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RESUMEN

Cardiac diseases are diagnosed and treated through a study
of the morphology and dynamics of cardiac arteries. In-
travascular Ultrasound (IVUS) imaging is of high interest
to physicians since it provides both information. At the
current state-of-the-art in image segmentation, a robust
detection of the arterial lumen in IVUS demands manual
intervention or ECG-gating. Manual intervention is a te-
dious and time consuming task that requires experienced
observers, meanwhile ECG-gating is an acquisition tech-
nique not available in all clinical centers.

We introduce a parametric algorithm that detects the
arterial luminal border inin vivo sequences. The method
consist in smoothing the sequences’ level surfaces under
a regularized mean curvature flow that admits non-trivial
steady states. The flow is based on a measure of the sur-
face local smoothness that takes into account regularity of
the surface curvature.

1. INTRODUCTION

Intravascular Ultrasound (IVUS) imaging [2], [3] is a unique
tool to analyze the morphology and deformation of arter-
ies and vessels. A study of a single cross-section gives
information about the morphology of the vessel, its lumi-
nal area, degree of stenosis and plaque composition (soft
or hard tissue). It is well known [1] that these features
help in the diagnose and treatment of coronary diseases.
A 3-D model is useful to study vessel morphology and
extract vessel elastic parameters.

In recent years, different algorithms [4]-[10] have been
developed to segment different tissues in IVUS images.
Sonka et al. [9], [10] use optimal graph techniques to
quasi-automatically detect vessel borders in a single frame
if somea priori information about the 3-D coronary anato-
my is known. Birgelen et al. [4]-[5] base their segmenta-
tion of electrocardiogram (ECG)-gated sequences on com-
bining short axes image data with two longitudinal image
cuts of the artery. More recently, Klingensmith et al., sug-
gest in [7] the use of active contours to adapt the vessel
walls in a single image. Although, the authors show that
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snakes are a straightforward technique compared to the
previous ones, the technique requires an accurate initial
approximation of the border to be detected.

In this paper, we present a technique based on a min-
imal surface that recovers a 3-D model of the artery inin
vivo sequences that keeps information about its morphol-
ogy and deformations. Our algorithm is based on the dis-
tinct dynamical behaviour among the different structures
of a vessel. Tissue follows a periodic rotation produced by
the heart beat. Blood presents a chaotic movement, seen
in the sequence as small quick oscillations of the gray-
level, that introduces a lack of smoothness in the level
surface that separates blood from tissue. Irregularity of
this surface is smoothed by means of a regularized curva-
ture flow (RCF) [12] that penalizes variation of curvature
rather than its magnitude. The final surface, prone to be
incomplete due to dark areas produced by the guide wire
and side branches, is interpolated using active contours.

2. REGULARIZED CURVATURE FLOW

A theoretical analysis of recent filtering techniques [12]
points that if an image smoothing operator is to be robust
against strong noisy images, it should be independent of
image intensity. Essential advantage in this context is rep-
resented by geometric flows. Curvature based flows pe-
nalize high curvature regardless of their regularity. Notice
that descriptors of shapes depend significantly on the ex-
treme values of the curvature of the contours. Only points
lying in a neighborhood of high variability in the curva-
ture are prone to be consequence of noise and should be
smoothed. Hence, an operator design with shape recogni-
tion purposes should include a term penalizing irregulari-
ty in the curvature rather than its magnitude. We propose
a geometric flow that includes a function that measures
the degree of local irregularity present in the curve. The
associated evolution equation admits piece-wise curves,
as fixed points that keep significant curvature extrema,
thus producing a more reliable smooth model of shapes.

2.1. A Measure of Shape Irregularities

We model noise or lack of regularity in a curve or sur-
face by means of the variability of its normal unit vector



��� around each point. We compute this variability as the
projection of the unit normal onto a robust mean of the
unit normal in a neighborhood of each point. In order
to obtain a robust mean of the normal unit vector we use
the structure tensor,�� [14]. In the absence of noise, the
scalar product between the unit normal and the eigenvec-
tor of maximum eigenvalue,��, is close to one. In the
planar case,�� � ������ �����, can be compute in terms
of the coefficients of�� as:
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The measure of irregularity for curves we propose is:
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where���
��� denotes the vector product and	 the angle

of the unit normal with a fixed direction.
We propose a curvature flow such that its steady states

are the minima of the energy functional:
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for ���� 	 � � � � �
� , a curve embedded in�� .

Definition 2.1 The Regularized Geometric Heat Equa-
tion we suggest is the geometric flow defined in standard
form as:

�� � ��	����� (3)

with the function ��	� given by formula (2) and � denot-
ing the mean curvature.

RCF can be adapted to smooth curves on surfaces by
replacing in equation (3) the mean curvature,�, by the
normal curvature,��, of the curve and computing the
roughness measure,�, as the vector product between the
normal to the curve and its robust mean. In any case,
the magnitude of the roughness measure,�, provides the
technique with a stop criterion [12] that stabilizes the evo-
lution at non-trivial steady states.

2.2. Segmenting Blood from Tissue

An IVUS sequence can be modeled as a 3-D block: each
frame constitutes a� � 
 plane and the�-axis represents
time in the sequence. We base our method on the distinct
dynamics of each structure of a vessel. Blood can be sep-
arated from tissue by means of its turbulent movement.
Turbulence causes irregularities on the level surfaces of
the sequence. We study the regularity of the level sur-
faces of an IVUS sequence in the temporal direction,�, in
order to determine a minimum surface segmenting blood
and tissue.

We model the surface segmenting blood from tissue
as a cylinder, that, in polar coordinates, is given by:
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The initial surface,��, is computed as the collection of
the cross sections,��. The set�� is obtained as union of
the longest level curves for the threshold value�, which
depends on the frequency of the ultrasound device, that
best separates blood from tissue. Notice that by select-
ing the longest�-curves we are already removing part of
blood turbulence (fig. 3(b),(c)). Only blood turbulence
near the intima stays in the form of irregularities in the
longitudinal curves,� � ��, of the surface.

Following the criterion of the former section, we de-
tect shape irregularity by means of the smoothness of the
normal vector,��� , to the curves� � ��. In order to re-
move it, we search for the minimum of:�

�
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with initial condition��. Since��� is a planar vector, we
compute the roughness measure� by means of the formu-
la (1).

The level sets formulation [15] we integrate is:
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with initial condition the signed distance map to�� and
�� computed as:
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Following [11], we remove points of discontinuity and
lying on the guide wire from the zero level surface of the
steady state of equation (5). Finally, we use a classical
snake ([13]) parameterized as a cubic B-spline to smooth-
ly interpolate the intima.

3. RESULTS

We have tested our segmentation algorithm in sequences
obtainedin vivo at constant pull-back speed with two dif-
ferent ultrasound devices at�����. The sequences were
carefully chosen in order to cover the largest variety of
morphology (side branches, stenosis intrastent, calcium
and blood turbulence) and artifacts (speckle noise, inten-
sity drop out, sensor guide wire and incompleteness of
vessel wall) present in IVUS images. We have applied
RCF to, both, the original images and to distance maps
to the level surface segmenting blood and tissue. Follow-
ing [10], [7], in order to determine the accuracy of the
segmenting algorithm we computed the positioning error
between automated segmented and observer defined bor-
ders. We have considered two different kinds of error, the
average distance and the maximum distance to the manu-
al detected border. Distances were computed as the radial
disagreement between the two borders.

Figure 1(a) shows a cross section of an IVUS sequence
and fig. 1(b) the binary image representing the level sur-
face that separates blood from tissue. The inner border of
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Figura 1. Cross Sections of IVUS sequences. Original
IVUS images (a) and segmenting surface (b), steady state
attained with RCF (c) and the resulting segmenting sur-
face(d).

the largest white shape corresponds to the curve segment-
ing blood and tissue. Isolated white areas in the interior of
the black circle are product of noise. The image achieved
by RCF is displayed in fig. 1(c) and the corresponding
segmenting binary image in fig.1(d). Notice that small ar-
tifacts have been removed while the segmenting curve is
preserved.

Figure 2 shows a longitudinal section (fig. 2(a)) and
the binary segmenting image (fig. 2(c)). The wavy shape,
characteristic of IVUS longitudinal cuts, reflects cardiac
motion and its of clinical interest, meanwhile small irreg-
ularities are caused by blood turbulence. The smoothed
curve using RCF is shown in figure 2(c). The model re-
covered by RCF is a smooth shape that keeps the same
number of undulations than the original cut.

(a) (b) (c)

Figura 2. Longitudinal cut of IVUS (a), shape seg-
menting blood and tissue in (b) the original cut and the
smoothed shape with RCF (d).

An example illustrating the segmenting steps of sec-
tion 2.2 is displayed in fig. 3. The cross section shown

in fig. 3(a) is incomplete at the upper right part due to
the shadow after the guide wire. Besides the set of all
�-level curves (fig. 3(b)) includes several artifacts such
as speckled noise, the catheter and, to some extent, blood
turbulence and the guide wire of the sensor. By remov-
ing short�-level curves (fig. 3(c)), we cope with such
isolated artifacts. In this manner, we obtain an automated
reliable first approximation to the luminal border based
only on the gray-level intensity of the image. This fact
is already an advantage over other methods using active
contours [7], which require a manual placement of the
initial template near the border to be detected. However,
this first approximation may be mislead in the presence
of blood turbulence and guide wire of the sensor, which
are detected as part of the border when located close to
the intima. The final model (fig. 3(d)) has succeeded in
removing the irregularity at the bottom of the curve of fig.
3(c) and in correctly interpolating the intima at the upper
right part of the cross section.

(a) (b)

(c) (d)

Figura 3. Segmentation of intima layer: original image
(a),�-level curves (b), longest�-level curves (c) and ap-
proximation of the intima (d).

Statistics made on errors yield an average error in the
range of������ � ������. In the case of the maximum
error, in order to get a more realistic estimate, statistics
using the jackknife resampling technique will be present-
ed in the final version of the paper.

4. CONCLUSIONS

In this work we present a method to obtain a model of the
artery reflecting its geometry by means of a procedure re-
quiring the minimal manual intervention as possible. Ar-
tifacts caused by blood flow and the speckled nature of
ultrasound images forced some kind of smoothing of the
level surfaces.
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Figura 4. Intima detection (b) in the presence of a promi-
nent sensor guide wire (a)

The key ideas that make the method reliable are sum-
marized as follows. A filtering of the images using the
shape structure based technique introduced in this paper,
provides a good first approximation to the intima border.
A temporal analysis of the cube of data, only possible in
non ECG-gated sequences, helps to distinct blood and tis-
sue. Finally, the use of snakes allows a robust detection
of the intima in those cases where part of the information
is lost.

The results obtained show that the method succeeds
in recovering a smooth 3-D model of the artery indepen-
dently of its anatomy, which encapsulates not only the
morphology of the vessel but also its deformations.

5. BIBLIOGRAFÍA

[1] G.S. Minzt, J.A. Painter, A.D. Pichard, K.M. Kent,
L.F.Satler, J.J.Popma„ Y.C.Chuang, T.A.Bucher,
L.E.Sokolowicz and M.B.Leon, "Atherosclerosis in
angiographically ’normal’ coronary artery refrence
segments: An intravascular ultrasound study with
clinical correlations",J. Amer. Coll. Cardiol., vol 16,
pp. 633-636, 1990.

[2] J.Dijkstra, A.Whale, G.Koning, J.H.C. Reibert and
M.Sonka, "Quantitative Coronary Ultrasound: state
of the Art", J.H.C. Reibert and E.E. van der Walls,
Eds. Dordrecht, the Neederlands: Kluwert, 1998, pp.
79-94.

[3] D. Hausmann, Andre J.S. Lundkvist, Guy Friedrich,
Krishnankutty Sudhir, Peter J. Fitzgerald and Paul G.
Yock "Lumen and Plaque Shape in Atherosclerotic
Coronary Arteries Assesed by In Vivo Intracoronary
Ultrasound. Beyond Angiography. Intravascular Ul-
trasound: State-Of-The-Art"XX Congres of the ESC,
Vol 1, August 1998.

[4] C. von Birgelen, G.S. Mintz, A. Nicosia, D.P. Fo-
ley, W.J. van der Giessen, N. Bruinig, S.G. Airi-
ian, J.R.T.C. Roelandt, P.J. de Feyter and P.W. Ser-
ruys "Electrocardiogram-Gated Intravascular Ultra-
sound Image Adquisition After Coronary Stent De-
ployment Facilitates On-Line Three-Dimensional Re-

construction and Automated Lumen Detection"J.
Amer. Coll. Cardiol., vol 30, pp. 436-443, 1997.

[5] N.Bruining, C. von Birgelen, P.J. de Feyter,
J.Ligthart, W. Li, P.W. Serruys and J.R.T.C. Roelandt,
"ECG-Gated versus Nongated Three-Dimensional
Intracoronary Ultrasound Analysis: Implications for
Volumetric Measurements", Catheterization and
Cardio. Vasc. Diagnosis, vo, 43,pp. 254-259, 1998.

[6] Manfredo P. do Carmo, "Differential Geometry of
Curves and Surfaces".

[7] J.D. Klingensmith, R. Shekhar and D.Geoffrey Vince,
"Evaluation of three-Dimensional Segmentation al-
gorythms for the Identification of Luminal and
Medial-Adventitial Borders in Intravascular Ultra-
sound Images,IEEE Trans. Med. Imag., vol. 19, no
10, pp. 996-1011, Oct. 2000.

[8] R.Shekar, R.M.Cothren, D.G. Vince, S.Chandra, J.D.
Thomas and J.F. Cornhill, "Three Dimensional seg-
mentation of luminal and adventitial borders in serial
intravascular ultrasound images"Computerized Med.
Imag. and Graphics, vol 23, pp. 299-309, 1999.

[9] M.Sonka, X.Zhang, M.Siebes, M.S. Bissing, S.C.
DeJong, S.M. Collins and C.R. McKay "Segmen-
tation of Intravascular Ultrasound Images: A knowl-
edge based Approach",IEEE Trans. Med. Imag., vol
14, pp 719-732, Dec. 1995.

[10] X. Zhang, C.R. McKay and M. Sonka, "Tissue
Characterization in Intravacular Ultrasound Images",
IEEE Trans. Med. Imag., vol. 17, pp. 889-899, Dec.
1998.

[11] D. Gil, P. Radeva, J. Saludes, J. Mauri, "Automat-
ic Segmentation of Artery Wall in Coronary IVUS
Images: A Probabilistic Approach",Proceedings
of CIC’2000 Cambridge, Massachussets, September,
2000

[12] D. Gil, P. Radeva.Regularized curvature flow. Com-
puter Vision Center Tech. Report no 63, 2002.

[13] M.Kass, A.Witkin and D.Terzopoulos, "Snakes: Ac-
tive Contour Models",Int. Journal of Computer Vi-
sion, vol. 1, pp. 321-331, 1987.

[14] B. Jähne,Spatio-temporal image processing. Lec-
ture Notes in Comp. Science, vol. 751, Springer,
Berlin, 1993.

[15] J.A. Sethian,Level Set Methods: Evolving Inter-
faces in Geometry, Fluid Mechanics, Computer Vi-
sion and Material Sciences. Cambridge Universirty
Press, Cambridge, U.K, 1996.


