|
Records |
Links |
|
Author |
Jaume Amores; N. Sebe; Petia Radeva |

|
|
Title |
Context-Based Object-Class Recognition and Retrieval by Generalized Correlograms |
Type |
Journal |
|
Year |
2007 |
Publication  |
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29(10):1818–1833, (ISI 3,81) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;MILAB |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ ASR2007b |
Serial |
922 |
|
Permanent link to this record |
|
|
|
|
Author |
Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Ludmila I. Kuncheva |


|
|
Title |
Occlusion handling via random subspace classifiers for human detection |
Type |
Journal Article |
|
Year |
2014 |
Publication  |
IEEE Transactions on Systems, Man, and Cybernetics (Part B) |
Abbreviated Journal |
TSMCB |
|
|
Volume |
44 |
Issue |
3 |
Pages |
342-354 |
|
|
Keywords |
Pedestriand Detection; occlusion handling |
|
|
Abstract |
This paper describes a general method to address partial occlusions for human detection in still images. The Random Subspace Method (RSM) is chosen for building a classifier ensemble robust against partial occlusions. The component classifiers are chosen on the basis of their individual and combined performance. The main contribution of this work lies in our approach’s capability to improve the detection rate when partial occlusions are present without compromising the detection performance on non occluded data. In contrast to many recent approaches, we propose a method which does not require manual labelling of body parts, defining any semantic spatial components, or using additional data coming from motion or stereo. Moreover, the method can be easily extended to other object classes. The experiments are performed on three large datasets: the INRIA person dataset, the Daimler Multicue dataset, and a new challenging dataset, called PobleSec, in which a considerable number of targets are partially occluded. The different approaches are evaluated at the classification and detection levels for both partially occluded and non-occluded data. The experimental results show that our detector outperforms state-of-the-art approaches in the presence of partial occlusions, while offering performance and reliability similar to those of the holistic approach on non-occluded data. The datasets used in our experiments have been made publicly available for benchmarking purposes |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2168-2267 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 605.203; 600.057; 600.054; 601.042; 601.187; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ MVL2014 |
Serial |
2213 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti |


|
|
Title |
Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences |
Type |
Journal Article |
|
Year |
2011 |
Publication  |
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control |
Abbreviated Journal |
T-UFFC |
|
|
Volume |
58 |
Issue |
1 |
Pages |
60-72 |
|
|
Keywords |
3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging |
|
|
Abstract |
Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0885-3010 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;ADAS |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGG2011 |
Serial |
1546 |
|
Permanent link to this record |
|
|
|
|
Author |
Fadi Dornaika; Angel Sappa |


|
|
Title |
A Featureless and Stochastic Approach to On-board Stereo Vision System Pose |
Type |
Journal Article |
|
Year |
2009 |
Publication  |
Image and Vision Computing |
Abbreviated Journal |
IMAVIS |
|
|
Volume |
27 |
Issue |
9 |
Pages |
1382–1393 |
|
|
Keywords |
On-board stereo vision system; Pose estimation; Featureless approach; Particle filtering; Image warping |
|
|
Abstract |
This paper presents a direct and stochastic technique for real-time estimation of on-board stereo head’s position and orientation. Unlike existing works which rely on feature extraction either in the image domain or in 3D space, our proposed approach directly estimates the unknown parameters from the stream of stereo pairs’ brightness. The pose parameters are tracked using the particle filtering framework which implicitly enforces the smoothness constraints on the estimated parameters. The proposed technique can be used with a driver assistance applications as well as with augmented reality applications. Extended experiments on urban environments with different road geometries are presented. Comparisons with a 3D data-based approach are presented. Moreover, we provide a performance study aiming at evaluating the accuracy of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ DoS2009b |
Serial |
1152 |
|
Permanent link to this record |
|
|
|
|
Author |
Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez |


|
|
Title |
An Iterative Multiresolution Scheme for SFM with Missing Data: single and multiple object scenes |
Type |
Journal Article |
|
Year |
2010 |
Publication  |
Image and Vision Computing |
Abbreviated Journal |
IMAVIS |
|
|
Volume |
28 |
Issue |
1 |
Pages |
164-176 |
|
|
Keywords |
|
|
|
Abstract |
Most of the techniques proposed for tackling the Structure from Motion problem (SFM) cannot deal with high percentages of missing data in the matrix of trajectories. Furthermore, an additional problem should be faced up when working with multiple object scenes: the rank of the matrix of trajectories should be estimated. This paper presents an iterative multiresolution scheme for SFM with missing data to be used in both the single and multiple object cases. The proposed scheme aims at recovering missing entries in the original input matrix. The objective is to improve the results by applying a factorization technique to the partially or totally filled in matrix instead of to the original input one. Experimental results obtained with synthetic and real data sequences, containing single and multiple objects, are presented to show the viability of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0262-8856 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ JSL2010 |
Serial |
1278 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Lopez; Gabriel Villalonga; Laura Sellart; German Ros; David Vazquez; Jiaolong Xu; Javier Marin; Azadeh S. Mozafari |

|
|
Title |
Training my car to see using virtual worlds |
Type |
Journal Article |
|
Year |
2017 |
Publication  |
Image and Vision Computing |
Abbreviated Journal |
IMAVIS |
|
|
Volume |
38 |
Issue |
|
Pages |
102-118 |
|
|
Keywords |
|
|
|
Abstract |
Computer vision technologies are at the core of different advanced driver assistance systems (ADAS) and will play a key role in oncoming autonomous vehicles too. One of the main challenges for such technologies is to perceive the driving environment, i.e. to detect and track relevant driving information in a reliable manner (e.g. pedestrians in the vehicle route, free space to drive through). Nowadays it is clear that machine learning techniques are essential for developing such a visual perception for driving. In particular, the standard working pipeline consists of collecting data (i.e. on-board images), manually annotating the data (e.g. drawing bounding boxes around pedestrians), learning a discriminative data representation taking advantage of such annotations (e.g. a deformable part-based model, a deep convolutional neural network), and then assessing the reliability of such representation with the acquired data. In the last two decades most of the research efforts focused on representation learning (first, designing descriptors and learning classifiers; later doing it end-to-end). Hence, collecting data and, especially, annotating it, is essential for learning good representations. While this has been the case from the very beginning, only after the disruptive appearance of deep convolutional neural networks that it became a serious issue due to their data hungry nature. In this context, the problem is that manual data annotation is a tiresome work prone to errors. Accordingly, in the late 00’s we initiated a research line consisting of training visual models using photo-realistic computer graphics, especially focusing on assisted and autonomous driving. In this paper, we summarize such a work and show how it has become a new tendency with increasing acceptance. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LVS2017 |
Serial |
2985 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Victor Santos; Angel Sappa |

|
|
Title |
Multimodal Inverse Perspective Mapping |
Type |
Journal Article |
|
Year |
2015 |
Publication  |
Information Fusion |
Abbreviated Journal |
IF |
|
|
Volume |
24 |
Issue |
|
Pages |
108–121 |
|
|
Keywords |
Inverse perspective mapping; Multimodal sensor fusion; Intelligent vehicles |
|
|
Abstract |
Over the past years, inverse perspective mapping has been successfully applied to several problems in the field of Intelligent Transportation Systems. In brief, the method consists of mapping images to a new coordinate system where perspective effects are removed. The removal of perspective associated effects facilitates road and obstacle detection and also assists in free space estimation. There is, however, a significant limitation in the inverse perspective mapping: the presence of obstacles on the road disrupts the effectiveness of the mapping. The current paper proposes a robust solution based on the use of multimodal sensor fusion. Data from a laser range finder is fused with images from the cameras, so that the mapping is not computed in the regions where obstacles are present. As shown in the results, this considerably improves the effectiveness of the algorithm and reduces computation time when compared with the classical inverse perspective mapping. Furthermore, the proposed approach is also able to cope with several cameras with different lenses or image resolutions, as well as dynamic viewpoints. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OSS2015c |
Serial |
2532 |
|
Permanent link to this record |
|
|
|
|
Author |
Enrique Cabello; Cristina Conde; Angel Serrano; Licesio Rodriguez; David Vazquez |

|
|
Title |
Empleo de sistemas biométricos para el reconocimiento de personas en aeropuertos |
Type |
Journal Article |
|
Year |
2006 |
Publication  |
Instituto Universitario de Investigación sobre Seguridad Interior (IUSI 2006) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Surveillance; Face detection; Face recognition |
|
|
Abstract |
El presente proyecto se desarrolló a lo largo del año 2005, probando un prototipo de un sistema de verificación facial con imágenes extraídas de las cámaras de video vigilancia del aeropuerto de Barajas. Se diseñaron varios experimentos, agrupados en dos clases. En el primer tipo, el sistema es entrenado con imágenes obtenidas en condiciones de laboratorio y luego probado con imágenes extraídas de las cámaras de video vigilancia del aeropuerto de Barajas. En el segundo caso, tanto las imágenes de entrenamiento como las de prueba corresponden a imágenes extraídas de Barajas. Se ha desarrollado un sistema completo, que incluye adquisición y digitalización de las imágenes, localización y recorte de las caras en escena, verificación de sujetos y obtención de resultados. Los resultados muestran, que, en general, un sistema de verificación facial basado en imágenes puede ser una ayuda a un operario que deba estar vigilando amplias zonas. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
invisible;ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ CCS2006a |
Serial |
1672 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Lopez; Joan Serrat; Cristina Cañero; Felipe Lumbreras; T. Graf |


|
|
Title |
Robust lane markings detection and road geometry computation |
Type |
Journal Article |
|
Year |
2010 |
Publication  |
International Journal of Automotive Technology |
Abbreviated Journal |
IJAT |
|
|
Volume |
11 |
Issue |
3 |
Pages |
395–407 |
|
|
Keywords |
lane markings |
|
|
Abstract |
Detection of lane markings based on a camera sensor can be a low-cost solution to lane departure and curve-over-speed warnings. A number of methods and implementations have been reported in the literature. However, reliable detection is still an issue because of cast shadows, worn and occluded markings, variable ambient lighting conditions, for example. We focus on increasing detection reliability in two ways. First, we employed an image feature other than the commonly used edges: ridges, which we claim addresses this problem better. Second, we adapted RANSAC, a generic robust estimation method, to fit a parametric model of a pair of lane lines to the image features, based on both ridgeness and ridge orientation. In addition, the model was fitted for the left and right lane lines simultaneously to enforce a consistent result. Four measures of interest for driver assistance applications were directly computed from the fitted parametric model at each frame: lane width, lane curvature, and vehicle yaw angle and lateral offset with regard the lane medial axis. We qualitatively assessed our method in video sequences captured on several road types and under very different lighting conditions. We also quantitatively assessed it on synthetic but realistic video sequences for which road geometry and vehicle trajectory ground truth are known. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
The Korean Society of Automotive Engineers |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1229-9138 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ LSC2010 |
Serial |
1300 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Manuel Alvarez; Theo Gevers; Antonio Lopez |


|
|
Title |
Learning photometric invariance for object detection |
Type |
Journal Article |
|
Year |
2010 |
Publication  |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
90 |
Issue |
1 |
Pages |
45-61 |
|
|
Keywords |
road detection |
|
|
Abstract |
Impact factor: 3.508 (the last available from JCR2009SCI). Position 4/103 in the category Computer Science, Artificial Intelligence. Quartile
Color is a powerful visual cue in many computer vision applications such as image segmentation and object recognition. However, most of the existing color models depend on the imaging conditions that negatively affect the performance of the task at hand. Often, a reflection model (e.g., Lambertian or dichromatic reflectance) is used to derive color invariant models. However, this approach may be too restricted to model real-world scenes in which different reflectance mechanisms can hold simultaneously.
Therefore, in this paper, we aim to derive color invariance by learning from color models to obtain diversified color invariant ensembles. First, a photometrical orthogonal and non-redundant color model set is computed composed of both color variants and invariants. Then, the proposed method combines these color models to arrive at a diversified color ensemble yielding a proper balance between invariance (repeatability) and discriminative power (distinctiveness). To achieve this, our fusion method uses a multi-view approach to minimize the estimation error. In this way, the proposed method is robust to data uncertainty and produces properly diversified color invariant ensembles. Further, the proposed method is extended to deal with temporal data by predicting the evolution of observations over time.
Experiments are conducted on three different image datasets to validate the proposed method. Both the theoretical and experimental results show that the method is robust against severe variations in imaging conditions. The method is not restricted to a certain reflection model or parameter tuning, and outperforms state-of-the-art detection techniques in the field of object, skin and road recognition. Considering sequential data, the proposed method (extended to deal with future observations) outperforms the other methods |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0920-5691 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;ISE |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ AGL2010c |
Serial |
1451 |
|
Permanent link to this record |