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Abstract—Wall detection in floor plans is a crucial step in a
complete floor plan recognition system. Walls define the main
structure of buildings and convey essential information for the
detection of other structural elements. Nevertheless, wall segmen-
tation is a difficult task, mainly because of the lack of a standard
graphical notation. The existing approaches are restricted to
small group of similar notations or require the existence of pre-
annotated corpus of input images to learn each new notation. In
this paper we present an automatic wall segmentation system,
with the ability to handle completely different notations without
the need of any annotated dataset. It only takes advantage of the
general knowledge that walls are a repetitive element, naturally
distributed within the plan and commonly modeled by straight
parallel lines. The method has been tested on four datasets of
real floor plans with different notations, and compared with
the state-of-the-art. The results show its suitability for different
graphical notations, achieving higher recall rates than the rest of
the methods while keeping a high average precision.

I. INTRODUCTION

The analysis of floor plans is one of the central ap-
plications of Graphics Recognition. A number of automatic
tools have been incorporated into CAD platforms. Examples
are the classical raster to CAD conversion systems [1], 3D
visualization from printed floor plans [2], [3], or hand drawn
sketch interpretation [4] in the early conceptualization stages
of the architects work. Very recently, several works have
been proposed beyond the analysis of floor plan for creativity
activities but at functional level. Here, the interpretation of
the structure and the space is very relevant, so the detection
of walls is the key in this step [5], [6], [7], [8], since they
bear inherent information of other structural elements, such as
rooms, windows, doors, etc.

A number of wall detection techniques have been presented
in the literature, most of them based on the structural grouping
of some basic primitives. In [3], the parallel pairs of lines are
firstly detected. Then, text information and an established set
of graphical rules are used to guide the semantic wall detection.
Contrarily, in [2], walls are modeled by dashed lines and
detected by applying a morphological filtering. In [5], walls
are recognized after finding the parallel lines encountered using
a combination of Hough Transform and image vectorization.
Only the couple of parallel lines detected with black pixels
in between are considered as final walls. More recently, in
[7] walls are segmented by iteratively performing erosions
followed by dilatations, permitting to differentiate between
thick, medium and thin walls.

These approaches are able to detect walls successfully in
their own tested datasets. Nevertheless, the lack of a standard
notation in floor plans leads to different graphical modeling
depending on the architectural offices, or countries. Thus, walls
can be modeled very differently from plan to plan. This fact
provokes that state-of-the-art strategies, which are strongly
notation oriented, need to be reformulated for every floor plan
that contains a new graphical notation. With the aim of giving
solution to this issue, we presented in [9] a supervised patch-
based wall segmentation method able to deal with different
notations. The main drawback of this approach is given by
the need of ground-truthed data for each new notation to
learn the graphical appearance of walls. Since the manual task
of labeling is tedious and subject to errors, this approach is
appropriate for a controlled set of notations but fails into being
a reasonable approach to generally solve the problem.

In this paper we present, to the best of our knowledge,
the first unsupervised segmentation system which is able to
segment walls independently to their notation. Conversely to
[9], it automatically adapts to every wall notation; without the
need of labeled data to learn their graphical appearance. The
approach, based on some general properties of walls inherent
in all floor plans, generate multiple segmentation candidates
and select the one which better characterizes this element. We
compare its performance on four labeled datasets of different
notations with two recent wall segmentation strategies [7], [9],
showing that it surpass them in recall terms. Moreover, to
enhance the strength of our method, which is the ability of seg-
menting walls of any plan when no ground-truth is available,
we qualitatively show its robustness on some challenging real
images of different notations and resolutions extracted directly
from the Internet.

The rest of the paper is organized as follows. Firstly, in
section II the methodology is explained in deep. Secondly,
in section III the datasets where our approach have been
tested, the evaluation protocol used and the quantitative and
qualitative results are presented. We finally conclude the paper
in section IV.

II. METHODOLOGY

The underlying idea of the method for segmentation of
walls is based on a flexible combination of 6 general premises
for characterizing walls, called wall-assumptions:

1) Walls are modeled by parallel lines.
2) They are rectangular; longer than thicker.
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Fig. 1: Real graphical examples of vertical walls for Dataset
Black in (a), Dataset Textured in (b), Dataset Textured2 in (c),
and Dataset Parallel in (d).

3) Walls appear in orthogonal directions.
4) Different thickness is used for external and internal

walls.
5) The walls of a document are filled by the same pattern

(hatched, tiled, solid, empty, etc.).
6) They appear repetitively and naturally distributed

among the plan.

As it is shown in Figure 1, this set of wall-assumptions are
far from being a collection of unbreakable statements that per-
fectly define walls in their graphic composition. Nevertheless,
the appropriate combination of them is used to guide the final
segmentation.

Figure 2 shows the pipeline of our approach. Firstly, the
image is preprocessed to filter unnecessary information and to
facilitate the posterior segmentation. After that, the edges of
the input image are computed just in case black thick walls
are present. Otherwise, the raster image is considered as input.
Then, using run length analysis, the parallel lines in the plan
are detected and the distances between them are quantized in a
histogram. Outstanding values of the histogram correspond to
frequent runs likely to define wall segments. Finally, the final
wall segmentation is given by the combination of wall image
candidates according to the assumptions postulated above.

A. Pre-process

The input images are preprocessed as in [6] and [9]. Firstly,
all images are binarized to reduce the dimensionality of the
input space. Then, since textual information is not relevant for
wall segmentation, it is filtered out using [10]. In addition
to that, we detect and correct possible deviations in floor
plan orientation by adapting the approach for handwritten text
deskewing [11]. Finally, floor plans with resolutions higher
than 4000×4000 are down scaled for efficiency issues.

B. Black-walls detection

Despite walls are usually drawn by parallel lines with a
repetitive graphical pattern –or texture– inbetween them or a
lack of it, there are floor plans that include walls graphically
composed by black thick lines –called black-walls for clarity–,
as the ones shown in Figure 1a. Since we base the detection
in wall-assumption 1, that asserts that they are composed by
at least two parallel lines, we need to detect the floor plans
that contain this sort of walls and transform them into a more
suitable input; the edge image.

In order to detect the existence of this kind of walls, run
lengths over the foreground pixels in the horizontal and vertical
directions are quantized in a histogram. Floor plans with
black walls present more sparse frequencies with significant
out-layers in high positions. Contrarily, the runs in images
with a lack of black-walls are distributed normally-like in
the lower bins. A Gaussian Mixture is fitted into the 1D
data using the Expectation Maximization algorithm. Then,
a relaxed boundary on the sigma parameter σthw of the
normal distribution estimation, which tend to be a big deal
higher in images with black walls, is used to detect plans
containing these kind of walls. Finally, documents with black-
walls are transformed to their corresponding edge image using
the Canny edge detector.

C. Wall-segment candidates generation

Wall segment candidates of different widths are generated
in this step according to the wall-assumption 1 defined above.
Firstly, the parallel lines at different image orientations α are
detected by foreground runs of a certain minimum length
rlbmin. Then, the distances between each parallel candidates
are calculated by the background runs in their orthogonal
direction. The runs are quantized into a histogram histRL,
where high frequencies state for repetitive runs among black
lines, and thus, possible widths modeling walls. On the other
hand, lower frequencies, which are the vast majority, are
produced by more infrequent objects also modeled by parallel
lines. The histogram is smoothed and the bins with the
maximum frequencies according a predefined threshold are
grouped into a set of adjacent runs. This is done to reduce
the noise dependency when walls in the same floor plan have
a slightly breath difference. In the end, a segmentation image
is generated for each one of the groups of widths by retrieving
the foreground lines involved. They are considered as segments
which possibly belong to walls, or part of them; from now on,
called wall-candidates. The different steps implicated in this
process are illustrated in Figure 3.

D. Wall Segmentation Ranking

Wall-candidates are combined generating multiple wall
segmentation hypothesis. The resulting hypothesis are ranked
according to the properties involved in the wall-assumptions.
The final segmentation adopted is the one with the highest
score.

Wall-candidates combination

Multiple segmentation hypothesis are generated from the
set of wall-candidates because generally, in floor plans, inner
and outer walls have different widths. There are also some
inner walls which usually are slightly wider than the rest,
mainly because of structural purposes in the building architec-
ture. Moreover, some walls are graphically modeled by more
than two single parallel lines. Hence, is likely that more than
one wall-candidate lead to the correct segmentation.

The k-combinations for the n wall-candidates for all possi-
ble k subsets, except for the empty set, are generated spreading
into 2n − 1 final combination subsets. The final segmentation



Fig. 2: The pipeline of our approach

hypothesis set S is given by the logical disjunction function
over the wall-candidates wi in every subset:

S = |{w1}; ...{wn}; ...{w1 ∨ wn}; ...{w1 ∨ ... ∨ wn}|, (1)

renamed as,

S = {hyp1, ..., hyph, ..., hyp2n−1}, (2)

being hyph a final segmentation image hypothesis.

Wall general attributes

For each one of the final segmentation hypothesis in S,
four different generalist attribute scores based on the wall-
assumptions are extracted to determine their likelihood on
being the correct solution:

• SH is the summation of frequencies in the histogram
of runs for the widths involved in the segmentation
hypothesis:

SHhyph
=

∑
i

histRL(wi),∀i|wi ∈ hyph. (3)

SH benefits those hypothesis formed by several wall-
candidates –segmentations with multiple thickness–,
which agrees with wall-assumption 4.

• CC: is the summation of the number of individual con-
nected components in each wall-candidate involved in
the segmentation hypothesis:

CChyph
=

∑
i

#CC(wi),∀i|wi ∈ hyph, (4)

where #CC(wi) is the number of isolated connected
components in the wall-candidate wi. The more num-
ber of CC’s, the higher is the score. This attribute score
avails segmentations with multiple components, which
agrees with wall-assumption 6 when mentioning that
walls should appear repetitively.

• AR states for the mean longness aspect ratio (longi-
tude / width) of the CC in each of the wall-candidates:

ARhyph
= long(CCj(wi))/width(CCj(wi)), (5)

∀j|CCj ∈ wi,∀i|wi ∈ hyph
According wall-assumption 2, walls are longer than
wider, and then, longer aspect ratios are enhanced in
the final segmentation.

• DiffD accounts on the difference of black pixel distri-
bution between the original image with respect to each

segmentation hypothesis in the different equalized
rectangular regions r they are split. The proportional
difference is calculated as:

DiffDhyph
=

r∑
n=1

r∑
m=1

pnm − phnm, (6)

where pmn and phmn are the percentage of the black
pixels in the mnth region of the original image
and hyph respectively. DiffD enforces segmentations
distributed similarly to the input image throughout
the plan, agreeing with wall-assumption 6 in terms of
walls location, and allows to filter dispersedly located
elements.

Final Wall Segmentation

The global scoring function is given by the aggregated
summation of the different normalized attribute scores:

W (hyph) = SHhyph
+ CChyph

+ ARhyph
+ DiffDhyph

. (7)

The final wall segmentation adopted is that hypothesis with
the highest score.

III. EXPERIMENTS

In this section we firstly present the datasets used to evalu-
ate our approach. Secondly, we briefly describe the evaluation
protocol used to rate the segmentation. And finally, we analyze
both, the quantitative and qualitative results.

A. Datasets

Two reference datasets used to evaluate recent floor plan
analysis systems [6], [7], [8], [9], are adopted to test and
compare our method. These datasets, named as Dataset Black
and Dataset Textured contain respectively 90 and 10 real archi-
tectural images with completely different graphical notations
and resolutions. Moreover, we have collected and ground-
truthed two new datasets with different notations for walls.
These datasets are called Textured2 and Parallel:

• Textured2 contains 18 real floor plan images of
5671×7383 pixels. They contain text, legends, stair-
side-views and symbols of different domains, such as
electrical, furniture, etc. The texture for walls (see
Fig. 1c) is composed by hatched lines with a big deal
higher frequency and opposite direction than images
in Dataset2.

• The 4 real floor plans of Parallel are 2550×3300
pixels. Walls are modeled by parallel lines (see Fig.



Fig. 3: Wall-candidates generation. In (a), the input image is shown. The extraction of the runlengths for different orientations α
is zoomed in (b). These runs are quantized in the histogram histRL shown in (c) and grouped into three colored clusters. Each
cluster represents a common parallel line thickness in the input image, generating a wall-image-candidate as it is shown in (d).

1d), either for interior and exterior. The images contain
text, text-tables and furniture.

B. Evaluation

The evaluation protocol adopted to evaluate our method is
the same as in [9]. The evaluation is at pixel level only on
the foreground pixels of the original image. The results are
expressed using Jaccard Index (JI):

JI =
TruePos

TruePos+ FalsePos+ FalseNeg
(8)

In addition to that, since this method is thought as an initial
step for a complete floor plan interpretation system, Recall
is also taken into account; it is more straightforward and ef-
fortless to post-process an over-segmented result, than finding
some lost walls in later processes of a global floor plan analysis
system.

C. Results

Our method is influenced by four parameters (rlbmin, α, σtw

and r) set experimentally in a very relaxed way for the multiple
plans tested. The parameter rlbmin states for the minimum
run length in the black horizontal line generation for being
considered as a possible line. rlbmin is set to 10 pixels, which
is sufficiently small to cope with low resolution documents,
and adequately high for efficiency issues. The angle interval
α specifies in which rotation of the input image lines can be
detected. It has a strong impact when diagonal walls occur in
the image. Yet, the lower α, the more image-lines are generated
and thus, the slower is the global performance. Experimentally,
we set α increment in 15◦, which is a good trade of between
performance and speed. The sensitivity boundary over the
estimated σthw is used to detect plans with thick-walls. The
results obtained for the 4 different datasets have demonstrated
that σthw values for plans with thick-walls are, at least, 75

times higher than in plans without this kind of walls. Therefore,
in a very relaxed way, we decided that floor plans with
σthw estimation values over 25, are classified as documents
containing black-walls. The last parameter to be set is the
number of equal-size regions r used to calculate the black
pixels distribution difference DiffD. Experimental tests have
shown that the performance for r = {9, 16, 25} varies at most
0.02 in terms of JI. For other close values to them, the rates
drop significantly. r = 9 is adopted since is the configuration
with the best global performance.

Table I shows the quantitative results compared with the
notation oriented strategy used [7], the notation invariant patch-
based detector [9] and our unsupervised notation invariant
approach. It shows the average JI score and the recall obtained
particularly for each dataset, and globally for all of them. In the
case of [7], exclusively results for Dataset Black are presented
since this approach is specifically oriented to extract black-
walls and then, useless in floor plans with different notations.
Finally, it is also worth to point out that we can only compare
with [9] on the labeled datasets we have created, which contain
multiple images using similar notations on purpose, as this
method requires the existence of a ground-truth for training
purposes.

Quantitatively, our method performs more effectively than
[7] on Dataset Black in both JI and recall, bearing in mind
that this approach was specifically thought for this dataset.
Comparing to [9], our average JI score is modestly worse; yet,
only 3 points below taking into account that [9] is a supervised
method. On the other hand, our approach performs slightly
better in global recall terms, remarking that, conversely to [9]
the local recall scores in every dataset are always higher than
0.9.

In addition to that, we show in Figure 4 some qualitative
results on floor plans extracted from the Internet1. We have

1https://www.google.es/imghp?q=floor%20plan
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Fig. 4: Qualitative results for images extracted from the Internet. In (b), (d) and (f), the segmented walls are shown from their
corresponding original images (a), (c) and (e).

TABLE I: Wall segmentation results

#images [7] [9] our new approach
JI Rec. JI Rec. JI Rec.

Dt. Black 90 0.90 0.92 0.97 0.99 0.93 0.97
Dt. Textured 10 – – 0.83 0.98 0.82 0.97
Dt. Textured2 18 – – 0.81 1 0.77 0.91
Dt. Parallel 4 – – 0.70 0.84 0.66 0.98

Average per Dataset – – 0.83 0.95 0.80 0.96

selected challenging images with different notations, resolu-
tions, containing diagonal walls, repetitive textures, such as
terraces or parquet floors, text, stairs, etc. The qualitative
results confirm its good performance and adaptability in wall
segmentation on floor plan images of any graphical notation
and resolution. We visually confirm that very few walls are
missed, as it is ratified by its recall score in Table I. This fact
makes our approach very attractive when wall detection is a
little step in a global floor plan analysis system; when the lose
of a wall can imply the misinterpretation of part of the floor
plan.

IV. CONCLUSIONS

We have presented a floor plan wall detector able to deal
with any kind of floor plan notation. Contrarily to the state of
the art, it automatically adapts to any new graphical notation
without the need of annotated data to learn the graphical
appearance of walls. The results obtained on 4 real floor plan
datasets demonstrate that outperforms recent strategies in recall
terms; an important point to consider when walls are used
to posteriorly detect other structural elements in floor plan
analysis systems. In addition to that, we have presented some
qualitative results on floor plans extracted from the Internet to
highlight its robustness for any new input document.

We are working in a complete floor plan analysis system
which incorporates this wall segmentation strategy. Our inten-
tion is to create a global system that is able to interpret floor
plans independently from their graphical notation and without
the need of labeled data to learn each graphical notation.
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