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Abstract—In this paper we deal with the problem of recog-
nizing handwritten shapes. We present a new deformable feature
extraction method that adapts to the shape to be described, deal-
ing in this way with the variability introduced in the handwritting
domain. It consist in a selection of the regions that best define the
shape to be described, followed by the computation of histograms
of oriented gradients-based features over these points. Our results
significantly outperform other descriptors in the literature for
the task of hand-drawn shape recognition and handwritten word
retrieval.

I. INTRODUCTION

A lot of effort has been dedicated in Computer Vision and
Pattern Recognitoon to the problem of shape recognition. It
is at the core of many different applications, such as object
retrieval or sketch recognition. In the Document Analysis
domain, the case of hand-drawn is a specially challenging
problem since we have to deal with large variability coming
from noise, distortions, inaccuracy in strokes and changes
caused by different writting styles. The extraction of robust
features is a critical point in this case. Thus, descriptors able
to adapt to all this variability are necessary.

In the literature many different feature extraction methods
have been proposed for shape description. We are interested
in descriptors that have been applied to the recognition of
shapes written or drawn by hand. Several generic shapes
descriptors have been applied to this kind of shapes, and
a general overview can be found in (1). Among them, we
can highlight the curvature scale space (CSS) descriptor (2)
which successively blurs the shape contour by convolving it
with a Gaussian kernel, and the Shape Context (3), which
selects n points from the contour of the shape and computes
the distribution of the distance and angle between them.
Both descriptors are robust to deformations, however, wether
they can only deal with some specific shapes or they are
computationally expensive, they can not be applied to all the
tasks in the “handwritten” domain. Specially conceived for the
specific case of hand-drawn symbol recognition, the Blurred
Shape Model (BSM) (4) has shown to obtain good results in
hand-drawing applications. It is based on computing the spatial
distribution of shape pixels in a set of pre-defined image sub-
regions and is able to handle a certain degree of deformation.
However, due to the rigidity of the model, large deformations
cause large differences in the spatial information encoded by
the BSM.

In order to overcome the rigidity of the BSM, the cmiBSM
feature extraction method (5) was presented as an extension of
the BSM improving its robustness against large deformations.
It consists in substituting the fixed regular grid of the BSM

by a more flexible grid. A region partition algorithm adapts
a given number of points to the shape to be described, and
then the “pixels density” is computed in each one of them
by the accumulation of shape pixels, just as the BSM does.
This approach showed a good performance for recognizing
shapes in difficult problems such as writer independent symbol
recognition. However, when dealing with fine details, e.g.
recognizing skilled forgery signatures, it presented some dif-
ficulties. This is mainly due to the simplicity of the features
extracted. We argue that the intensity of foreground pixels is
unsufficient to capture all the fine-grained details.

Another descriptor that has been recently applied to hand-
written shapes (6) with excellent results is the well-known
Histogram of Oriented Gradients (HOG) (7). HOG takes the
pixel gradient information as the basis to extract features,
which has been shown to be able to deal with fine-grained
details and to capture more information than other kind of
features, such as the “pixels density”. It consists in dividing
the image in a rigid grid of cells and computing a histogram
of gradients in each one of them. Therefore, apart from the
basis features, HOG is similar to the BSM in the sense
of using a grid and computing a histogram in each cell.
Thus, we argue that the main issues of this descriptor with
hand-drawn shapes, as it happens to the BSM, come from
his rigidity: allowing some deformation will let us focus on
the most discriminative areas, i.e., those that best define the
shape. Commonly, handwritten shapes are composed of regions
without meaningful information, and on the other hand, regions
where all the information is concentrated. Thus, descriptors
should focus mainly on these meaningful regions. Therefore, in
this paper we propose to combine the deformable grid scheme
of the cmiBSM approach with HOG-based features. In this
way we plan to improve the HOG descriptor in order to focus
the description on the most discriminative regions of the shape.

The main contribution of this work is the extension of the
HOG descriptor for the specific case of handwrtting, combin-
ing gradient features and a flexible and adaptable grid. We use
the region partitioning algorithm for the detection of shape
regions where information is concentrated in combination with
HOG, a feature extraction method able to capture fine and
discriminative details. In this sense, we will show that gradient-
based features performs better with hand-drawn symbols than
density-based features encoded by the BSM, and that the
flexibility of the deformable grid improves the results of the
rigid grid that the HOG uses.

Finally, we will show that the new descriptor can solve
one of the common problems (also related to the rigid grid)
encountered when applying the HOG descriptor to images that



Fig. 1: HOG features.

have different aspect ratios. In order to compare two images
using HOG, both should have the same size, otherwise, the
dimension of the feature vector may result different. This
makes a warping to a fixed image size necessary, which even
deforms the shape contained or adds background space without
meaningful information. This also provokes that corresponding
HOG cells may not contain the same regions of the shape, so
it will negatively affect the matching process. However, the
approach that we propose, as a side effect of combining the
HOG descriptor with the deformable grid, is able to deal with
changes in the aspect ratio of the images. That is, as a result
of the region partition algorithm, focuses will be located in
similar regions of the shape independently of the aspect ratio
of the image.

The ability of our method for the description of handwritten
shapes has been evaluated for two different, but related,
tasks: hand-drawn symbol recognition and handwritten word
retrieval. In the latter we consider the handwritten word as a
shape to be described and retrieved from the dataset, so it is not
related with the typical word spotting approach. Both tasks will
test the feature extraction method against writer independent
configurations and also against images with different scales
and aspect ratios.

The rest of the paper is organized as follows: Section
II describes the method proposed. The explanation of the
experiments, including the datasets used and the experimental
protocols is conducted in Section III. Then, Section IV is
devoted to show performance results, as well as the comparison
with other approaches. Finally, Section V concludes the paper
and porposes a future work line.

II. DEFORMABLE HOG

The deformable HOG-based feature extraction approach
is based on the computation of HOG features in a given
set of k × k points, denoted as focuses, over the shape to
be described. These focuses, which can also be seen as an
adaptable mesh, are automatically positioned with the objective
of being distributed along the shape pixels. Therefore, this
approach can be divided in two sequential steps: a first step
devoted to compute the location of the focuses following an
iterative region partitioning algorithm (8) and a second step
where regions centered over the focuses are extracted and
described using HOG features.

A. HOG Features

HOG descriptor was first introduced by Dalal and Triggs
(7), but we use Felzenszwalb et al. implementation (9), which
includes some improvements over the original approach. It

consists in first computing for every pixel in the image the
orientation and the magnitude of the intensity gradient. Then,
the image is divided in an uniform grid of cells and for each
one of them a histogram of gradients is computed using “soft
binning”. Finally, a dimensionality reduction is performed,
resulting in a 31-dimensional vector for each cell: 27 dimen-
sions corresponding to different orientation channels (9 con-
trast insensitive and 18 contrast sensitive), and 4 dimensions
capturing the overall gradient energy in square blocks of four
cells around. An example of the HOG features extracted from
two different words can be seen in Figure 1. As we can see,
these gradient-based features contains enough discriminative
and fine-grained information to be able to differentiate between
both words.

B. Region Partitioning Procedure

The region partitioning procedure consists in subdiving
the image into regions centered on the geometrical centroid of
the corresponding region of the previous level. The location
coordinates of the resulting geometrical centroids will be the
points, denoted as focuses, where features will be following
extracted. Next, we give a brief description of this procedure
in order to introduce some notation. For further details, we
refer the reader to (8), where this procedure was originally
proposed, and (5), where was first used as an adaptable mesh
for the extraction of features.

We denote the set of shape pixels of the binary im-
age as S and their number as N . The region partitioning
procedure will work by obtaining a series of subregions of
the image at successive levels. Furthermore, we define as
Rl

i, i = {1, 2, . . . , 4l} the i-th rectangular region obtained in
the iteration (or ’level’) l of the partitioning algorithm, and as
F l∈R2 the set of geometrical centroids of the regions in Rl.
For each level l, the region partitioning procedure estimates
the geometric centroid of all regions Rl

i and then splits each
region into four sub-regions using the geometric centroid. The
new sub-regions generated will form the new set of regions
Rl+1. We consider R0 as the whole image, and F 0 to contain
the geometrical centroid of this region (Figure 2a).

Considering a separate cartesian coordinates system for
each region Rl

i, the geometrical centroid F l
i is computed using

equations
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where N l
i denotes the number of shape pixels set Sl

i in the
processed region Rl

i, and x, y are the pixel coordinates. This
iterative procedure finishes when a termination level L is
reached. Then, the final coordinates of the focuses will be only
the geometrical centroids of the level L, i.e., FL. Thus, the
number of focuses to represent the shape 4L can be determined
using this termination level L. These focuses can be seen as
the representation of a deformable grid adapted to the shape
to be described. Examples of the distribution of focuses for
levels L equal to 0, 1 and 2 are shown in Figures 2a, 2b and
2c respectively.
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Fig. 2: (a-c) Regions and focuses resulted in the region partition procedure for different levels with L equal to 0, 1 and 2. (d)
HOG features extracted from level L equal to 2 using a 3× 3 cells grid.

C. Feature Extraction

Once focuses locations have been calculated, the feature
extraction is computed according to the coordinates of focuses
in set FL. For every focus fi, i = {1, 2, . . . , 4L} we extract a
sub-image Ii centered on their (x, y) coordinates. The size of
the sub-images depends on the number c of HOG cells and the
size in pixels of every cell. For our experiments we fix the cell
size to 16 pixels and analyze the performance with different
number of c × c cells grid. As we said, we follow (9) and
use HOG histograms of 31 dimensions to represent each cell.
The final vector descriptor v of a given image results from
the concatenation of all the histograms from all the focuses.
Thus, its dimension depends on the number of cells c and
the termination level L, i.e., the number of focuses 4L: v ∈
Rd, d = 4L · c2 · 31.

III. EXPERIMENTS

The new descriptor proposed has been experimentally
evaluated for two different purposes in two different datasets:
NicIcon dataset (10) for hand-drawn symbol recognition and
the George Washington dataset (11; 12) for handwritten word
retrieval. We compare its performance with the cmiBSM and
the HOG descriptor (fixing the cell size to 16 pixels) for both
tasks.

The NicIcon dataset (Figure 3a) is composed of 26,163
handwritten symbols of 14 classes from 34 different writers
with on-line and off-line data available. The dataset is di-
vided in three subsets (training, validation and test) for two
different settings: writer dependent and writer independent.
Every symbol has been cropped and size-normalized in an
image of 256 × 256 pixels. We have selected the off-line
data with the writer independent configuration for the symbol
recognition task and we have used two different classifiers:
Nearest Neighbor-based and Suppor Vector Machine with an
exponential χ2 kernel, whose cost and gamma parameters have
been experimentally validated. For comparison we report the
classification accuracy.

(a)

(b)

Fig. 3: (a) NicIcon dataset for shape recognition. (b) George
Washington dataset for word retrieval.

The George Washington dataset (Figure 3b) is comprised
of 20 pages and 4,846 words. We apply a pre-processing for
noise removal and slant correction and use the groundtruth
information to segment the words. For word retrieval purposes
we use the following protocol: each word is considered once
as a query and used to rank the rest of the words using
cosine as a similarity distance between words. We report the
mean Average Precision of all the queries, which is a standard
measure in retrieval systems and can be understood as the
area below the precision-recall curve. For the original HOG
descriptor we resize all the images to a fixed size of 180×270,
which is the mean value of height and width respectively.

Concerning the selection of parameters, we have fixed them
with the aim of reaching a trade off between performance



and dimensionality. However, we will further explore their
influence in an extensive analysis, showing that performance
of the nrHOG can be considerably increased at a cost of
increasing the dimension of the feature vector. As it was
shown in (5), cmiBSM performance reaches a plateu at the
termination level L equal to 5, so we set it to this value for our
experiments. So, in order to have a comparable dimensionality,
we set L in the nrHOG equal to 2, and we use a grid of 3× 3
to compute HOG features in the focuses. Finally, both HOG
and nrHOG use a size bin equal to 16 pixels.

IV. RESULTS AND DISCUSSION

In Table I we show the classification accuracy in the
NicIcon dataset for the three methods compared: cmiBSM,
HOG and the proposed approach non-rigid HOG, denoted as
nrHOG. We can see that for both classifiers used (Nearest
Neighbor-based and SVM with exponential χ2 kernel) HOG-
based approaches outperform the cmiBSM descriptor. This
confirms the need of capturing fine-grained details using more
informative and discriminative features. Moreover, we also
observe that the incorporation of an adaptative grid in the grid-
based HOG improves the performance for the classification of
shapes.

TABLE I: Results in the NicIcon dataset for the word symbol
recognition task in the writer independent configuration

Method NN accuracy (%) SVM accuracy (%)

cmiBSMf+p (5) 89.42 90.62
HOG (9) 93.47 96.68
nrHOG 95.88 97.69

Then, we show in Table II the mean Average Precision for
the word retrieval task over the George Washington dataset,
where we extract a similar conclusion: HOG-based features
are able to deal with fine details to discriminate between
handwritten shapes, and its combination with a deformable
mesh substituting the rigid grid leads to a significant per-
formance improvement. In this task, where shapes are more
complex and we have to deal with a larger number of classes,
differences between descriptors are considerably larger. The
cmiBSM is clearly not able to deal with the fine details to
correctly differentiate words, and it is surpassed by HOG-based
descriptors. The proposed nrHOG approach reports the best
performance.

TABLE II: Results in the George Washington dataset for the
word retrieval task

Method mAP (%)

cmiBSMf+p (5) 8.51
HOG (9) 37.21
nrHOG 44.59

As we said in the introduction, the integration of the
deformable mesh of focuses provides to the original HOG
descriptor some invariance to changes in the aspect ratio. This
can be specially appreciated in the results of the GW dataset,

where we have big changes in aspect ratio for images of the
same class, so the difference in performance between nrHOG
and HOG is larger than in the NicIcon, which only contains
squared images.

Like in (5), we could use the focus coordinates as a feature
vector and perform an in-kernel fusion with the HOG features
when pre-computing the exponential χ2 kernel to improve the
performance. However, in this case the improvement is unsub-
tantial and we do not consider worthy the extra computational
time that this fusion requieres.

Finally, we show in Figure 4 some qualitative results
comparing the three approaches for the word retrieval task over
the George Washington dataset. There we can see that, even
that HOG improves the results of the cmiBSM by retrieving
words whose shape is more similar to the query (“October”,
“November” and “December” share most of the characters), it
is not enough to be able to differentiate between handwritten
words. For that, we need to focus the description over the
discriminative regions as the nrHOG does, resulting in in this
way in a better performance.

A. Parameters Analysis

The nrHOG has two main parameters: the termination level
L, which determines the number of focuses used to describe
the shape, and the value c of the c × c grid used to extract
HOG features around every focus. In Figure 5 we explore the
effect of these parameters. There we can see that increasing
their values leads performance to increase. However, for both
L and c, higher values means a larger vector dimension, so
their value adjustment will be a trade-off between performance
and dimensionality. Considering that the size of the cell has
been fixed to 16 pixels, the dimension of the resulting feature
vector of the HOG descriptor is equal to 3,906. In the case of
the nrHOG, the first configuration that outperforms the HOG
with the minimum dimensionality has a feature vector with
dimension equal to 1,116. The configuration of the nrHOG
that has the best performance in Figure 5 results in a vector
with dimension equal to 198,400.

V. CONCLUSION AND FUTURE WORK

In this work we have shown how a combination of a
deformable grid and a fine-grained feature extraction method
based on histrograms of gradients can be used to describe
handwritten shapes and can be applied to shape recognition and
retrieval. We have also shown its robutness against variability
for different writting styles and different aspect ratios. This
has resulted in a succesful adaptation of the well-known
HOG descriptor to the handwritting domain. We have obtained
excellent results when comparing to other shape descriptors.
We plan to publish the MATLAB code implementation and the
prepocessed datasets upon publication in the hope that it would
provide a comparison framework for new shape descriptors.

As future work we plan to integrate the new nrHOG
descriptor in the word spotting framework proposed in (6).
It will require a new sliding window procedure that takes
into account the deformable grid characteristics and to adapt
the matching process according to that. Moreover, we plan
to perform an extensive analysis comparing different feature
extraction techniques in combination with the deformable grid.



Fig. 4: Qualitateve results comparing cmiBSM, HOG and nrHOG for the word retrieval task over the George Washington dataset.

Fig. 5: Influence of level L in the George Washington dataset
for different number of grid cells. The size of cell is fixed to
16 pixels.
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