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Abstract—Scene text extraction methodologies are usually
based in classification of individual regions or patches, using a
priori knowledge for a given script or language. Human percep-
tion of text, on the other hand, is based on perceptual organisation
through which text emerges as a perceptually significant group of
atomic objects. Therefore humans are able to detect text even in
languages and scripts never seen before. In this paper, we argue
that the text extraction problem could be posed as the detection of
meaningful groups of regions. We present a method built around
a perceptual organisation framework that exploits collaboration
of proximity and similarity laws to create text-group hypotheses.
Experiments demonstrate that our algorithm is competitive with
state of the art approaches on a standard dataset covering text
in variable orientations and two languages.

I. INTRODUCTION

Text is ubiquitous in man-made environments and most of
our daily activities imply reading and understanding written
information in the world around us (shopping, finding places,
viewing advertisements, etc). The automated localization, ex-
traction and recognition of scene text in uncontrolled environ-
ments is still an open computer vision problem [1], [2], [3]. At
the core of the problem lies the extensive variability of scene
text in terms of its location, physical appearance and design.

A key characteristic of text is the fact that it emerges as
a gestalt: a perceptually significant group of similar atomic
objects. These atomic objects in the case of text are the
character strokes giving rise to text-parts, be it well-separated
characters, disjoint parts of characters, or merged groups of
characters such as in cursive text. Such text-parts carry little
semantic value when viewed separately (see Figure 1a), but
become semantically relevant and easily identifiable when
perceived as a group. Indeed, it can be shown that humans
detect text without problems when perceptual organisation is
evident irrespectively of the script or language - actually they
are able to do so for non-languages as well (see Figure 1b).

In this sense, text detection is an interesting problem since
it can be posed as the detection of meaningful groups of
regions, as opposed to the analysis and classification of indi-
vidual regions. Still, the latter is the approach typically adopted
in state of the art methodologies. Some methods do include a
post-processing stage where identified text regions are grouped
into higher level entities: words, text lines or paragraphs. This
grouping stage is not meant to facilitate or complement the
detection of text parts, but to prepare the already detected
text regions for evaluation, as the ground truth is specified
at the word or text line level. This mismatch of semantic level
between results and ground truth is a recognised problem that

1Daniel Uzquiano’s random stroke generator: http://danieluzquiano.com/491
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Fig. 1: (a) Should a single character be considered “text”?
(b) An example of automatically created non-language text1.
(c) Our method exploits perceptual organization laws always
present in text, irrespective of scripts and languages.

has given rise to specific evaluation methodologies that intend
to tackle the problem [4].

We pose that the fact that a region can be related to other
neighbouring ones is central to classifying the region as a
text part, and is in-line with the essence of human perception
of text, which is largely based on perceptual organisation.
The research hypothesis of this work is thus that building an
automatic text detection process around the above fact can
help overcome numerous identified difficulties of state of the
art text detection methods.

To test the above hypothesis a state of the art perceptual
organisation computational model is employed to assess the
meaningfulness of different candidate groups of regions. These
groups emerge naturally through the activation of different
visual similarity laws in collaboration with a proximity law.

Similarity between regions is not strictly defined in our
framework. This is intentional, as due to design, scene layout,
and environment effects different perceptual organisation laws
might be active in each case. Since text is a strong gestalt,
a subset of such laws are expected to be active in parallel
(collaborating) at any given instance. As a result a flexible
approach is proposed here where various similarity laws are
taken into account and the groups emerging through the indi-
vidual activation of each similarity law provide the evidence
to decide on the final set of most meaningful groups. The
resulting method does not depend on the script, language or
orientation of the text to be detected.

http://danieluzquiano.com/491


II. RELATED WORK

The automatic understanding of textual information in
natural scenes has gained increasing attention over the past
decade, giving rise to various new computer vision challenges.
Jung et al. [5] and Liang et al. [6] offer an exhaustive survey
on camera-based analysis of text in real environments.

The large number of techniques proposed for text local-
ization in natural scenes can be divided into patch-based,
region-based, and hybrid approaches. Patch-based methods
usually work by performing a sliding window search over
the image and extracting certain texture features in order to
classify each possible patch as text or non-text. Coates et
al. [7], and in a different flavour Wang et al. [3] and Netzer
et al. [8], propose the use of unsupervised feature learning
to generate the features for text versus non-text classification.
Wang et al. [2], extending their previous work [9], have built
an end-to-end scene text recognition system based on a sliding
window character classifier using Random Ferns, with features
originating from a HOG descriptor. Mishra et al. [10] propose
a closely related end-to-end method based on HOG features
and a SVM classifier. Patch based methods yield good text
localisation results, although they do not directly address the
issue of text segmentation (separation of text from background)
and thus require further preprocessing before recognition.

On the other hand, region-based methods are based on
a typical bottom-up pipeline: first performing an image seg-
mentation and subsequently classifying the resulting regions
into text or non-text ones. Frequently these are complemented
with a post-processing step where said regions assessed to
be characters are grouped together into words or text lines.
Yao et al. [11] extract regions in the Stroke Width Transform
(SWT) domain, proposed earlier for text detection by Epshtein
et al. [12]. Chen et al. [13] obtain state-of-the-art perfor-
mance with a method that determines the stroke width using
the Distance Transform of edge-enhanced Maximally Stable
Extremal Regions (MSER). The effectiveness of MSER for
character candidates detection is also exploited by Novikova
et al. [14], while Neumann et al. [1] propose a region repre-
sentation derived from MSER where character/non-character
classification is done for each possible Extremal Region (ER).
Other methods in this category make use of regions obtained
from the image edge gradient [15], or by color clustering [16].

Pan et al. [17] obtain state-of-the-art accuracy following a
hybrid method where a classifier using HOG features builds a
text confidence map feeding a local binarization algorithm for
region extraction.

There exist two main differences between current state-of-
the-art approaches and the method proposed in this paper. On
one side, methods relying on learning processes [2], [3], [7],
[8], [9], [10] are usually constrained to detect the single script
which they have been trained on. The feedback loop between
localization and recognition they propose, although performing
well on certain tasks (e.g. detecting English horizontal text),
contradicts with the human ability to detect text structures even
in scripts or languages never seen before. In comparison, the
methodology proposed here requires no training, and is largely
parameter free and independent to the text script.

On the other hand, there is an important distinction between
the way the grouping is used by existing methods [11], [12],

[13] and the way perceptual organisation is used here. In past
work, grouping is used solely as a post-processing step, once
the text parts have already been identified as such, the main
reason being to address the results / ground truth semantic
level mismatch mentioned before. As a matter of fact, we
also use a post-processing step to enable us to evaluate on
standard datasets. However, crucially, in our approach percep-
tual organisation provides the means to perform classification
of regions, based on whether there exists an interpretation of
the image that involves their participation to a perceptually
relevant group.

III. TEXT LOCALIZATION METHOD

We present a region based method where extracted regions
are grouped together in a bottom-up manner guided by simi-
larity evidence obtained over various modalities such as color,
size, or stroke width among others, in order to obtain meaning-
ful groups likely to be text gestalts, i.e. paragraphs, text lines,
or words. Figure 2 shows the pipeline of our algorithm for text
extraction where the process is divided in three main steps:
region decomposition, perceptual organization based analysis,
and line formation.

Fig. 2: Text Extraction algorithm pipeline.

A. Region Decomposition

The use of Maximally Stable Extremal Regions
(MSER) [18] for detecting text character candidates in
natural scene images is extensively used in recent state of
the art methods for text detection [1], [13], [14]. The MSER
algorithm builds a tree of regions with an extremal property
of the intensity function over its outer boundary, and this
property is normally present in all text parts as they are
explicitly designed with high contrast in order to be easily
read by humans.

The resulting MSER tree is pruned by filtering the regions
that are not likely to be text parts by their size, aspect ratio,
stroke width variance, and number of holes.

B. Perceptual Organization Clustering

The perceptual organization clustering is applied to the
entire set of resulting MSERs in three stages. First we create
a number of possible grouping hypotheses by examining
different feature sub-spaces. Then, these groups of regions are
analysed and we keep the most meaningful ones, thus pro-
viding an ensemble of clusterings. Finally, those meaningful
clusterings are combined based on evidence accumulation [19].



1) Group Hypothesis Creation: We aim to use simple and
low computational cost features describing similarity relations
between characters of a word or text line. The list of features
we use for this kind of similarity grouping are:

Geometrical features. Characters in the same word usually
have similar geometric appearance. We make use of the
bounding box area, number of pixels, and diameter of the
bounding circle.

Intensity and color mean of the region. We calculate
the mean intensity value and the mean color, in the L*a*b*
colorspace, of the pixels that belong to the region.

Intensity and color mean of the outer boundary. Same
as before but for the pixels in the immediate outer boundary
of the region.

Stroke width. To determine the stroke width of a region
we make here use of the Distance Transform as in [13].

Gradient magnitude mean on the border. We calculate
the mean of the gradient magnitude on the border of the region.

Each of these similarity features is coupled with spatial
information, i.e. x,y coordinates of the regions’ centers, in or-
der to capture the collaboration of the proximity and similarity
laws. So, independently of the similarity feature we consider,
we restrict the groups of regions that are of interest to those
that comprise spatially close regions.

We build a dendrogram using Single Linkage Clustering
analysis for each of the feature sub-spaces described above.
Each node in the obtained dendrograms represents a group
hypothesis whose perceptual meaningfulness will be evaluated
in the next step of the pipeline.

2) Meaningfulness Testing: In order to find meaningful
groups of regions in each of the defined feature sub-spaces
we make use of a probabilistic approach to Gestalt Theory as
formalised by Desolneux et al. [20]. The cornerstone of this
theoretical model of perceptual organization is the Helmholtz
principle, which could be informally summarised as: “We do
not perceive anything in a uniformly random image”, or with
its equivalent “a contrario” statement: “Whenever some large
deviation from randomness occurs in an image some structure
is perceived”. This general perception law, also known as the
principle of common cause or of non-accidentalness, has been
stated several times in Computer Vision, with Lowe [21] being
the first to pose it in probabilistic terms.

The Helmholtz principle provides the basis to derive a
statistical approach to automatically detect deviations from
randomness, corresponding to meaningful events. Consider
that n atomic objects are present in the image and that a
group G of k of them have a feature in common. We need
to answer the question of whether this common feature is
happening by chance or not (and thus is a significant property
of the group). Assuming that the observed quality has been
distributed randomly and uniformly across all objects, the
probability that the observed distribution for G is a random
realisation of this uniform process is given by the tail of the
binomial distribution:

BG(k, n, p) =
n∑

i=k

(
n

i

)
pi(1− p)n−i (1)

Where p is the probability of a single object having the
aforementioned feature.

We make use of this metric in the dendrogram of each of
the feature sub-spaces produced in the previous step separately
to assess the meaningfulness of all produced grouping hy-
potheses. We calculate (1) for each node (merging step) of the
dendrogram, using as p the ratio of the volume defined by the
distribution of features of the samples forming the group with
respect to the total volume of the feature sub-space. We then
select as maximally meaningful a cluster A iif for every suc-
cessor B and every ancestor C, it is BB(k, n, p) > BA(k, n, p)
and BC(k, n, p) ≥ BA(k, n, p). Notice that by using this
maximality criteria no region is allowed to belong to more
than one meaningful group at the same time. The clustering
analysis is done without specifying any parameter or cut-off
value and without making any assumption on the number of
meaningful clusters, but just comparing the values of (1) at
each node in the dendrogram.
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Fig. 3: (a) A scene image from the ICDAR2003 dataset, (b)
its MSER decomposition. (c) Dendrogram of the feature sub-
space (x,y coordinates, intensity mean), and (d) the maximal
meaningful clusters found; (e)(f) same for the feature sub-
space (x,y coordinates, stroke width).

Figure 3 shows the maximal meaningful clusters detected
in a natural scene image for two of the feature sub-sets defined,
in Figure 3d image regions are clustered in a three dimensional
space based on proximity and intensity value, while in Figure
3f they are clustered based on proximity and stroke width.
This behaviour, of arriving to different grouping results de-
pending on the similarity modality examined is desirable, as it



Fig. 4: Maximally meaningful clusters validated through the Evidence Accumulation framework.

allows us to deal with variabilities in text design, illumination,
perspective distortions, and so on.

3) Evidence Accumulation: Once we have detected the set
of maximally meaningful clusters P i in each feature sub-space
i ∈ N , the clustering ensemble P = {P 1, P 2, P 3, ..., PN} is
used to calculate the evidence [19] for each pair of regions to
belong to the same group, producing a co-occurrence matrix
D defined as:

D(i, j) = mij

N
(2)

Where mij is the number of times the regions i and j have
been assigned to the same maximal meaningful cluster in P.

The co-occurrence matrix D is used as a dissimilarity
matrix in order to perform the final clustering analysis of the
regions, by applying the same hierarchical clustering process
described in section III-B2.

Figure 4 shows two examples of the results obtained where
the method exhibits its ability to deal with a flexible definition
of what a text group is: on the bottom row text characters do
not have the same stroke width but they share the same color,
while on the top, on the contrary, text characters do not have
the same color but have similar stroke, size, etc.

As expected, not only text is detected as meaningful, but
also any kind of region arrangement with a text like structure.
It is important however to note at this stage that the algorithm
produces relatively pure text-only clusters, with almost all text
parts falling in clusters that contain virtually no non-text com-
ponents. In order to filter non-text meaningful groups we use a
combination of two classifiers. First, each region of the group
is scored with the probability of being or not a character by a
Real Adaboost classifier using features combining information
of stroke width, area, perimeter, number and area of holes.
Then, simple statistics of this scores are fed into a second
Real Adaboost classifier for text/non-text group classification
together with same features as before (but in this case for the
whole group and not for independent regions) and a histogram
of edge orientations of the Delaunay triangulation built with
the group regions centers. Both classifiers are trained using the
ICDAR2003 [22] and MSRA-TD500 [11] training sets as well
as with synthetic text images, using different scripts, to ensure
script-independence.

IV. EXPERIMENTS AND RESULTS

The proposed method has been evaluated on two multi-
script datasets for different tasks, in one hand for text seg-
mentation on the KAIST dataset, and on the other for text
localization in the MSRA-TD500 dataset. Despite we did also
evaluation on the ICDAR 2003 Robust Reading Competition
dataset, results are not reported here due to space, and because
multi-script datasets fit better with the focus of this paper. The
full list of results can be seen at http://dag.cvc.uab.es/text
localization, while the interested reader can try our method
directly by submitting an image at the online demo available
at the same url.

A. Text Segmentation

The KAIST dataset [16] comprises 3000 natural scene
images, with a resolution of 640x480, categorized according
to the language of the scene text captured: Korean, English,
and Mixed (Korean + English). For our experiments we use
only 800 images corresponding to the Mixed subset. For the
pixel level evaluation precision p and recall r are defined as
p = |E ∩ T |/|E| and r = |E ∩ T |/|T |, where E is the set of
pixels estimated as text and T is the set of pixels corresponding
to text components in the ground truth. Table I show the
obtained results on the KAIST dataset.

Method p r f-score time(s)
Our Method 0.66 0.78 0.71 0.41
Lee et al. [16] 0.69 0.60 0.64 n/a

TABLE I: KAIST dataset performance comparison.

B. Variable Orientation Text Detection

The MSRA-TD500 dataset [11] contains arbitrary oriented
text in both English and Chinese and is proposed as an alter-
native to the ICDAR2003 [22] dataset where only horizontal
English text appears. The dataset contains 500 images in total,
with varying resolutions from 1296×864 to 1920×1280. The
evaluation is done as proposed in [11] using minimum area
rectangles. For an estimated minimum area rectangle D to be
considered a true positive, it is required to find a ground truth
rectangle G such that:

A(D′ ∩G′)/A(D′ ∪G′) > 0.5, abs(αD − αG) < π/8

http://dag.cvc.uab.es/text_localization
http://dag.cvc.uab.es/text_localization


where D′ and G′ are the axis oriented versions of D and G,
A(D′ ∩G′) and A(D′ ∪G′) are respectively the area of their
intersection and union, and αD and αG their rotation angles.
The definitions of precision p and recall r are: p = |TP |/|E|,
r = |TP |/|T | where TP is the set of true positive detections
while E and T are the sets of estimated rectangles and ground
truth rectangles.

As the perceptually meaningful text groups detected by
our method rarely correspond directly to the semantic level
ground truth information is defined in (lines in the case of the
MSRA-TD500 dataset), the proposed method is extended with
a simple post-processing step in order to obtain text line level
bounding boxes.

We consider a group of regions as a valid text line if the
mean of the y-centres of its constituent regions lies in an
interval of 40% around the y-centre of their bounding box and
the variation coefficient of their distribution is lower than 0.2.
Notice that, as we are considering text lines at any possible
orientation, the orientation of the group (and consequently the
definition of the y-axis) is always defined in relation to the
axes of the circumscribed rectangle of minimum area for the
given group. If the collinearity test fails, it may be the case
that the group comprises more than one text line. Thus in such
a case we perform a histogram projection analysis in order
to identify the text lines orientation, and then split the inital
group into possible lines by clustering regions on the identified
direction. This process is iteratively repeated until all regions
have either been assigned to a valid text line or rejected, using
the collinearity test described above, or until no more partitions
can be found.

Table II show a comparison of the obtained results with
other state of the art methods on the MSRA-TD500 dataset.

Method p r f-score time(s)
TD-Mixture [11] 0.63 0.63 0.60 7.2
Our Method 0.58 0.54 0.56 2.97
TD-ICDAR [11] 0.53 0.52 0.50 7.2
Epshtein et al. [12] 0.25 0.25 0.25 6
Chen et al. [23] 0.05 0.05 0.05 n/a

TABLE II: MSRA-TD500 dataset performance comparison.

V. CONCLUSIONS

A new methodology for text extraction from scene images
was presented, inspired by the human perception of textual
content, largely based on perceptual organisation. The pro-
posed method requires practically no training as the perceptual
organisation based analysis is parameter free. It is totally
independent of the language and script in which text appears,
it can deal efficiently with any type of font and text size,
while it makes no assumptions about the orientation of the
text. Qualitative results demonstrate competitive performance
and faster computation.

The approach presented opens up a number of possible
paths for future research, including the higher integration of
the region decomposition stage with the perceptual organisa-
tion analysis, and further investigation on the computational
modelling of perceptual organisation aspects such as masking,
conflict and collaboration.
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