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ABSTRACT

In this paper we introduce a novel application of the diffu-
sion tensor for anisotropic image processing. The Anisotropic
Contour Completion (ACC) we suggest consists in extend-
ing the characteristic function of the open curve by means
of a degenerated diffusion tensor that prevents any diffusion
in the normal direction. We show that ACC is equivalent to
a dilation with a continuous elliptic structural element that
takes into account the local orientation of the contours to be
closed. Experiments on contours extracted from real images
show that ACC produces shapes able to adapt to any curve
in an active contour framework.

1. INTRODUCTION

The main goal of any image segmentation/interpolation pro-
cess consists in approaching a set of unconnected points that
conform to certain characteristics. A usual way of mod-
elling uncompleted shapes is by means of a snake [1], [2],
[4]. Snakes are curves that minimize an energy functional.
Both in the case of parametric snakes [4] and geodesic ac-
tive contours [1], [2], this energy consists of an internal en-
ergy that confers smoothness to the model and an external
energy depending on the contour to be approached. Since
the snake deforms by means of the gradient descent of the
energy functional, the definition of the external energy is
crucial for a successful segmentation.

The most commonly used external energies are the dis-
tance map to the contour of interest and a decreasing func-
tion of the norm of the image gradient. In the first case,
creasts of the distance map, produced by the geometric fea-
tures of the zero level curve that represents the contour, in-
duce local minima that may trap the snake at wrong models.
In the second, the external force scope reduces to a narrow
neighborhood of the image edges. This forces either an ini-
tial snake close to the edges of interest or an extension with
Gradient Vector Flow (GVF)/Generalized Gradient Vector
Flow (GGVF) [7], [8]. The first solution implies manual
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intervention, highly undesirable in automated procedures.
The second, the most effective up to our knowledge, pro-
duces a smooth extension of the gradient of the image edge
map that attracts snakes to a large variety of shapes. How-
ever both GVF and GGVF are based on an isotropic linear
process (heat diffusion) which makes the vector field have
saddle points, when edges are highly non-convex, that pre-
vent snakes from entering into concave regions.

A completely different approach to contour closing comes
from mathematical morphology [5] [9]. A dilation at a suit-
able scale produces a complete curve that can serve as ini-
tial snake in a deformable model process. The associated
structural elements (typically, lineal or circular) are con-
stant. This constitutes a main inconvenience, since it may
imply that the closed shapes differ significantly from the
incomplete contours. The proper way of closing contours
should use elliptic structural elements with principal axis
oriented in the tangent direction of the curve to complete.

Dilations are the geometric way of extending functions
(the characteristic function of the open curve in our case). In
this paper, we will see that functional extension is governed
by a parabolic Partial Differential Equation (PDE). The dif-
ferential equation equals that of a diffusion process except
for the boundary conditions. The most studied parabolic
PDE’s are those that describe heat diffusion. The process
has naturally associated a metric, given by the diffusion
tensor, that locally describes the way heat extends or dis-
tributes. Thus an anisotropic heat diffusion is the analytic
way of handling a dilation with non-constant elliptic struc-
tural elements. The closing procedure we propose is based
on an anisotropic extension of functions. By extending the
characteristic function of the opened contour in the direc-
tion of maximum coherence [10], we succeed in recover-
ing a reliable closed model of the curve. Its proximity to
the contour of interest assures its convergence when used as
initial snake in a deformable contour process.

2. INFORMATION EXTENSION

Diffusion is the natural physical way of distributing infor-
mation. The dynamic process of the evolution of an initial



heat distribution,u0, in time is governed by a second order
parabolic PDE that can be written in divergence form:

ut(x, y, t) = div(J∇u) (1)

The solutionu represents the heat or mass distribution in the
plane at each timet. The diffusion tensor,J , is a symmetric
and positive defined matrix, that is, a metric. Geometrically,
a metric is described by means of an ellipse with principal
axes of lengths equal to the eigenvalues ofJ ( λ1, λ2) ori-
ented by its corresponding eigenvectorsξ andη. The ellipse
associated to this metric locally describes the way heat dis-
tributes in the plane: an amountλ1 of heat travels alongξ
and an amountλ2, in the directionη. Notice that setting to
zero one of the two eigenvalues, we restrict diffusion to the
integral curves of the vector field with the positive eigen-
value. We will make use of this fact in Section 2.2.

In the context of metrics, diffusion processes are clas-
sified into isotropic, when the eigenvalues ofJ are equal
(circular structural elements) andanisotropic, in the case
of different eigenvalues (elliptic structural element).

Concerning the final heat distribution, steady states of
(1) can be described by means of their level sets. If we
denote byΩ the region enclosed by a level curveγ then,
Stoke’s Theorem, yields that final states must satisfy the fol-
lowing integral equation:

0 =
∫

Ω

div(J∇u) =
∫

γ

∇utJ∇u

|∇u| (2)

Therefore the final heat distribution will be constant unless
the metric given byJ degenerates (i.e. cancels) on some
closed curves. In this case, the final heat distribution will
consist of closed regions of uniformly distributed heat sep-
arated by these curves. In thermodynamic terms we may
think that these curves behave like insulators.

This property is commonly used in image processing.
The original image is set to be the initial heat distribution
and the metric is chosen in such a way that it degenerates
on points that satisfy some conditions. In this manner the
final state that we achieve is an image so that features of
interest in the original image are easier to identify.

2.1. Extension of a function on the image domain

Heat diffusion has another mathematical and physical use
hardly exploited in image analysis. Heat diffusion (sec-
ond order elliptic operators, in general) has the property
of smoothly extending a function defined on a curve in the
plane. IfL denotes an elliptic operator, then the function
that solves the PDE:

Lu = 0
u|γ = f

is the unique smooth extension [3] of the functionf which
was defined only on the curveγ. The equation is solved by
seeking the steady states of the associated parabolic PDE:

ut = Lu
u|γ = f

(3)

From the point of view of thermodynamics, we may think
that the heat distribution onγ given byf never puts out.
We will restrict to elliptic operators admitting a divergence
form given in equation (1). The ellipse describing the met-
ric given byJ corresponds to the structural element of the
associated dilation. In the case of classic mathematical mor-
phology, the extension is based on the Laplacian operator
and the function to be extended is the characteristic func-
tion of a set of points. The scale or radius of the dilation
corresponds to time in equation (3).

By using anisotropic heat operators we can control the
direction towards information is extended. This can be used
to complete unconnected contours as follows.

(a) (b)
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Fig. 1. Function extension: clover (a), image graph of un-
complete clover (b), intermediate step (c) and closing (d).

2.2. Anisotropic Completion of Contours

There are two privileged vector fields in an imageu, the unit
normal to the level curves,∇u

|∇u| , and its unit tangent,∇u⊥
|∇u| .

The eigenvectors of the Structure Tensor [10],η andξ, are a
robust way of computing the unit normal and tangent of the
level curves. If we consider a metric̃J with eigenvectors
η andξ and eigenvaluesλ1 = 0 andλ2 = 1, then equa-
tion (2) tells us that closed contours of the initial image are
preserved during the evolution. Meanwhile for incomplete
α-level curves, the effect of distributing heat only in the tan-
gent direction, makes these curves evolve towards a closed
contour of uniform gray level.



Therefore if we use this anisotropic process to extend a
binary map of a unconnected curve (i.e. its characteristic
function), the final state will be a binary map of a closed
model of the uncomplete initial contour. Intuitively, the final
closed shape that we recover resembles the one we would
get if we drew the tangent at the boundary points of the
original curve and intersected the lines. This process is the
Anisotropic Completion of Contours we suggest :

ut = div(J̃∇u)
u|γ = u0

(4)

with u0 the characteristic function of the opened contours,
γ, and the diffusion tensor̃J as described in the previous
paragraph. Figure 1 illustrates the different stages in the
process of gap filling for an incomplete clover.

Notice that the iterative Euler numeric scheme used to
integrate equation (4), admits a stop criterion in terms of
the magnitude ofdiv(J̃∇u), as we know that the evolution
converges to an image with a closed contour.

3. APPLICATIONS TO IMAGE SEGMENTATION
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Fig. 2. Test images: horse (a), character ’S’ (b), hand (c)
and fingerprint (d).

We base image object segmentation/interpolation in the
approximation of a set of (possibly unconnected) points that
lie on the object we want to model. We consider that the ob-
ject has been successfully segmented once we have a closed
contour approaching this set of unconnected points. Al-
though snakes are an alternative approach, poor convergence
of snakes to concave shapes obliges an initial snake close to
the curve to be modelled. We propose the following strategy

to model uncompleted contours. First we apply ACC to the
characteristic function of the selected set of points in order
to produce a closed contour. The crests of the extension are
an approximation to the shapes of interests reliable enough
as to ensure convergence in a deformable contour process,
when set to be the initial snake.

(a) (b)
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Fig. 3. Open contours: horse (a), character ’S’ (b), hand (c)
and fingerprint (d).

Figure 2 displays the set of images used. Notice that
the set of points on the object of interest corresponds to
those image pixels that conform to given characteristics. We
chose edges for the character ’S’, the hand and the horse
and valleys in the case of the fingerprint. The characteristic
functions that ACC will extend are shown in figure 3. In all
cases the structure tensor was computed using a gaussian of
varianceρ = 2 over an image gradient regularized with a
gaussian of varianceσ = 1.5.

The closings obtained with ACC are displayed in fig-
ure 4. If there is more than one object, ACC is stopped at
a fix number of iterations, which depends on the degree of
incompleteness of the contours. In the case of the horse’s
head extension was stopped after 800 iterative steps. The
other extensions were obtained either by means of the mag-
nitude ofdiv(J̃∇u) or when the set of gray level one has
only two components. The result of applying a dilation with
a circular element is depicted in figure 5. Classic dilations
failed to obtain a closed curve and produced shapes which
may not resemble the original uncomplete curves. In this
context, the character ’S’ and the horse’s head are extreme
pathological cases. In the first case (fig.5 (a)), the right hand
side square has been included as part of the horse’s head. In
the second, concavities (fig.5 (b)) have been swallowed by
the final, still uncompleted, shape. Comparing both models,



(a) (b)
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Fig. 4. ACC closings: horse (a), character ’S’ (b), hand (c)
and fingerprint (d).

contours computed with ACC (fig.4) are more accurate and
conform to the underlying shapes of the open curves.

4. CONCLUSIONS AND FUTURE WORK

In the present paper we have introduced extension of func-
tions governed by a diffusion tensor as a tool to close un-
completed contours. We have shown that the ellipse de-
scribing the metric associated to the diffusion tensor cor-
responds to the shape of the morphological structural el-
ement. In this context, we have developed a novel curve
closing approach. Completion of contours is achieved by
an anisotropic extension of the characteristic function of
the contour to be closed. In this manner the structural el-
ement of the corresponding dilation takes into account the
local orientation of the uncompleted contours. This pro-
duces closed model of curves more reliable than the ones
obtained with classical isotropic dilation. This makes ACC
useful in image segmentation as a tool to obtain good ini-
tializations for a snake.

Our current efforts focus on extending ACC to noisy
images. To such purpose, image coherence (computed in
terms of the diffusion tensor eigenvalues) will be taken into
account in order to choose the structures to be extended.
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