toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Josep Llados; Jaime Lopez-Krahe; Enric Marti edit   pdf
doi  openurl
  Title A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform Type Book Chapter
  Year 1997 Publication Machine Vision and Applications Abbreviated Journal  
  Volume 10 Issue (down) 3 Pages 150-158  
  Keywords Line drawings – Hough transform – Graph matching – CAD systems – Graphics recognition  
  Abstract Presently, man-machine interface development is a widespread research activity. A system to understand hand drawn architectural drawings in a CAD environment is presented in this paper. To understand a document, we have to identify its building elements and their structural properties. An attributed graph structure is chosen as a symbolic representation of the input document and the patterns to recognize in it. An inexact subgraph isomorphism procedure using relaxation labeling techniques is performed. In this paper we focus on how to speed up the matching. There is a building element, the walls, characterized by a hatching pattern. Using a straight line Hough transform (SLHT)-based method, we recognize this pattern, characterized by parallel straight lines, and remove from the input graph the edges belonging to this pattern. The isomorphism is then applied to the remainder of the input graph. When all the building elements have been recognized, the document is redrawn, correcting the inaccurate strokes obtained from a hand-drawn input.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM Approved no  
  Call Number IAM @ iam @ LLM1997a Serial 1566  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit  doi
isbn  openurl
  Title Mathematical modeling of G protein-coupled receptor function: What can we learn from empirical and mechanistic models? Type Book Chapter
  Year 2014 Publication G Protein-Coupled Receptors – Modeling and Simulation Advances in Experimental Medicine and Biology Abbreviated Journal  
  Volume 796 Issue (down) 3 Pages 159-181  
  Keywords β-arrestin; biased agonism; curve fitting; empirical modeling; evolutionary algorithm; functional selectivity; G protein; GPCR; Hill coefficient; intrinsic efficacy; inverse agonism; mathematical modeling; mechanistic modeling; operational model; parameter optimization; receptor dimer; receptor oligomerization; receptor constitutive activity; signal transduction; two-state model  
  Abstract Empirical and mechanistic models differ in their approaches to the analysis of pharmacological effect. Whereas the parameters of the former are not physical constants those of the latter embody the nature, often complex, of biology. Empirical models are exclusively used for curve fitting, merely to characterize the shape of the E/[A] curves. Mechanistic models, on the contrary, enable the examination of mechanistic hypotheses by parameter simulation. Regretfully, the many parameters that mechanistic models may include can represent a great difficulty for curve fitting, representing, thus, a challenge for computational method development. In the present study some empirical and mechanistic models are shown and the connections, which may appear in a number of cases between them, are analyzed from the curves they yield. It may be concluded that systematic and careful curve shape analysis can be extremely useful for the understanding of receptor function, ligand classification and drug discovery, thus providing a common language for the communication between pharmacologists and medicinal chemists.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0065-2598 ISBN 978-94-007-7422-3 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number IAM @ iam @ RGG2014 Serial 2197  
Permanent link to this record
 

 
Author Josep Llados; Gemma Sanchez; Enric Marti edit   pdf
doi  openurl
  Title A string based method to recognize symbols and structural textures in architectural plans Type Book Chapter
  Year 1998 Publication Graphics Recognition Algorithms and Systems Second International Workshop, GREC' 97 Nancy, France, August 22–23, 1997 Selected Papers Abbreviated Journal LNCS  
  Volume 1389 Issue (down) 1998 Pages 91-103  
  Keywords  
  Abstract This paper deals with the recognition of symbols and structural textures in architectural plans using string matching techniques. A plan is represented by an attributed graph whose nodes represent characteristic points and whose edges represent segments. Symbols and textures can be seen as a set of regions, i.e. closed loops in the graph, with a particular arrangement. The search for a symbol involves a graph matching between the regions of a model graph and the regions of the graph representing the document. Discriminating a texture means a clustering of neighbouring regions of this graph. Both procedures involve a similarity measure between graph regions. A string codification is used to represent the sequence of outlining edges of a region. Thus, the similarity between two regions is defined in terms of the string edit distance between their boundary strings. The use of string matching allows the recognition method to work also under presence of distortion.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title LNCS Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IAM Approved no  
  Call Number IAM @ iam @ SLE1998 Serial 1573  
Permanent link to this record
 

 
Author Jaume Garcia; Petia Radeva; Francesc Carreras edit   pdf
openurl 
  Title Combining Spectral and Active Shape methods to Track Tagged MRI Type Book Chapter
  Year 2004 Publication Recent Advances in Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue (down) Pages 37-44  
  Keywords MR; tagged MR; ASM; LV segmentation; motion estimation.  
  Abstract Tagged magnetic resonance is a very usefull and unique tool that provides a complete local and global knowledge of the left ventricle (LV) motion. In this article we introduce a method capable of tracking and segmenting the LV. Spectral methods are applied in order to obtain the so called HARP images which encode information about movement and are the base for LV point-tracking. For segmentation we use Active Shapes (ASM) that model LV shape variation in order to overcome possible local misplacements of the boundary. We finally show experiments on both synthetic and real data which appear to be very promising.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIA  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRC2004 Serial 1488  
Permanent link to this record
 

 
Author Debora Gil; Jordi Gonzalez; Gemma Sanchez (eds) edit  isbn
openurl 
  Title Computer Vision: Advances in Research and Development Type Book Whole
  Year 2007 Publication Proceedings of the 2nd CVC International Workshop Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher UAB Place of Publication Bellaterra (Spain) Editor Debora Gil; Jordi Gonzalez; Gemma Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title 2 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-935251-4-9 Medium  
  Area Expedition Conference  
  Notes IAM; ISE; DAG Approved no  
  Call Number IAM @ iam @ GGS2007 Serial 1493  
Permanent link to this record
 

 
Author Jaume Garcia edit   pdf
openurl 
  Title Statistical Models of the Architecture and Function of the Left Ventricle Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords  
  Abstract Cardiovascular Diseases, specially those affecting the Left Ventricle (LV), are the leading cause of death in developed countries with approximately a 30% of all global deaths. In order to address this public health concern, physicians focus on diagnosis and therapy planning. On one hand, early and accurate detection of Regional Wall Motion Abnormalities (RWMA) significantly contributes to a quick diagnosis and prevents the patient to reach more severe stages. On the other hand, a thouroughly knowledge of the normal gross anatomy of the LV, as well as, the distribution of its muscular fibers is crucial for designing specific interventions and therapies (such as pacemaker implanction). Statistical models obtained from the analysis of different imaging modalities allow the computation of the normal ranges of variation within a given population. Normality models are a valuable tool for the definition of objective criterions quantifying the degree of (anomalous) deviation of the LV function and anatomy for a given subject. The creation of statistical models involve addressing three main issues: extraction of data from images, definition of a common domain for comparison of data across patients and designing appropriate statistical analysis schemes. In this PhD thesis we present generic image processing tools for the creation of statistical models of the LV anatomy and function. On one hand, we use differential geometry concepts to define a computational framework (the Normalized Parametric Domain, NPD) suitable for the comparison and fusion of several clinical scores obtained over the LV. On the other hand, we present a variational approach (the Harmonic Phase Flow, HPF) for the estimation of myocardial motion that provides dense and continuous vector fields without overestimating motion at injured areas. These tools are used for the creation of statistical models. Regarding anatomy, we obtain an atlas jointly modelling, both, LV gross anatomy and fiber architecture. Regarding function, we compute normality patterns of scores characterizing the (global and local) LV function and explore, for the first time, the configuration of local scores better suited for RWMA detection.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ Gar2009a Serial 1499  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title Endowing Canonical Geometries to Cardiac Structures Type Book Chapter
  Year 2010 Publication Statistical Atlases And Computational Models Of The Heart Abbreviated Journal  
  Volume 6364 Issue (down) Pages 124-133  
  Keywords  
  Abstract International conference on Cardiac electrophysiological simulation challenge
In this paper, we show that canonical (shape-based) geometries can be endowed to cardiac structures using tubular coordinates defined over their medial axis. We give an analytic formulation of these geometries by means of B-Splines. Since B-Splines present vector space structure PCA can be applied to their control points and statistical models relating boundaries and the interior of the anatomical structures can be derived. We demonstrate the applicability in two cardiac structures, the 3D Left Ventricular volume, and the 2D Left-Right ventricle set in 2D Short Axis view.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor Camara, O.; Pop, M.; Rhode, K.; Sermesant, M.; Smith, N.; Young, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010b Serial 1515  
Permanent link to this record
 

 
Author Debora Gil edit   pdf
isbn  openurl
  Title Geometric Differential Operators for Shape Modelling Type Book Whole
  Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords  
  Abstract Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-0-3 Medium prit  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GIL2004 Serial 1517  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit   pdf
openurl 
  Title Inhibition of False Landmarks Type Book Chapter
  Year 2004 Publication Recent Advances in Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue (down) Pages 233-244  
  Keywords  
  Abstract We argue that a corner detector should be based on the degree of continuity of the tangent vector to the image level sets, work on the image domain and need no assumptions on neither the image local structure nor the particular geometry of the corner/junction. An operator measuring the degree of differentiability of the projection matrix on the image gradient fulfills the above requirements. Its high sensitivity to changes in vector directions makes it suitable for landmark location in real images prone to need smoothing to reduce the impact of noise. Because using smoothing kernels leads to corner misplacement, we suggest an alternative fake response remover based on the receptive field inhibition of spurious details. The combination of both orientation discontinuity detection and noise inhibition produce our Inhibition Orientation Energy (IOE) landmark locator.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Barcelona (Spain) Editor al, J.V. et  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GiR2004a Serial 1533  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit   pdf
url  doi
isbn  openurl
  Title Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling Type Book Chapter
  Year 2003 Publication Energy Minimization Methods In Computer Vision And Pattern Recognition Abbreviated Journal LNCS  
  Volume 2683 Issue (down) Pages 357-372  
  Keywords Initial condition; Convex shape; Non convex analysis; Increase; Segmentation; Gradient; Standard; Standards; Concave shape; Flow models; Tracking; Edge detection; Curvature  
  Abstract Poor convergence to concave shapes is a main limitation of snakes as a standard segmentation and shape modelling technique. The gradient of the external energy of the snake represents a force that pushes the snake into concave regions, as its internal energy increases when new inexion points are created. In spite of the improvement of the external energy by the gradient vector ow technique, highly non convex shapes can not be obtained, yet. In the present paper, we develop a new external energy based on the geometry of the curve to be modelled. By tracking back the deformation of a curve that evolves by minimum curvature ow, we construct a distance map that encapsulates the natural way of adapting to non convex shapes. The gradient of this map, which we call curvature vector ow (CVF), is capable of attracting a snake towards any contour, whatever its geometry. Our experiments show that, any initial snake condition converges to the curve to be modelled in optimal time.  
  Address  
  Corporate Author Thesis  
  Publisher Springer, Berlin Place of Publication Lisbon, PORTUGAL Editor Springer, B.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 3-540-40498-8 Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GIR2003b Serial 1535  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: