toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jon Almazan; Alicia Fornes; Ernest Valveny edit   pdf
doi  openurl
  Title A Deformable HOG-based Shape Descriptor Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1022-1026  
  Keywords  
  Abstract In this paper we deal with the problem of recognizing handwritten shapes. We present a new deformable feature extraction method that adapts to the shape to be described, dealing in this way with the variability introduced in the handwriting domain. It consists in a selection of the regions that best define the shape to be described, followed by the computation of histograms of oriented gradients-based features over these points. Our results significantly outperform other descriptors in the literature for the task of hand-drawn shape recognition and handwritten word retrieval  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ AFV2013 Serial 2326  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title Notation-invariant patch-based wall detector in architectural floor plans Type Book Chapter
  Year 2013 Publication Graphics Recognition. New Trends and Challenges Abbreviated Journal  
  Volume 7423 Issue Pages 79--88  
  Keywords  
  Abstract Architectural floor plans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed in [1], showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. This paper presents an evolution of that previous work, after analyzing and testing several alternatives for each of the different steps of the method: Firstly, an automatic plan-size normalization process is done. Secondly we evaluate different features to obtain the description of every patch. Thirdly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These variations of the method have been tested for wall detection on two datasets of architectural floor plans with different notations. After studying in deep each of the steps in the process pipeline, we are able to find the best system configuration, which highly outperforms the results on wall segmentation obtained by the original paper.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition (up)  
  ISSN 0302-9743 ISBN 978-3-642-36823-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.056; 605.203 Approved no  
  Call Number Admin @ si @ HMS2013 Serial 2322  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; David Fernandez; Ernest Valveny; Josep Llados; Gemma Sanchez edit   pdf
doi  openurl
  Title Unsupervised wall detector in architectural floor plan Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1245-1249  
  Keywords  
  Abstract Wall detection in floor plans is a crucial step in a complete floor plan recognition system. Walls define the main structure of buildings and convey essential information for the detection of other structural elements. Nevertheless, wall segmentation is a difficult task, mainly because of the lack of a standard graphical notation. The existing approaches are restricted to small group of similar notations or require the existence of pre-annotated corpus of input images to learn each new notation. In this paper we present an automatic wall segmentation system, with the ability to handle completely different notations without the need of any annotated dataset. It only takes advantage of the general knowledge that walls are a repetitive element, naturally distributed within the plan and commonly modeled by straight parallel lines. The method has been tested on four datasets of real floor plans with different notations, and compared with the state-of-the-art. The results show its suitability for different graphical notations, achieving higher recall rates than the rest of the methods while keeping a high average precision.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061; 600.056; 600.045 Approved no  
  Call Number Admin @ si @ HFV2013 Serial 2319  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; David Fernandez; Alicia Fornes; Ernest Valveny; Gemma Sanchez;Josep Llados edit   pdf
openurl 
  Title Perceptual retrieval of architectural floor plans Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper proposes a runlength histogram signature as a percetual descriptor of architectural plans in a retrieval scenario. The style of an architectural drawing is characterized by the perception of lines, shapes and texture. Such visual stimuli are the basis for defining semantic concepts as space properties, symmetry, density, etc. We propose runlength histograms extracted in vertical, horizontal and diagonal directions as a characterization of line and space properties in floorplans, so it can be roughly associated to a description of walls and room structure. A retrieval application illustrates the performance of the proposed approach, where given a plan as a query,
similar ones are obtained from a database. A ground truth based on human observation has been constructed to validate the hypothesis. Preliminary results show the interest of the proposed approach and opens a challenging research line in graphics recognition.
 
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.045; 600.056; 600.061 Approved no  
  Call Number Admin @ si @ HFF2013a Serial 2320  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez edit   pdf
openurl 
  Title Combining structural and statistical strategies for unsupervised wall detection in floor plans Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents an evolution of the first unsupervised wall segmentation method in floor plans, that was presented by the authors in [1]. This first approach, contrarily to the existing ones, is able to segment walls independently to their notation and without the need of any pre-annotated data
to learn their visual appearance. Despite the good performance of the first approach, some specific cases, such as curved shaped walls, were not correctly segmented since they do not agree the strict structural assumptions that guide the whole methodology in order to be able to learn, in an unsupervised way, the structure of a wall. In this paper, we refine this strategy by dividing the
process in two steps. In a first step, potential wall segments are extracted unsupervisedly using a modification of [1], by restricting even more the areas considered as walls in a first moment. In a second step, these segments are used to learn and spot lost instances based on a modified version of [2], also presented by the authors. The presented combined method have been tested on
4 datasets with different notations and compared with the stateof-the-art applyed on the same datasets. The results show its adaptability to different wall notations and shapes, significantly outperforming the original approach.
 
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.045 Approved no  
  Call Number Admin @ si @ HVS2013a Serial 2321  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; Faisal Shafait; Seiichi Uchida; Masakazu Iwamura; Lluis Gomez; Sergi Robles; Joan Mas; David Fernandez; Jon Almazan; Lluis Pere de las Heras edit   pdf
doi  openurl
  Title ICDAR 2013 Robust Reading Competition Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1484-1493  
  Keywords  
  Abstract This report presents the final results of the ICDAR 2013 Robust Reading Competition. The competition is structured in three Challenges addressing text extraction in different application domains, namely born-digital images, real scene images and real-scene videos. The Challenges are organised around specific tasks covering text localisation, text segmentation and word recognition. The competition took place in the first quarter of 2013, and received a total of 42 submissions over the different tasks offered. This report describes the datasets and ground truth specification, details the performance evaluation protocols used and presents the final results along with a brief summary of the participating methods.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056 Approved no  
  Call Number Admin @ si @ KSU2013 Serial 2318  
Permanent link to this record
 

 
Author Lluis Gomez edit   pdf
openurl 
  Title Perceptual Organization for Text Extraction in Natural Scenes Type Report
  Year 2012 Publication CVC Technical Report Abbreviated Journal  
  Volume 173 Issue Pages  
  Keywords  
  Abstract  
  Address Bellaterra  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gom2012 Serial 2309  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title Multi-script Text Extraction from Natural Scenes Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 467-471  
  Keywords  
  Abstract Scene text extraction methodologies are usually based in classification of individual regions or patches, using a priori knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organisation through which text emerges as a perceptually significant group of atomic objects. Therefore humans are able to detect text even in languages and scripts never seen before. In this paper, we argue that the text extraction problem could be posed as the detection of meaningful groups of regions. We present a method built around a perceptual organisation framework that exploits collaboration of proximity and similarity laws to create text-group hypotheses. Experiments demonstrate that our algorithm is competitive with state of the art approaches on a standard dataset covering text in variable orientations and two languages.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056; 601.158; 601.197 Approved no  
  Call Number Admin @ si @ GoK2013 Serial 2310  
Permanent link to this record
 

 
Author Albert Gordo; Florent Perronnin; Ernest Valveny edit   pdf
url  doi
openurl 
  Title Large-scale document image retrieval and classification with runlength histograms and binary embeddings Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 7 Pages 1898-1905  
  Keywords visual document descriptor; compression; large-scale; retrieval; classification  
  Abstract We present a new document image descriptor based on multi-scale runlength
histograms. This descriptor does not rely on layout analysis and can be
computed efficiently. We show how this descriptor can achieve state-of-theart
results on two very different public datasets in classification and retrieval
tasks. Moreover, we show how we can compress and binarize these descriptors
to make them suitable for large-scale applications. We can achieve state-ofthe-
art results in classification using binary descriptors of as few as 16 to 64
bits.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.042; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ GPV2013 Serial 2306  
Permanent link to this record
 

 
Author Albert Gordo; Alicia Fornes; Ernest Valveny edit   pdf
doi  openurl
  Title Writer identification in handwritten musical scores with bags of notes Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 5 Pages 1337-1345  
  Keywords  
  Abstract Writer Identification is an important task for the automatic processing of documents. However, the identification of the writer in graphical documents is still challenging. In this work, we adapt the Bag of Visual Words framework to the task of writer identification in handwritten musical scores. A vanilla implementation of this method already performs comparably to the state-of-the-art. Furthermore, we analyze the effect of two improvements of the representation: a Bhattacharyya embedding, which improves the results at virtually no extra cost, and a Fisher Vector representation that very significantly improves the results at the cost of a more complex and costly representation. Experimental evaluation shows results more than 20 points above the state-of-the-art in a new, challenging dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GFV2013 Serial 2307  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: