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Abstract—This paper presents an evolution of the first un-
supervised wall segmentation method in floor plans, that was
presented by the authors in [1]. This first approach, contrarily
to the existing ones, is able to segment walls independently to
their notation and without the need of any pre-annotated data
to learn their visual appearance. Despite the good performance
of the first approach, some specific cases, such as curved shaped
walls, were not correctly segmented since they do not agree the
strict structural assumptions that guide the whole methodology
in order to be able to learn, in an unsupervised way, the structure
of a wall. In this paper, we refine this strategy by dividing the
process in two steps. In a first step, potential wall segments are
extracted unsupervisedly using a modification of [1], by restricting
even more the areas considered as walls in a first moment. In
a second step, these segments are used to learn and spot lost
instances based on a modified version of [2], also presented by
the authors. The presented combined method have been tested on
4 datasets with different notations and compared with the state-
of-the-art applyed on the same datasets. The results show its
adaptability to different wall notations and shapes, significantly
outperforming the original approach.

I. INTRODUCTION

Wall detection is a crucial step in floor plan interpretation
because walls globally define the structure of buildings. Nev-
ertheless, due to the lack of a standard graphical notation in
floor plan’s modeling, there is a big variability on how these
elements are lineally drawn; they can be represented by thick
black lines, parallel lines, hatched textures, etc.. This issue has
not been solved by classical approaches, that are very adhoc
for a small set of notations and therefore, useless for the rest.

Several approaches have been proposed for wall seg-
mentation in the literature focusing on specific notations. In
[3],[4],[5],[6], different strategies are followed for the sake
of segmenting walls modeled by thick black lines. Both, [3],
[4], apply morphological filtering to thin-thick line separation.
Contrarily, [5], [7] use Hough Transform over the vectorized
image to detect parallel lines with black texture in between.
While [6] finds the potential walls by studying the polylines
generated after vectorizing only thick lines in the image.

All of these floor plan recognition systems need to redefine
the wall segmentation step when dealing with images of
different notations, as the ones represented by simple parallel
lines [8], or a hatched texture [9]. This fact not only provokes
that the floor plan recognition problem can not be considered
as solved yet, but also that the different approaches are not
even comparable since most of the approaches are significantly

oriented to their own notations. With the aim of finding a
solution to this general extended problem when dealing with
this sort of documents, our group has put the effort in the
recent years on creating an effective wall detector able to
segment walls in all the floor plans, independently of their
graphic notation.

The first attempt was inspired by the appearance-based
state-of-the-art strategies in Computer Vision for object detec-
tion in real scenes. As a result, in [9] a bag of visual patches
able to learn the visual appearance of walls from a labeled
collection of floor plans was presented as the first approach
to segment walls in multiple collections of real documents.
This system was refined and its performance enhanced in
[2], showing a great adaptability to noise and notations. Even
though the approach demonstrated its suitability in real cases
when dealing with controlled sets of floor plans and notations,
the need of generating the ground-truth each time a new
collection was added to the system, pushed us to rethink the
whole strategy.

The second attempt was to tackle the problem under a
structural point of view. The latent idea is to be able to drive
the detection of the potential elements belonging to walls by
general structural properties of buildings and thus, without the
need of any learning step for each notation. In [1], the authors
present an unsupervised approach driven by six structural rules
of general properties of buildings, that combined fuzzily are
able to segment walls in different collections of floor plans
with successfully close results to the supervised approach.
With all, the method still has some restrictions inherent to the
structural properties, e.g “walls are usually straight” or “longer
than thicker”.

In this paper we close the circle by proposing a new
method as a result of the combination of both strategies, the
structural one and the statistical one, that is able to detect
walls independently of notation and structure, and without the
need of any previously labeled data. Firstly, with a modified
version of the approach described in [1] we return a wall
image with an initial segmentation of the floor plan. Then,
a modified version of the supervised approach presented in
[2], learns the appearance of walls and redefines the initial
segmentation. The proposed method has been tested on the
same datasets and Internet images than [1], demonstrating a
significant improvement in the detection on floor plans with
curved walls, and a better performance in the overall datasets.

In Section II we explain the method, revisiting the two



Fig. 1: Pipeline of the method

approaches combined. Section III is devoted to present the
experimental evaluation. Finally, in Section IV we conclude
the paper.

II. METHODOLOGY

The detection is driven by these 6 general assumptions of
walls in building drawings:

1) Walls are drawn by parallel lines.
2) They appear in orthogonal directions.
3) Walls are rectangularly shaped, usually longer than

thicker.
4) They define the structure of the building; appearing

naturally distributed in the plan.
5) Different thickness are used to model internal and

external walls.
6) The walls in a document are filled by the same pattern

(hatched, tiled, solid, etc.).

These assumptions cannot be seen as a complete pack of
unbreakable statements for all existing real floor plans. For
example, there are floor plans with diagonal or curved walls,
buildings with the same thickness for interior and exterior
walls, etc. Nevertheless, a relaxed combination of them en-
hances the flexibility of the system, leading to a good final
segmentation independently of the building or document com-
plexity.

Our method, whose pipeline is shown in Figure 1, is the
result of combining the recent wall detector methods [1] and
[2], driven by the wall’s general knowledge postulated above.
It can be separated in two steps: a structural-based detection
and an appearance-based detection. In the first step, we extract
high confident wall segments according to their structural
properties. Then, in the appearance-based step based on a
modification of [2], these segments are used to learn their
visual appearance and so, refine the final segmentation. In
this section we explain the complete methodology, overview-
ing both original methods involved by specially focusing on
those aspects that have been modified to accomplish our final
solution.

A. Step 1: Structural Detection

The first stage of the method is devoted to detect wall
segments by their structural properties, similarly to [1]. The
detection starts by detecting elements formed by parallel lines,
according to assumption 1. The confidence of the resulting wall
segments is determined by their agreement with the assump-
tions 3, 4 and 5. This process is divided into Preprocessing,
Black-wall detection, Wall-segment candidates and Confident
wall segmentation.

Preprocessing

The images are binarized and the textual information is
filtered out using [10]. Possible deviations in the floor plan
modelling are corrected by an adaptation of [11]; a method for
handwritten deskewing. This is done to facilitate the detection
of parallel lines in the orthogonal directions, as assumption
2 asserts. Even though the segmentation strategy is scale-
invariant, for efficiency issues the images with resolutions
higher than 4000×4000 pixels are down-scaled.

Black-wall detection

Some old floor plans model walls by black thick lines as
the ones shown in Figure 3a. Since the preliminary detection
is based on finding parallel lines, an automatic adhoc pre-
processing has to detect and transform these sort of documents
to a more suitable input. Firstly, horizontal and vertical runs
of foreground pixels are quantized in a histogram. Documents
with thick walls present sparser histograms with far more
outliers in higher positions than the rest. Then, they are easily
detected by thresholding the sigma of the Gaussian mixture
fitted to the histogram by EM. Images with black thick walls
are replaced by their edge image, obtained using the Canny
edge detector.

Wall-segment candidates

Wall-segment candidates are seek in a first step according
to assumption 1; seeking parallel lines in the document. The
lines in the document are encountered by only considering
those runs of foreground pixels of a certain minimum length.
They are quested in multiple orientations of the image. The



Fig. 2: Wall candidate generation. The input image is shown in a). In b), the run extraction process at two different orientations
α is zoomed. This runs are quantized in the histogram shown in c), generating three colored clusters that belong to common
parallel line thickness in the input image. For each cluster, the parallel lines of their corresponding thickness are retrieved in
three different candidates h.

distances between lines are quantized in a histogram, where
bins with higher frequencies stand for common parallel line
distances. The histogram is smoothed in order to filter out
irrelevant information. Then, for each non zero bin, a candidate
segmentation image is generated by retrieving the areas ac-
cording the corresponding distances between parallel lines. In
other words, each segmentation image contains wall segments
of the same thickness. This process is detailed in Figure 2.

Confident wall segmentation

To extract the segments with the highest degree of con-
fidence, we firstly rank the wall image candidates before
spreading them into the final segmentation. This is done
oppositely from the original approach, where all possible wall
candidates were spread to posteriorly rank them regarding they
confidence. The reason is that the wall’s texture will be learned
from these segments and used to recover lost instances that do
not agree with the structural assumptions. Thus, at this point
the precision on wall segmentation has to be maximized to
enhance the posterior visual learning step. It is also worth to
point out that most of the confident segmentations tend to rely
on exterior and interior walls, as it is assumed in 4.

Let H be the set of wall image candidates h, where the
segment thickness thick(hi) 6= thick(hj) for all i 6= j.
Agreeing with assumption 4, walls are elements that appear
repeatedly in floor plans. The score Ncc accounts the number
of segments in the segmentation image:

Ncchi
= #CC(hi). (1)

Likewise, according to the assumption 3, walls are longer
than wider and then, segmentations with longer segments are
most likely to be a correct. Thus:

ARhi = long(CCj(hi))/width(CCj(hi)),∀j|CCj ∈ hi (2)

where ARhi
bears the aspect ratio of connected components

(CC).

Finally, also according to assumption 4, DiffD enforces
segmentations with similar black pixel distributions to the input
image:

DiffDhi =

r∑
n=1

r∑
m=1

pnm − phi
nm. (3)

where pnm and phi
nm are the percentage of the black pixels in

the nmth region r of the original image and hi respectively.

The final rank is calculated by sorting in a descend means
the candidates by their global score, which is calculated as:

W (hi) = Ncchi + ARhi + DiffDhi . (4)

Once the ranking of the segmentation candidates is done,
the top n are combined into the final segmentation image.
The number of selected images n depends on a experimentally
calculated boundary over the confidence score. This boundary
is thought to not only enforce final segmentations with more
than only one candidate (assumption 5), but also discard
completely impossible segmentations.

B. Step 2: Appearance-based Detection

Up to now we have an image of wall segments that we
call segment-image for clarity. The aim in this step is to learn
the visual appearance of walls from it, and refine the final
segmentation by overtaking strict statements, such as walls are
straight elements. The process here is similar to the one from
[2], but reconsidering the learning step; it is done from a single
image instead from a pre-anotated corpus of images. In this
section we explain the learning procedure and summarize the
classification.

Learning

The original image is split into squared equal-sized and
overlapped patches. This procedure is repeated for the im-
age rotations 45◦, 90◦ and 135◦ with two purposes: to get



Fig. 3: Wall segmentation examples. Regarding the dataset collection a) Black, b) Textured, c) Textured2 and d) Parallel. From
left to right: the original image, the preliminary segmentation after Step 1 and the final segmentation obtained after Step2.

more learning instances and to achieve rotation-invariantness.
Patches falling into segmented regions in the segment-image
are labeled as positive examples c = {Wall}, the rest as
negative c = {Background} meanwhile completely white
patches are filtered out. The image descriptor BSM [12] is
used to describe them. Then, a subset of K patch-descriptors
pd, that contains the same number of positive and negative
instances, are clustered into a dictionary of visual words using
a fast version of Kmeans [13].

Once the dictionary is created, a probability to each word
w in the dictionary is calculated regarding its representative
class C = {Wall,Background}. Every patch-descriptor pdi,
that has already a label belonging to one of the two classes
calculated previously, is assigned to its closest word in the
dictionary wj . Then, the conditional probability of a word to

belong to each one of the classes is given by:

p(ci|wj) =
#(pdwj

, ci)

#pdwj

,∀i, j. (5)

Where #(pdwj , ci) states for the number of patch descriptors
with the label ci assigned to codeword wj , and #pdwj is the
total number of patch-descriptors assigned to wj .

Recognition

Every patch-descriptor from the overlapped grid on the
input image inherits the class probabilities of its nearest word
in the dictionary. This classification is performed by the 1-
NN hard assignment on the Euclidean space. Lastly, the final
pixel categorization depends on the multiple patches that
fell on it. The Mean Rule on the theoretical framework of



combining multiple classifiers is adapted to calculate the final
segmentation for every pixel px in the image:

class(px) = arg max
i

(
mean(P (ci|pd))

)
,∀pd | px ∈ pd.

(6)

III. EXPERIMENTS

In this section we explain the experimental evaluation
performed. We firstly overview the datasets and the evaluation
protocols, which are exactly the same as in [1]. And then, we
present the results quantitatively and qualitatively.

A. Dataset

The dataset used to evaluate our method is the same as in
[1]. It contains 4 different datasets of real floor plans together
with some images randomly picked from the Internet1. Let us
summarize the four datasets

• Black. This dataset contains 90 images of real floor
plans and has been used for evaluation of wall detec-
tion in [9], [2] and [1]. Walls are black-thick lines
of different thickness whether they are interior or
exterior. An example image of this dataset is shown
in Figure 3a.

• The Textured collection contains 10 noisy real floor
plans. Here, walls are modeled with different texture
depending whether the are interior and exterior, as it
can be seen in 3b.

• Textured2. This dataset contains 18 high resolution
real floor plans. Walls contain multiple thickness,
for interior, exterior and main walls textured with a
hatched pattern. 3c shows an instance of this collec-
tion.

• Parallel contains 4 real floor plans. Walls are modeled
by simple parallel lines, without any texture inbe-
tween. An image of this set is shown in 3d.

B. Evaluation protocol

The evaluation protocol is the same used in the last wall
detection works [9], [2] and [1]: the Jaccard Index (JI). As in
[1], in addition to JI the global recall is also taken into account
for the experimental evaluation. The reason is that, if we
consider this method as a single step from a complete system
of floor plan interpretation, higher recall results are preferred,
as false positives are easily cleared in post-processing than
detecting lost instances. The JI and Recall are calculated
respectively as:

JI =
TruePos

TruePos+ FalsePos+ FalseNeg
,

Recall =
TruePos

TruePos+ FalseNeg
.

1https://www.google.es/imghp?q=floor%20plan

C. Experimental Results

Our method is inherently affected by the same parameters
than the original approaches. In the first step of our method,
the parameter values considered in [1] are also adopted here
for comparison purposes. Hence, rlbmin, which indicates the
minimum length of the runs on black pixels to be considered
as lines, is set to 10 pixels. The rotation angle interval α that
defines the orientation where the lines are seek is defined to
15◦. The boundary value of σthw to discriminate floor plans
with thick black walls is 25. And finally, the number of equal-
sized squared divisions r to calculate the difference on the
pixel distribution (DiffD) is 9.

On the other hand, the parameters in the second step have
been restudied and recalculated experimentally since the learn-
ing origin is completely different from [2]. The parameters
that affect the behavior of our method are three inherited from
the original approach: the size of the patches PS, the distance
between patches φov , and the dictionary size DS; and a fourth
one generated by the new learning framework, that accounts
the amount of patches used for creating the vocabulary Spd.
Regarding PS, only proportional values to the highest wall
thickness in the segment-image have been tested, adopting
finally 0.5 times the size of the thickest segment. φov measures
the distance between the centers of the patches or, in other
words, the grid overlapping. Here, several proportional values
to patch-size have been tested being 1/2PS the value which
lead to the best performance. In terms of the dictionary size,
smaller dictionaries proved to generalize better. Thus, just 300
words are enough to learn the wall texture. Finally, the number
of patch-descriptors Spd used in the learning needs to be
defined. The experiments have shown that the more learning
data, the better results. Nevertheless, we have detected a point
where the classifier saturates. This saturation point is up to
75.000 patch-descriptors, half of them labeled as Wall and the
rest as Background.

Table 1 shows the quantitative results obtained by our new
approach compared with the most recent state-of-the-art work-
ing on the same set of the images. From the results we observe
that the proposed unsupervised approach performs better than
the original unsupervised approach [1]. The performance is not
only better on the average recall but also on JI terms in two
of the datasets. On the other hand, even the higher recall, our
new method still behaves slightly worse in JI terms than both
supervised strategies, [9] and [2]. Finally, it is worth to say
that [3] is notation-oriented approach specifically thought for
dataset Black, which makes it useless in the rest of images.

Wall segmentation on an example from each dataset is
shown in figure 3. Moreover, three challenging images ex-
tracted from internet are shown in figure 4. These images were
already used to justify the adaptability of [1]. Both figures
illustrate the adaptability of our new method independently on
different wall notations, shapes and noise.

IV. CONCLUSION

In this paper we have presented an unsupervised wall
segmentation method based on the combination of two recent
approaches. On top of the original segmentation method [1],
a Bag-of-Patches step [2] has been used to learn the visual
appearance of walls and to refine the final segmentation. Thus,



TABLE I: Wall segmentation results

#images [3] [9] [2] [1] our new approach
JI Rec. JI Rec. JI Rec. JI Rec. JI Rec.

Dt. Black 90 0.90 0.92 0.97 0.99 0.97 0.99 0.93 0.97 0.95 0.99
Dt. Textured 10 – – 0.83 0.98 0.86 0.99 0.82 0.97 0.82 0.98
Dt. Textured2 18 – – 0.81 1 0.82 1 0.77 0.91 0.79 0.96
Dt. Parallel 4 – – 0.70 0.84 0.71 0.86 0.66 0.98 0.67 1

Average per Dataset – – 0.83 0.95 0.84 0.96 0.80 0.96 0.80 0.98

(a) (b) (c) (d) (e) (f)

Fig. 4: Qualitative results for images extracted from the Internet. In (b), (d) and (f), the segmented walls are shown from their
corresponding original images (a), (c) and (e).

the imposed structural restrictions are relaxed and the elements
usually lost by the original method, such as curved walls or
beams, are correctly segmented here. We have compared its
performance with the most recent wall segmentation strategies
in four different floor plan datasets, and some other images
downloaded from the Internet. The results show its great
adaptability to different image notations and resolutions and
without the need of any labeled data to learn the wall notation
each time.
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