|
Records |
Links |
|
Author |
Debora Gil; Petia Radeva; J. Mauri |
|
|
Title |
Ivus Segmentation Via a Regularized Curvature Flow |
Type |
Conference Article |
|
Year |
2002 |
Publication |
X Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2002 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
133-136 |
|
|
Keywords |
|
|
|
Abstract |
Cardiac diseases are diagnosed and treated through a study of the morphology and dynamics of cardiac arteries. In- travascular Ultrasound (IVUS) imaging is of high interest to physicians since it provides both information. At the current state-of-the-art in image segmentation, a robust detection of the arterial lumen in IVUS demands manual intervention or ECG-gating. Manual intervention is a tedious and time consuming task that requires experienced observers, meanwhile ECG-gating is an acquisition technique not available in all clinical centers. We introduce a parametric algorithm that detects the arterial luminal border in in vivo sequences. The method consist in smoothing the sequences’ level surfaces under a regularized mean curvature flow that admits non-trivial steady states. The flow is based on a measure of the surface local smoothness that takes into account regularity of the surface curvature. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Saragossa, Espanya |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRM2002 |
Serial |
1536 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Oriol Rodriguez; J. Mauri; Petia Radeva |
|
|
Title |
Statistical descriptors of the Myocardial perfusion in angiographic images |
Type |
Conference Article |
|
Year |
2006 |
Publication |
Proc. Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
677-680 |
|
|
Keywords |
Anisotropic processing; intravascular ultrasound (IVUS); vessel border segmentation; vessel structure classification. |
|
|
Abstract |
Restoration of coronary flow after primary percutaneous coronary intervention in acute myocardial infarction does not always correlate with adequate myocardial perfusion. Recently, coronary angiography has been used to assess microcirculation integrity (Myocardial BlushAnalysis, MBA). Although MBA correlates with patient prognosis there are few image processing methods addressing objective perfusion quantification. The goal of this work is to develop statistical descriptors of the myocardial dyeing pattern allowing objective assessment of myocardial perfusion. Experiments on healthy right coronary arteries show that our approach allows reliable measurements without any specific image acquisition protocol. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRR2006 |
Serial |
1528 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; Jordi Saludes; J. Mauri |
|
|
Title |
Automatic Segmentation of Artery Wall in Coronary IVUS Images: a Probabilistic Approach |
Type |
Conference Article |
|
Year |
2000 |
Publication |
Proceedings of CIC’2000 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Cambridge, Massachussets |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIC |
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRS2000 |
Serial |
1538 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; Jordi Saludes; J. Mauri |
|
|
Title |
Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach |
Type |
Conference Article |
|
Year |
2000 |
Publication |
International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
352-355 |
|
|
Keywords |
|
|
|
Abstract |
Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRS2000a |
Serial |
1537 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; Fernando Vilariño |
|
|
Title |
Anisotropic Contour Completion |
Type |
Conference Article |
|
Year |
2003 |
Publication |
Proceedings of the IEEE International Conference on Image Processing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
I-869 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we introduce a novel application of the diffusion tensor for anisotropic image processing. The Anisotropic Contour Completion (ACC) we suggest consists in extending the characteristic function of the open curve by means of a degenerated diffusion tensor that prevents any diffusion in the normal direction. We show that ACC is equivalent to a dilation with a continuous elliptic structural element that takes into account the local orientation of the contours to be closed. Experiments on contours extracted from real images show that ACC produces shapes able to adapt to any curve in an active contour framework. 1. |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Barcelona, Spain |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
0-7803-7751-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICIP |
|
|
Notes |
IAM;MV;MILAB;SIAI |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRV2003 |
Serial |
1539 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; J. Mauri; Petia Radeva |
|
|
Title |
Reducing cardiac motion in IVUS sequences |
Type |
Conference Article |
|
Year |
2006 |
Publication |
Proceeding of Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
33 |
Issue |
|
Pages |
685-688 |
|
|
Keywords |
|
|
|
Abstract |
Cardiac vessel displacement is a main artifact in IVUS sequences. It hinders visualization of the main structures in an appropriate orientation and alignment and affects extracting vessel measurements. In this paper, we present a novel approach for image sequence alignment based on spectral analysis, which removes rigid dynamics, preserving at the same time the vessel geometry. First, we suppress the translation by taking, for each frame, the center of mass of the image as origin of coordinates. In polar coordinates with such point as origin, the rotation appears as a horizontal displacement. The translation induces a phase shift in the Fourier coefficients of two consecutive polar images. We estimate the phase by adjusting a regression plane to the phases of the principal frequencies. Experiments show that the presented strategy suppress cardiac motion regardless of the acquisition device. 1. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGM2006a |
Serial |
1554 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Petia Radeva; E.N.Nofrerias |
|
|
Title |
Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images |
Type |
Conference Article |
|
Year |
2004 |
Publication |
Proc. Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
31 |
Issue |
|
Pages |
229-232 |
|
|
Keywords |
|
|
|
Abstract |
The adventitia layer appears as a weak edge in IVUS images with a non-uniform grey level, which difficulties its detection. In order to enhance edges, we apply an anisotropic filter that homogenizes the grey level along the image significant structures (ridges, valleys and edges). A standard edge detector applied to the filtered image yields a set of candidate points prone to be unconnected. The final model is obtained by interpolating the former line segments along the tangent direction to the level curves of the filtered image with an anisotropic contour closing technique based on functional extension principles |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Chicago (USA) |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2004 |
Serial |
1555 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Petia Radeva |
|
|
Title |
On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging |
Type |
Conference Article |
|
Year |
2005 |
Publication |
Proceeding of the 2005 conference on Artificial Intelligence Research and Development |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
67-74 |
|
|
Keywords |
classification; vessel border modelling; IVUS |
|
|
Abstract |
IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOS Press |
Place of Publication |
Amsterdam, The Netherlands |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2005c |
Serial |
1549 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; David Roche; Monica M. S. Matsumoto; Sergio S. Furuie |
|
|
Title |
Inferring the Performance of Medical Imaging Algorithms |
Type |
Conference Article |
|
Year |
2011 |
Publication |
14th International Conference on Computer Analysis of Images and Patterns |
Abbreviated Journal |
|
|
|
Volume |
6854 |
Issue |
|
Pages |
520-528 |
|
|
Keywords |
Validation, Statistical Inference, Medical Imaging Algorithms. |
|
|
Abstract |
Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence. |
|
|
Address |
Sevilla |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag Berlin Heidelberg |
Place of Publication |
Berlin |
Editor |
Pedro Real; Daniel Diaz-Pernil; Helena Molina-Abril; Ainhoa Berciano; Walter Kropatsch |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
L |
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CAIP |
|
|
Notes |
IAM; ADAS |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2011 |
Serial |
1676 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; David Rotger; Debora Gil |
|
|
Title |
Image-based ECG sampling of IVUS sequences |
Type |
Conference Article |
|
Year |
2008 |
Publication |
Proc. IEEE Ultrasonics Symp. IUS 2008 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1330-1333 |
|
|
Keywords |
Longitudinal Motion; Image-based ECG-gating; Fourier analysis |
|
|
Abstract |
Longitudinal motion artifacts in IntraVascular UltraSound (IVUS) sequences hinders a properly 3D reconstruction and vessel measurements. Most of current techniques base on the ECG signal to obtain a gated pullback without the longitudinal artifact by using a specific hardware or the ECG signal itself. The potential of IVUS images processing for phase retrieval still remains little explored. In this paper, we present a fast forward image-based algorithm to approach ECG sampling. Inspired on the fact that maximum and minimum lumen areas are related to end-systole and end-diastole, our cardiac phase retrieval is based on the analysis of tissue density of mass along the sequence. The comparison between automatic and manual phase retrieval (0.07 ± 0.07 mm. of error) encourages a deep validation contrasting with ECG signals. |
|
|
Address |
Beijing (China) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HRG2008 |
Serial |
1553 |
|
Permanent link to this record |