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Abstract. IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis
of cardiac diseases since sequences completely show the morphology of coronary
vessels. Vessel borders detection, especially the external adventitia layer, plays a
central role in morphological measures and, thus, their segmentation feeds devel-
opment of medical imaging techniques. Deterministic approaches fail to yield op-
timal results due to the large amount of IVUS artifacts and vessel borders descrip-
tors. We propose using classification techniques to learn the set of descriptors and
parameters that best detect vessel borders. Statistical hypothesis test on the error
between automated detections and manually traced borders by 4 experts show that
our detections keep within inter-observer variability.
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1. Introduction

Intravascular UltraSound is a helpful clinical tool [1] to diagnosis and treatment of car-
diac diseases since images assist cardiologists to achieve a complete study of vessel mor-
phology, such as, arterial wall, plaque or lumen. Segmentation of vessel borders is a com-
mon processing in intravascular imaging that allows plaque quantification or estimation
of stenosis for instance. However, manual segmentation is a tedious and time consuming
task, so different techniques addressed to the semi-automatic and automatic segmenta-
tion have been developed along early years. Furthermore, by its inherent difficulty (its
distance from the transducer reduces sharpness in the border visual appearance), adven-
titia modelling has been only approached in recent works ([5]-[8]). In this article we
present a novel strategy for detection of the most external vessel border, the adventitia
layer.

Most approaches ([2]-[8]) are based on deterministic principles. However, poor qual-
ity of images as well as large variety of descriptors and a weak appearance of the ad-
ventitia, make standard segmentation approaches difficult to achieve proper results by
their own. This implies additional specific techniques such as combining transversal and

1Correspondence to: Aura Hernàndez, Edifici O, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia,
Spain. Tel.: +34 935 812 301; Fax: +34 935 811 670; E-mail: aura@cvc.uab.es.



longitudinal cuts ([2]-[3],[7]-[9]), or handling raw data [4]. Other authors ([4]-[6],[10])
use classification techniques as a robust way to noise and artifacts. However, classifi-
cation strategies are usually focused on discrimination and classification rather than a
segmentation problem, so adventitia is detected as a side result of plaque classification.

We agree in using classification strategies but oriented to learn the parameters that
yield the optimal segmentation of vessel borders comparing with manual models, i.e.,
that achieve minimum error distances. Segmentation procedures can be considered as
a two-fold algorithm consisting in a extraction of points laying on the adventitia and a
recovery of a closed model of the extracted points. In this paper, we report an exhaustive
survey on parameters performance for the extraction of adventitia contours.

The topics are presented as follows. In section 2 we describe the statistical pose of
the topic. Section 3 is dedicated to present the statistics of the study, both the parameter
study of our training set (Subsect. 3.1) and, validation of the method (Subsect. 3.2).
Finally, section 4 discuss the conclusions and further work.

2. A Statistical Posing of the Topic

The strategy for adventitia border detection we follow is based on two main steps: selec-
tion of the points on vessel border and segmentation of the selected points. Since, in an
IVUS plane, adventitia appears as a circular line (fig.1(a)), we simplify the process by
working in polar coordinates (fig.1(b)) with the origin at the geometric center mass of a
certain set of points laying on the adventitia layer [9]. We will noteI(i, j) the image in
polar coordinates, fori = 1, . . . ,min(Nc, Nr) andj = 1, . . . , 360, whereNc,Nr are
the dimensions of the original image. Furthermore, in order to enhance vessel borders
appearance in the polar transform, a Restricted Anisotropic Diffusion [12] is applied.

(a) (b)

Figure 1. Main structures in an IVUS plane:cartesian domain (a) and polar transform (b).

In a segmentation procedure there are two kind of parameters. On one hand, we have
to choose discriminating parameters that serve to characterize the target structures. On
the other hand, we have to take into account what filtering parameters on the former
response are the best for performing a proper segmentation.

For the feature space design, we assume that the intima and adventitia borders are a
single class, since they are so similar and their distinct radial position serves to discrim-
inate them [8] in the absence of echo opaque structures (EOS). In the presence of such
structures, only the intima is detected, so a proper solution is to discard echo opaque



sectors by adding their characterization on the training stage. In order to avoid longitudi-
nal cuts, we also include fibrous tissue discrimination. Two binary images are computed:
vessel borders points and calcium sectors.

Filtering parameters remove spurious fake detections from the former discrimination
stage. There are two main candidates to act as filtering parameters, length filtering and
area filtering of the vessel borders masks. An exhaustive study determine which is the
best parameter to yield, together with thresholding parameters properly tuned, an optimal
segmentation of manually traced borders.

2.1. Feature space

The features that best characterize the adventitia/intima set and EOS define a three di-
mensional space as follows:

1. Horizontal Edges:In our coordinate system, vessel borders appear as nearly hor-
izontal lines (fig.1(b)), so horizontal edges constitute our main descriptor. Then,
the edges are computed by convolving the image with they-partial derivative of
a 2 dimensional gaussian kernel of varianceρ:

ey(i, j) = gy ∗ I for gy(i, j) = − j

2πρ4
e−(i2+j2)/(2∗ρ2)

The only image structures yielding large values forey are intima, adventitia and
EOS. Intima and adventitia correspond to negative values, while EOS yield neg-
ative and positive responses, one for each of their bordering sides.
Brightness for fibrous plaque and dark shadow underneath calcium are the de-
scriptors chosen to detect EOS and the functions measuring such features are:

2. Radial Standard Deviation:Brightness corresponds to an outlier of the pixel gray
value in the radial distribution. We measure it by means of the difference between
the pixel gray value and the radial mean. For each pixel(i, j), we define it as

σ(i, j) = (I(i, j)− ν(θ))2, for ν(θ) =
1

Rmax

i=Rmax∑

i=1

I(i, θ)

The radial mean of the polar image.σ is maximum at EOS and minimum near the
adventitia. In order to distinguish between calcium and fibrous plaque, we add
the following shadows detector:

3. Cumulative Radial Mean:For each anglej consider the following cumulative
mean:

CSj(i) =

∑n=i
n=Rmax

I(n, j)
Rmax − i

CSj(i) presents a sensible step for angles with calcium rather than a uniform
response in the presence of fibrous plaque. It follows that the total energy:

ecs(j) =
i=Rmax∑

i=1

CSj(i)

achieves its minimum values only at angles with calcium.



The feature space achieving a maximum separability for our training set is given by:

(X, Y, Z) = (ey, sign(ey)
√
|eyσ|, ecs)

2.2. Parameter choice

For the computation of the vessel borders and calcium binary images, the classification
problem we must face is discriminating among 4 different sets: adventitia/intima (Adv),
calcium (Cal), fibrous structures (Fbr) and the rest of pixels (RP). Instead of addressing
the 4-class problem as a whole, we will solve several 2-class problems in 2 dimensions.
For its simplicity, our main classifying tool will be Fisher linear discriminant analysis
[13]. We will use a Bayesian approach [13] to select thresholding values in terms of miss
classification errors. This is the strategy we propose for the computation of the Adv and
Cal images.

Figure 2. Adventitia vs bright structures

A. Vessel Borders Mask.Borders extraction is achieved by addressing 2 classifica-
tion issues: discriminateC1=(Adv,RP) andC2=(Cal, Fbr) in the(X, Y ) plane and, then,
separate Adv from RP usingX values. We discriminateC1 (positives) andC2 (nega-
tives) by projecting onto the Fisher space,PF1, (see fig.2). Among all threshold ensur-
ing a90% of trueC1 detections, we choose the value,TH1, that, in combination with
the rest of parameters, yields optimal segmentation results. Discrimination between Adv
and RP is achieved in theX coordinate domain, as Adv corresponds to large negative
values. Large range of Adv values among different patients, suggests the use of an image
sensitive threshold rather than a common value for all cases. We adopt a strategy in the
fashion of discriminant snakes [10] and select a different value for each angle. Radial
percentiles (PRCTX ) are used to compute such threshold. Small structures in the ves-
sel borders image can be removed by applying a length or an area filtering. In our case,
we use a length filtering given by a certain percentile and an absolute area fixed for all
frames. Although a length filtering is more flexible some 3D continuity might be lost. In
contrast, an area filtering is fixed for all frames but takes into account 3D continuity.

It follows that, for every frame, points are labelled as Adv if they fulfill:

PF1 < TH1, X < PRCTX and their length/area is abovePRCTL.



B. Calcium Mask. The feature space chosen to discriminate calcium from fibrous
tissue is given by the projectionPF1 and theZ coordinate. A threshold on the Fisher
space,PF2, for the 2D space(PF1, Z) separatesCal andFbr. Instead of following a
Bayesian approach we will consider precision to select thresholding values, as we can
not run the risk of identifying too much Fbr and artifacts (noise) as calcium. As in the
computation of the vessel borders mask, among all thresholds admitting, at most, a10%
of noise, we choose the value, namelyTH2, that ensures a better segmentation of our
training set. That is, calcium points are those pixels that satisfy:

PF1 ≥ TH1 and PF2 > TH2
The fragmented segments resulting from these masks are modelled by computing an

Anisotropic Contour Closing [11] based on functional extension principles and then, an
explicit snake representation using B-splines.

3. Results

Experiments focus on determining the best set of discriminant and filtering parameters
in a training stage and assessment of the whole strategy on a test set. The sequences used
have been captured with a Boston Scientific Clear View Ultra scanner at 40 MHz with
constant pull-back at0.5 mm/sec and acquisition rate of 25 frames/sec. The digitalized
sequences are384 × 288 images with a spatial resolution ofPixSze = 0.043500 mm
per pixel. The study group has been designed to asses the ability of the reported algo-
rithm to detect the adventitia border in the presence of different plaques, artifacts and
vessel geometries. 5400 images extracted from 11 different cases have been tested. We
have segmented 22 vessel segments of a length ranging from 4 to 6 mm (200-300 frames)
and including segments with uncomplete vessel borders due to side-branches and sensor
guide shadows, calcified and non calcified segments and normal segments. For each seg-
ment, the adventitia has been manually traced every 10 frames by 4 experts in IVUS im-
age interpretation, which yields a total number of 540 validated frames with 4 different
manual models.

To asses segmentation accuracy, the automatically detected borders have been com-
pared to the manual models. Accuracy is quantified by means of distance maps to manual
contours,D, and difference in vessel areas, AD. We have considered absolute (MaxD,
MD) and relative (percentage) (RMaxD,RMD) errors. The set of functions measuring
accuracy in positions are:

• Maximum distance errors (in mm and%):

MaxD = maxp (D(p) · PixSze) , RMaxD = maxp (RelD(p))

• Mean distance errors(in mm and%):

MD = meanp (D(p) · PixSze) , RMD = meanp (RelD(p))

• Percentage of Area Differences

AD = 100 ·
∑

i,j |IM (i, j)− IA(i, j)|∑
i,j IM (i, j)

for IM andIA, manual and automatical models respectively.



Table 1. Comparison of Segmenting Parameters

TH1 : 0.0578 TH1 : 0.0619 TH1 : 0.0567 TH1 : 0.0567 TH1 : 0.0567

TH2 : -0.1295 TH2 : -0.1295 TH2 : -0.1241 TH2 : -0.01468 TH2 : -0.1295

Area 100 0.201± 0.046 0.201± 0.045 0.234± 0.093 0.234± 0.088 0.231± 0.089

Area 150 0.200± 0.045 0.200± 0.045 0.227± 0.082 0.230± 0.082 0.227± 0.081

Area 200 0.203± 0.045 0.220± 0.056 0.219± 0.069 0.230± 0.083 0.219± 0.069

Length 80 (%) 0.227± 0.060 0.199± 0.041 0.203± 0.043 0.204± 0.048 0.203± 0.043

Length 85 (%) 0.240± 0.070 0.237± 0.064 0.202± 0.044 0.203± 0.044 0.206± 0.048

3.1. Parameters Study

Parameter learning is performed by analyzing mean absolute segmentation errors for a
training set of 6 vessel segments which are representative of all kinds of plaques and
vessel morphologies. The parameters to contrast are, on one hand, filtering parameters
and, on the other hand, discriminating parameters. Table 1 summarizes the statistics for
the best mixtures of thresholds (TH1, TH2). It follows that the set of optimal parameters
for a Boston Clear View is given by the projections:

PF1 = 0.1906X + 0.9817Y and PF2 = −0.1498PF1 + 0.9887Z

with the thresholds for computation of vessel borders and calcium masks set to:

Vessel borders: TH1 = 0.0619; PRCTX = 6%; PRCTL = 80%

Calcium: TH2 = −0.1295
3.2. Validation

Some of the adventitia segmentations achieved with this strategy are shown in figure 3.
The first row (fig.3(a)-(d)) corresponds to images with calcified plaque (fig.3(a),(b)) and
non-calcified (fig.3(c),(d)) vessel segments. Images with missing information are shown
in the second row, sensor guide shadows in fig.3(e),(f) and side branches in fig.3(g)-(h).

Table 2. Statistics Summary

NON-CALCIFIED CALCIFIED TOTAL

INT-OBS AUT INT-OBS AUT INT-OBS AUT

MaxD (mm) 0.42± 0.17 0.42± 0.10 0.66± 0.36 0.71± 0.25 0.53± 0.30 0.57± 0.22

RMaxD (%) 0.39± 0.17 0.38± 0.10 0.54± 0.31 0.61± 0.26 0.46± 0.26 0.51± 0.23

MD (mm) 0.17± 0.06 0.18± 0.03 0.26± 0.13 0.28± 0.09 0.22± 0.11 0.22± 0.06

RMD (%) 0.16± 0.06 0.16± 0.03 0.21± 0.11 0.21± 0.11 0.18± 0.09 0.19± 0.06

AD (%) 6.67± 3.15 7.25± 1.98 9.35±5.75 10.04± 4.03 7.98± 4.79 8.60± 3.34

In order to robustly assess the accuracy of the automated segmentations we have
compared the error measures to inter-observer variability [15]. Student T-tests are used
to determine if there is any statistical significant difference between inter-observer and
automated distance errors. Statistical ranges (mean± standard deviation) for automatic
errors (AUT) and inter-observer variability (INT-OBS) are summarized in table 2. We
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Figure 3. Automated Adventitia Detections

present statistics for non-calcified segments in the first column, calcified ones in the
second and a total population of 20 vessel segments in the last column. According to a
two tailed T-test, there is no significant difference between inter-observer and automated
mean absolute distance errors and difference in areas. For mean distance errors the p-
value equalsp = 0.177 and the confidence interval for the true difference in means at
a significance level of95% is CI = (−0.002, 0.014). In the case of percentage in area
difference,p = 0.153 and the interval (also at a significance level of95%) is CI =
(−0.017, 0.114). Although maximum errors for automated detections are lightly above
the range of maximum inter-observer variability, their increase is under a10.3%.

The fact that both mean distances and vessel areas compare to inter-observer varia-
tion validates our method for extraction of clinical measurements. Besides the number of
outlier bad segmentations requiring manual correction represent less than a15% of the
studied images and, with the computing tools available, the time spend in their manual
correction is in the range accepted by clinical experts.

4. Conclusions and future work

A supervised statistical survey on parameters yielding an optimal segmentation of vessel
borders is presented in this paper. It shows that supervised statistical techniques are an



efficient approach to treat poor quality in intravascular imaging, as well as, large variety
of descriptors such as shadows, side branches and other artifacts in IVUS images. Our
segmenting strategy combines statistical techniques with deterministic principles and has
been tested on 5400 images extracted from 11 different patients. Statistics show that
statistical learning is a relevant tool to achieve a proper vessel borders modelling.

Nevertheless, in 16% of the cases, models are not in the range of inter-observer
variability. It is mainly due to bad image acquisition and lack of image information in
more than180o because of calcium shadowing. As a result, our future work will focus
on introduce a descriptor taking into account experts strategy for interpolate segments
strongly lacking of information.
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