toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Albert Gordo edit  openurl
  Title A Cyclic Page Layout Descriptor for Document Classification & Retrieval Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 128 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Bellaterra, Barcelona Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (down)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC;DAG Approved no  
  Call Number Admin @ si @ Gor2009 Serial 2387  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title Embedding of Graphs with Discrete Attributes Via Label Frequencies Type Journal Article
  Year 2013 Publication International Journal of Pattern Recognition and Artificial Intelligence Abbreviated Journal IJPRAI  
  Volume 27 Issue 3 Pages 1360002-1360029  
  Keywords Discrete attributed graphs; graph embedding; graph classification  
  Abstract Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (down)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2013 Serial 2305  
Permanent link to this record
 

 
Author Albert Gordo edit  openurl
  Title Document Image Representation, Classification and Retrieval in Large-Scale Domains Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite the “paperless office” ideal that started in the decade of the seventies, businesses still strive against an increasing amount of paper documentation. Companies still receive huge amounts of paper documentation that need to be analyzed and processed, mostly in a manual way. A solution for this task consists in, first, automatically scanning the incoming documents. Then, document images can be analyzed and information can be extracted from the data. Documents can also be automatically dispatched to the appropriate workflows, used to retrieve similar documents in the dataset to transfer information, etc.

Due to the nature of this “digital mailroom”, we need document representation methods to be general, i.e., able to cope with very different types of documents. We need the methods to be sound, i.e., able to cope with unexpected types of documents, noise, etc. And, we need to methods to be scalable, i.e., able to cope with thousands or millions of documents that need to be processed, stored, and consulted. Unfortunately, current techniques of document representation, classification and retrieval are not apt for this digital mailroom framework, since they do not fulfill some or all of these requirements.

Through this thesis we focus on the problem of document representation aimed at classification and retrieval tasks under this digital mailroom framework. We first propose a novel document representation based on runlength histograms, and extend it to cope with more complex documents such as multiple-page documents, or documents that contain more sources of information such as extracted OCR text. Then we focus on the scalability requirements and propose a novel binarization method which we dubbed PCAE, as well as two general asymmetric distances between binary embeddings that can significantly improve the retrieval results at a minimal extra computational cost. Finally, we note the importance of supervised learning when performing large-scale retrieval, and study several approaches that can significantly boost the results at no extra cost at query time.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny;Florent Perronnin  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (down)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gor2013 Serial 2277  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados edit  url
doi  isbn
openurl 
  Title Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces Type Book Chapter
  Year 2013 Publication Graph Embedding for Pattern Analysis Abbreviated Journal  
  Volume Issue Pages 1-26  
  Keywords  
  Abstract Ability to recognize patterns is among the most crucial capabilities of human beings for their survival, which enables them to employ their sophisticated neural and cognitive systems [1], for processing complex audio, visual, smell, touch, and taste signals. Man is the most complex and the best existing system of pattern recognition. Without any explicit thinking, we continuously compare, classify, and identify huge amount of signal data everyday [2], starting from the time we get up in the morning till the last second we fall asleep. This includes recognizing the face of a friend in a crowd, a spoken word embedded in noise, the proper key to lock the door, smell of coffee, the voice of a favorite singer, the recognition of alphabetic characters, and millions of more tasks that we perform on regular basis.  
  Address  
  Corporate Author Thesis  
  Publisher Springer New York Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (down)  
  ISSN ISBN 978-1-4614-4456-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRL2013b Serial 2271  
Permanent link to this record
 

 
Author Jean-Marc Ogier; Wenyin Liu; Josep Llados (eds) edit  isbn
openurl 
  Title Graphics Recognition: Achievements, Challenges, and Evolution Type Book Whole
  Year 2010 Publication 8th International Workshop GREC 2009. Abbreviated Journal  
  Volume 6020 Issue Pages  
  Keywords  
  Abstract  
  Address La Rochelle  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor Jean-Marc Ogier; Wenyin Liu; Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition (down)  
  ISSN ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ OLL2010 Serial 1976  
Permanent link to this record
 

 
Author Marçal Rusiñol; R.Roset; Josep Llados; C.Montaner edit  openurl
  Title Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation Type Conference Article
  Year 2011 Publication In Proceedings of the Sixth International Workshop on Digital Technologies in Cartographic Heritage Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (down)  
  ISSN ISBN Medium  
  Area Expedition Conference CartoHerit  
  Notes DAG Approved no  
  Call Number Admin @ si @ RRL2011b Serial 1978  
Permanent link to this record
 

 
Author Jon Almazan; Alicia Fornes; Ernest Valveny edit   pdf
url  doi
openurl 
  Title A non-rigid appearance model for shape description and recognition Type Journal Article
  Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 9 Pages 3105--3113  
  Keywords Shape recognition; Deformable models; Shape modeling; Hand-drawn recognition  
  Abstract In this paper we describe a framework to learn a model of shape variability in a set of patterns. The framework is based on the Active Appearance Model (AAM) and permits to combine shape deformations with appearance variability. We have used two modifications of the Blurred Shape Model (BSM) descriptor as basic shape and appearance features to learn the model. These modifications permit to overcome the rigidity of the original BSM, adapting it to the deformations of the shape to be represented. We have applied this framework to representation and classification of handwritten digits and symbols. We show that results of the proposed methodology outperform the original BSM approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (down)  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ AFV2012 Serial 1982  
Permanent link to this record
 

 
Author Jon Almazan; David Fernandez; Alicia Fornes; Josep Llados; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection Type Conference Article
  Year 2012 Publication 13th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages 453-458  
  Keywords  
  Abstract In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (down)  
  ISSN ISBN 978-1-4673-2262-1 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ AFF2012 Serial 1983  
Permanent link to this record
 

 
Author Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny edit   pdf
url  isbn
openurl 
  Title Efficient Exemplar Word Spotting Type Conference Article
  Year 2012 Publication 23rd British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages 67.1- 67.11  
  Keywords  
  Abstract In this paper we propose an unsupervised segmentation-free method for word spotting in document images.
Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (down)  
  ISSN ISBN 1-901725-46-4 Medium  
  Area Expedition Conference BMVC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ AGF2012 Serial 1984  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title Graph Embedding in Vector Spaces by Node Attribute Statistics Type Journal Article
  Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 9 Pages 3072-3083  
  Keywords Structural pattern recognition; Graph embedding; Data clustering; Graph classification  
  Abstract Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (down)  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2012a Serial 1992  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: