3,m3) be the three peaks detected inθ-m space. We
can calculate the following information:

– Dominant directions. θ1, θ2 andθ3 are the angles cor-
responding to the three dominant directions of the input
edges. The first step is to find, out ofθ1, θ2 andθ3, which
two directions are orthogonal. Letθo1 andθo2 denote the
angles corresponding to these two directions. The third
direction will be the filling direction and its angle will
be denoted asθF.

– Graph rotation value. Let Vα andHα be the minimal
rotation angle which must be applied to a direction with
angleα to align it respectively with vertical and hori-
zontal directions. The rotationθrot that must be applied
to the input graph to align its dominant directions with
vertical and horizontal directions can be calculated as
follows:

θrot = min(
1
2

(Vθo1 +Hθo2),
1
2

(Hθo1 + Vθo2)) . (1)

If we assume|θo1 − θo2| = π/2± δ, then the following
equalities must also be satisfied:|Vθo1 − Hθo2| = δ and
|Hθo1 −Vθo2| = δ. After finding θrot, we can know which
direction, θo1 or θo2, corresponds to vertical direction
and which one corresponds to horizontal direction. Let
θV andθH be respectively the dominant directions closest
to vertical and horizontal directions.

– Direction variation. Let ∆H, ∆V and∆F be the range
of variation allowed for the dominant directions.

Definition 2. Given an input graphGI (VI , EI), we define
the set of vertical edgesEV ⊆ EI asEV = {e ∈ EI , θe =
θV ± ∆V}. Where θe is the orientation of input edge
e. Similarly, we can defineEH as theset of horizontal
edgesandEF as theset of filling edges.

The ranges of variation∆V, ∆H and∆F can be calcu-
lated from the average deviation onθ of each classCi

obtained after the clustering process. So, given a domi-
nant directionθi, its range of variation is calculated as
follows:

∆i =
1

card(Ci)

∑
p∈Ci

|θp − θi| , (2)

whereCi is the class whose centre is the dominant di-
rectionθi.

– Wall width. Let (θF,mF) be the class centre correspond-
ing to filling edges. It is used to calculate the wall width.

154

Fig. 4. GBHTθρ and GBHTθm

Fig. 5. a GBHTθm obtained from the input graph.b GBHTθm smoothed using a Gaussian filter.c 3D view of the above image.d Clustering ofθ-m space
using the k-means algorithm

Fig. 6. Average wall width calculation. A wall filled by an edge with lengthmF has widtha or b, depending on whether it is a vertical wall or a horizontal
wall

Given an ideal filling edge with lengthmF and orienta-
tion θF (see Fig. 6), the width of the wall containing this
edge will bea or b, depending on whether it joins ver-
tical or horizontal edges, respectively. These values can
be estimated according to the following equations:

a = mF cos(θH − θF) = mF sin(θF − θV) , (3)

b = mF sin(θH − θF) = mF cos(θF − θV) . (4)

A filling edge, after GBHTθm, is transformed into a point
(θF,mF) in the parameter space. In the estimation of av-
erage wall width we cannot know which value,a or
b, must be taken, because both types of filling edges,
vertical and horizontal, contribute in the accumulation
point (θF,mF). We estimate an interval [Wmin,Wmax] for

wall width depending ona andb values and the average
deviation of filling edge length. Since a large interval
[Wmin,Wmax] is obtained when the filling cluster con-
tains peaks corresponding to walls of different widths,
a more accurate computation of each wall width is per-
formed after its extraction. This interval is calculated as
follows:

Wmax = (mF +∆F)max(cosβ, sinβ) , (5)

Wmin = (mF −∆F)min(cosβ, sinβ) , (6)

whereβ = θH− θF and∆F is the average deviation inm
corresponding to the filling edges class in theθ-m space
calculated as follows:

155

Fig. 7. Vertical connected components extraction and merging. Given a
graphG, we extract first its subgraph of vertical edges (GV) and its sub-
graph of filling edges (GF). Combining these two graphs, a setCV with
three vertical connected components is created. Two connected componets
are merged when they have a common vertical chain

Fig. 8. aSubgraph of vertical edgesGV(VV , EV). b Subgraph of horizontal
edgesGH(VH, EH). c Vertical connected components and their bounding
boxes.d Horizontal connected components and their bounding boxes

Fig. 9. a Walls graph;b walls reconstruction;c document reconstruction
after subgraph isomorphism against some models;d result after overlapping
correction

∆F =
1

card(CF)

∑
p∈CF

|mp −mF| . (7)

3.2 Connected component extraction

After walls parameter estimation, we filter the input graph
to obtainEV, EH andEF. These edge sets are used to define
three subgraphs of input graphGI (VI , EI):

Definition 3. We defineGV(VV , EV) as thesubgraph of ver-
tical edges ofGI . EV was defined in definition 2 andVV

is defined asVV = {v ∈ VI , ∃e = (v1, v2) ∈ EV , v = v1
or v = v2}. In the same manner, we define the subgraphs
GH(VH, EH) andGF(VF, EF), using horizontal edges and fill-
ing edges, respectively.

GV andGH, shown in Fig. 8a and b, respectively, do not
contain enough information to extract vertical and horizontal
walls, because other picture elements contain vertical and
horizontal edges, too. It is necessary to search for pairs of
vertical or horizontal edges joined by a filling edge. This
is the basic idea to build vertical and horizontal connected
components, defined according to the following definitions:

Definition 4. A vertical chainLVC(VVC, EVC) is defined as
a connected subgraph ofGV such that its vertex setVVC can
be ordered in a sequence [vi1, vi2, . . . , viI] such that, for all
j = 2 . . . I, (vij−1, vij) ∈ EVC.

Definition 5. Given GV(VV , EV) defined according to def-
inition 3, a vertical connected componentis defined as a
3-tuple CV = 〈L1, LF, L2〉, whereL1 and L2 are vertical
chains andLF is a subgraph ofGF whose edges joinL1
and L2. A horizontal connected componentis accordingly
defined starting fromGH.

According to definition 5, we will denoteCV (CH) as the
set of vertical (horizontal) connected components extracted
from GV (GH).

Given two vertical connected componentsCVi = 〈L1i ,
LFi , L2i〉 and CVj

= 〈L1j , LFj , L2j 〉, if L1i = L1j or
L2i = L2j , then CVi

and CVj
are merged in〈L1i , LFi ∪

LFj , L2i ∪L2j 〉 or 〈L1i ∪L1j , LFi ∪LFj , L2j 〉, respectively.
The connected components merging process is iteratively re-
peated until stability. Figure 7 shows an example of vertical
connected components extraction and merging. Horizontal
connected components are also merged following the same
idea.

Figure 8c and d show vertical and horizontal connected
componets and their bounding boxes which constitute a first
approximation of walls. For each box, we calculate the fol-
lowing features which characterize its corresponding wall:
width, filling edge orientation and filling edge frequency.
Some of these attributes had already been calculated, but
we obtained them from a voting space with information on
all the edges in the input graph. Now we use only the edges
inside the wall to obtain these attributes, therefore it is pos-
sible to adjust them better.

4 Document redrawing and correction

A new attributed graph structure is created to represent the
walls. In this graph, the edges correspond to the wall bound-
ing boxes and the vertices correspond to the junctions be-
tween these boxes. Figure 9a shows this graph and Fig. 9b
shows the wall reconstruction, starting from the above graph
and its attributes.

After wall recognition, edges belonging to walls are re-
moved from the input graph and a matching between the
remainder of the input graph and the set of model graphs
is carried out. After finding the models in the input graph,
we store only the position, scale and orientation for each

156

Table 1. Quantitative analysis

Image Input graph Remainder graph Reduction rate
Example size nodes edges size nodes edges in matching speed
1 400× 780 (305 Kb) 471 676 53 Kb 349 418 75%
2 850× 610 (506 Kb) 685 971 128 Kb 578 813 58%
3 600× 700 (411 Kb) 182 245 19 Kb 135 162 57%

instance, calculating these parameters by means of an align-
ment between the model nodes and their corresponding in-
put nodes. The matching process has assigned an input node
wj ∈ VI to each model nodevi ∈ VM. Let vc be the centre
of model nodes andwc the centre of their corresponding
input nodes. The pairs (vc, vi) and (wc, wj) define a trans-
lation, rotation and scale that alignvi with wj . Since the
matched subgraph is a distorted version of the model graph,
each individual alignment between a model nodevi with
its corresponding input nodewj is likely to be slightly dif-
ferent from the others. Thus, the mean translation, rotation
and scale among individual alignments define the position,
orientation and scale of each instance of model graph.

The document can be reconstructed from the wall graph,
instantiating each model according to its attributes (see
Fig. 9c to see the result of this reconstruction). Notice that
some elements appear overlapped, because this image is a set
of instances of the model graphs. The last step is a correction
of element position to avoid overlapping. This correction is
done by computing the overlapping area between elements
and translating them until this overlapping area is empty.
The result after this correction is shown in Fig. 9d.

5 Results and discussion

The process described in the previous sections has been ap-
plied to a test set containing seven hand-drawn sketches of
floor plans. In addition to the results displayed in Fig. 9d,
two examples from the test set have been chosen for detailed
study. In this section, Figs. 2a, 10a and 11a will be referred
to, as example 1, 2 and 3, respectively. Table 1 reports some
data regarding the graphs extracted from these three exam-
ples, the remainder graphs after removing edges belonging
to textured areas, and the rate of reduction in the processing
time, depending on whether the matching is done with the
input graph or the remainder graph without walls edges.

Each document has been scanned, in a range between
120 and 250 dpi, vectorized and represented by2LG. This
representation allows to reduce the storage requirements (see
the rate of this reduction in Table 1). Afterwards, the hatch-
ing pattern recognition process described in Sect. 3 was ap-
plied. Table 2 displays the parameters stated in Sect. 3 and
computed for each example. Notice that, in the third exam-
ple (Fig. 11), the range of variation for the three dominant
directions is significatively smaller than in the previous ex-
amples. This is because the first two graphs are larger than
the third one and they have a number of edges not belong-
ing to textured regions, which disturb the clustering of the
parameter space. On the other hand, we can see that filling
direction (θF) is not restricted and can vary across docu-
ments. However, the method proposed in this paper is able
to find this direction.

Table 2. Parameters defining walls

Wall
Example θV ±∆V θH ±∆H θF ±∆F θrot width
1 179±14 88±13 53±30 1.5 [15,28]
2 0±18 90±18 142±33 0.0 [18,29]
3 178±3 88±3 49±5 2.0 [21,37]

Figures 10b and 11b show the result after extracting con-
nected components from the input graphs using the above
parameters. With this information, the walls graph has been
computed. Notice in Fig. 10b that there is a subgraph which
satisfy the conditions stated in definition 5, but does not be-
long to any textured region. This kind of isolated connected
components have been removed and not considered in the
wall computation step. See in Figs. 10c and 11c the redraw-
ing of textured regions forming walls using the information
contained in the walls graph. It is remarkable in Fig. 11b
that, since a narrow range of variation of filling direction
has been obtained for this example (see Table 2), a small
number of filling edges have been found. However, hatched
regions have been properly reconstructed in Fig. 11c.

Finally, a matching between the remainder of the input
graph and the model graphs has been done. We have worked
with a database containing 20 model graphs. Figures 10d and
11d show the result after the recognition and reconstruction
of input documents. We can assess that the matching has
succeeded despite some accuracy errors such as gaps, split-
ted points, missing edges, etc. As can be seen in Table 1,
the graphs representing each document contain a large set
of nodes and edges. This means that graph-matching might
take a long time to be computed. If the edges belonging to
textured areas are removed, then the graph size is consider-
ably reduced and, thus, the time required by the matching is
exponentially reduced. In Table 1 the computation reduction
rates are shown. In Fig. 10d we can see another problem
that appears after document reconstruction. There are some
models which do not fit within the walls because of the dis-
tortion of the input hand-drawn document. In this case, it
is necessary to warn the user, allowing them to change the
size of some elements.

6 Conclusion

The problem of hand-drawn floor plan document analysis as
an alternative CAD input technique has been discussed. An
attributed graph-based structure has been proposed to repre-
sent the structural information of the document after its vec-
torization. Document recognition has been stated in terms
of a subgraph isomorphism between a graph representing
the input document and a set of graphs representing some
models for recognition. Computing subgraph isomorphism
requires an exponentialy large amount of time. This prob-
lem is mainly noticeable when graphs represent disturbed

157

Fig. 10. a Input document;b connected components;c walls redrawing after parameter computation;d document reconstruction after recognition

Fig. 11. a Input document;b connected components,c walls redrawing after parameter computation;d document reconstruction after recognition

line drawings due to hand introduction and the isomorphism
must be computed in terms of an inexact graph-matching.
To recognize some elements that do not have a fixed pattern,
a Hough-transform-based process has been introduced. This
process carries out a recognition of walls, characterized by
a filling texture based on parallel even-spaced straight lines.
This allows not only to recognize the walls, but also to re-
duce the size of the input graph and, thus, speed up the
graph-matching used to recognize other building elements.

Starting from the methods described in this paper, there
are two points requiring further research. First of all, to ap-
ply the understanding process to drawings of other areas and
secondly to generalize the hatching pattern recognition pro-
cess, in order to detect structured linear textures without a
previously defined pattern and being able to redraw them.

References

Antoine D, Collin S, Tombre K (1992) Analysis of technical documents:
The REDRAW system. In Baird H.S., Bunke H, Yamamoto K (eds)
Structured document image analysis. Springer, Berlin Heidelberg New
York, pp 385–402

Boatto L, Consorti V, Del Buono M, Di Zenzo S, Eramo V, Espossito
A, Melcarne F, Meucci M, Morelli A, Mosciatti M, Scarci S, Tucci
M (1992) An interpretation system for land register maps. Computer
25(7):25–33

Habacha AH (1991) Structural recognition of disturbed symbols using dis-
crete relaxation. In: Proceedings of 1st International Conference on
Document Analysis and Retrieval, Saint Malo, France. pp 170–178

Henderson TC (1990) Discrete Relaxation Techniques. Oxford University
Press, Oxford

Illingworth J, Kittler J (1988) A survey of the Hough transform. Comput
Vision Graphics Image Process 44:87–116

Kasturi R, Bow ST, El-Masri W, Shah J, Gattiker JR, Mokate UB (1990)
A system for interpretation of line drawings. IEEE Trans Pattern Anal
Mach Intell 12(10):978–992

158

Kuner P, Ueberreiter B (1988) Pattern recognition by graph matching. Com-
binatorial versus continuous optimization. Int J Pattern Recogn Artif
Intell 2(3):527–542

Leavers VF (1993) Which Hough transform? Comput Vision Graphics Im-
age Process 58(2):250–264

Lee SW, Kim JH, Groen FCA (1990) Translation-, rotation-, and scale-
invariant recognition of hand-drawn symbols in schematic diagrams.
Int J Pattern Recogn Artif Intell 4(1):1–25

Lladós J, Mart́ı E (1995) Structural recognition of hand-drawn floor plans.
In: Proceedings of the 6th Spanish Symposium on Pattern Recognition
and Image Analysis, Ćordoba, Spain. pp 27–34

Lladós J, Reginćos J, Mart́ı E (1993) Interpretación de disẽnos a mano
alzada como t́ecnica de entrada a un sistema CAD en unámbito de ar-
quitectura. In: Proceedings of the 3rd Congreso Español de Inforḿatica
Gráfica, Granada, Spain, pp 33–46

López Krahe J, Pousset P (1988) The detection of parallel straight lines
with the application of the Hough transform. In: Proceedings of the 9th
International Conference on Pattern Recognition, Rome, Italy. pp 939–
941

Mohr R and Henderson TC (1986) Arc and path consistency revisited. Artif
Intell (28):225–233

Pao D, Li HF, Jayakumar R (1992) Shapes recognition using the Straight
Line Hough Transform: Theory and generalization. IEEE Trans Pattern
Anal Mach Intell 14(11):1076–1089

Wagner RA, Fischer MJ (1974) The string-to-string correction problem.
J ACM 21(1):168–173

Wahl FM (1989) Deriving Features from Hough Space for Object Recog-
nition and Configuration Estimation. In: Simon JC (ed) From Pixels to
Features. Elsevier, North-Holland

Josep Llad́os received the degree in Computer Science in 1991 from the
Universitat Polit̀ecnica de Catalunya and the Master in Computer Vision in
1993 from the Universitat Autònoma de Barcelona. Currently he is a Ph.D.
student at the Departament d’Informàtica of the Universitat Autònoma de
Barcelona and an assistant professor at the same department. His current
research field is document analysis and understanding.

Jaime López-Krahe was born in Zamora (Spain) in 1946. He received the
B.S., M.S. and Ph.D. degrees in Psychology as well as in Computer Science
from Paris VIII’s University in 1979 and the Ph.D. from Madrid University
in 1982. He joined the Image Department of E.N.S.T. in Paris and has been
involved in research there works since 1976. His research interests include
pattern recognition, computer vision, computational and discrete geometry,
image understanding, Hough transform and technological developments for
human disability. Presently he is a professor in Computer Science at Paris
University (Paris VIII).

Enric Mart ı́ received the degree in Computer Science in 1986 from the
Universitat Aut̀onoma de Barcelona and the Ph.D. degree in Computer
Science in 1991 from the same university. Presently he is a lecturer at the
Departament d’Inform̀atica of the Universitat Autònoma de Barcelona. His
current research field is document image analysis and understanding and
line drawing interpretation.

This article was processed by the author using the LaTEX style file pljour2
from Springer-Verlag.

