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Abstract.  Tagged magnetic resonance is a very usefull and unique tool that 

provides a complete local and global knowledge of the left ventricle (LV) motion. In 

this article we introduce a method capable of tracking and segmenting the LV.  

Spectral methods are applied in order to obtain the so called HARP images which 

encode information about movement and are the base for LV point-tracking. For 

segmentation we use Active Shapes (ASM) that model LV shape variation in order 

to overcome possible local misplacements of the boundary. We finally show 

experiments on both synthetic and real data which appear to be very promising. 
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1. Introduction 

Heart diseases are one of the most common death causes of the last decades. For this 

reason, it is important to develop tools that allow clinicians to obtain quantitative data to 

provide a good diagnosis and derive an appropriate treatment that can turn to a significant 

reduction of mortality. Magnetic Resonance (MR) is the most common, non-invasive, 

cardiac imaging technique as it can provide, into a single sequence examination, 

information about anatomy, structure, global and regional function and contraction of the 

heart. Nevertheless, the lack of identifiable landmarks within the myocardium (Figure 1.a) 

makes motion assessment limited due to the fact that many patients may have significant 

regional dysfunction while maintaining an ejection fraction relatively within normal limits.  

To overcome this limitation, a new image modality is designed: Tagged Magnetic 

Resonance (TMR) (Figure 1.b), which uses a special pulse sequence to spatially modulate 

the longitudinal magnetization of the subject prior to acquiring image data. This is called 

spatial modulation of magnetization (SPAMM) and produces a grid over the myocardium, 

which deforms by the underlying motion of the heart. Thus, inner tissue deformation 

becomes visible, allowing for other pathologies to be assessed. 

Despite the potential of this imaging technique, it has not become a clinical standard 

in part because of the difficulty for the clinicians to manage and quantify all the information 

as well as because any post processing of the images is extremely time consuming. Regard 

that each analysis assumes manually tracking about 100 points per frame, 10 frames per 

sequence and 10 sequences belonging to different heart slices per scan session (aprox.). 

This justifies the need for specific software that can extract quantitative data in a relatively 

short time. Numerous analyses to detect tag features have been developed and all of them 

need of the application of some interpolation process in order to get dense motion 



 

 

estimations, i.e., at every point. Guttman et al.[1] used morphological image processing and 

matched filtering techniques [1], Young and Axel [2] and Kumar and Goldgof [3] use 

deformable meshes. Young an Axel have used manually identified points [2]. To 

interpolate dense motion Young and Axel [2] used a finite element model, O’Dell et al.[4] 

used truncated polynomial expansion, Denney and Prince [5] used stochastic estimation 

scheme, Radeva et al.[6] used 3D B-splines and Ozturk and McVeigh [13] used 4D B-

splines. 

 

   
(a) (b) (c) 

Figure 1  (a) Ordinary MR. We can appreciate the lack of identificlable points into the myocardium. 
(b) TMR. Dark stripes gives us a way to observe the evolution of inner points in the myocardium.  
(c) TMR Fourier transform with the main harmonic peaks in orthogonal directions to be filtered. 

 

The method we use in this paper for cardiac tagged MR analysis was developed by 

Osman et al.[7] and it is based on the so called HARP (harmonic phase) images. It provides 

us a method to get dense motion estimation, i.e., we can estimate the trajectory of any point 

in the myocardium, and thus no interpolation process must be done. 

What is new in this work is to exploit the information provided by the previous 

method to segment the myocardium. Given an initial segmentation of the first frame, it will 

evolve for each frame according to the displacement map provided by the method. The 

drawback is that the lack of tags outside the myocardium affects the displacement 

estimation at the myocardium borders (epicardium and endocardium) and this may cause 

the segmentation evolution fail. For this reason in this work we propose to incorporate a 

priori knowledge; more precisely, we propose to use active shape models (ASM) to create a 

model of the left ventricle myocardium to ensure that local errors are corrected by the 

global influence of the shape. We describe a complete method, based on HARP images and 

ASM, that allows to fully analyse the myocardial function and which is the base for further 

extraction of any kind of quantitative data such as stress or strain parameters. One more 

consideration about the segmentation is that if we combine, at each step with the motion 

estimation process, we can avoid calculus on outer LV points that are not desired. 

The article is organized as follows: in section 2 we explain the fundamentals of the 

tagging process and HARP images. In section 3 we show how HARP images can be used to 

track small motions of the myocardium. In section 4 we expose our segmentation algorithm 

and provide a short overview of ASM theory. In section 5 we show experimental results on 

both synthetic and real data and finally, in section 6 we extract conclusions of this work. 

 

2. HARP images 

The key point in tagged MR image is not to study them in the spatial domain but in the 

frequency domain. We appreciate in figure 1.c a collection of spectral peaks, which contain 



 

 

information about motion, each of them in a certain direction. If we filter one of these 

peaks, back in the spatial domain we get a complex image the phase of which is linearly 

related to the directional component of the true motion. Obtaining the phase is quite 

difficult, even though we will see that the principal values of the phase, lying in [-π , π], are 

enough to estimate small motions. 

2.1 SPAMM tagging 

The tagging process consists of applying to the transverse magnetization, present in the 

ordinary MR images, one or more gradient pulses that produce a periodic spatial 

modulation of the phase. The pulse is applied at end diastole )0( t , when the left ventricle 

is full of blood and the heart is relatively slowly moving. 

 The tag pattern can be considered as a function )g,gf(p; 21  [8] with 1)g,gf(p; 21  , 

that modulates the underlying magnetisation intensity of every material point p at time 

0t  : 
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where N are the number of pulses and 1g and 2g  are orthogonal gradient directions. For 

more details about na coefficients, see [8]. So at time 0t  , the resultant image is given by 

)g,gf(p;  (p)I)g,gI(p; 21021  , where  (p)I0 is the image at end-diastole without tags. 

Managing equations one get the following 
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with  2
12NK  . This is the formulation of the first frame. The reference frame, where 

its points are considered to be material points expected to be moved. As the heart deforms, 

a material point within the myocardium moves from its reference position p to a new 

spatial position x at time t and it is given by the reference map t)p(x,  so, for any frame in 

the sequence, we have the formulation 
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It is worth to say that despite the true motion of the heart is in 3D, in this work we 

consider just the apparent motion that is in 2D. This means that we assume that the gradient 

directions of the tagging pulse are parallel to the image plane thus, what we see in the 

images are projections of the real movement. Some works as [14] track the 3D cardiac 

motion using perpendicular views of the myocardium, short axis and long axis. 

 

2.2 Frequency domain analysis 

Due to the fact that the cosine function has two symmetric spectral peaks in the Fourier 

domain, we get exactly 
2)12( N  spectral peaks which locations are easy to find from 



 

 

1g and 2g . Each of these peaks corresponds, approximately, to the Fourier transform of 

t)(x,Ik because most of its energy around it thus, by filtering it [9] one can separate t)(x,Ik  

from t)I(x, . kI  is called the kth harmonic image. Notice that kI  C and for this reason, 

we can get both the real and the imaginary part. What is interesting for us is precisely the 

last one. The phase is given by t)p(x,wt)(x,φ T

kk  what shows that the frequency is 

linearly related to the phase. We will not be able to calculate the phase due to the arc tang 

operator wrapping effect but instead we define the HARP image (Figure 2) as following 
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(a) (b) 

Figure 2  HARP images obtained by filtering two of the principal harmonics in orthogonal direction, 
vertical (a) and horizontal (b). 

 

3. Motion tracking using HARP images 

In this section we describe how to estimate apparent motion for small displacements using 

HARP images. To any point in the image we can associate a pair of angles, one for each 

HARP image. We define this pair as  Tvh φ φφ  where hφ  is the horizontal component 

and vφ the vertical one. Now, given a point in the mth frame mx we would like to find x in 

the (m+1)th frame that fulfils the condition )t,φ(x)tφ(x, mm1m  or equivalently, to find a 

solution to the multidimensional non-linear, root finding problem 0)t,φ(x)tφ(x, mm1m   

which can be solved by applying the Newton-Raphson iteration method 

   )t,φ(x)t,φ(x )t,φ(xxx mm1m
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. For details about the practical 

implementation see [10]. We define the displacement map as xxt)u(x,  ˆ  where x̂  

satisfies the previous non-linear equation: 0t)φ(x,1)t,xφ( ˆ . 

 This method gives dense motion estimation for any point in the image. Nevertheless 

we want only to track points in the myocardium. For this reason, if we have the LV 

segmented, we can avoid make useless calculations over non-desired points, apart from the 

intrinsic importance of having our object of interest localized. 

 



 

 

4. LV Segmentation 

As we discussed before, the aim of this work is to give a complete framework for LV 

analysis in two aspects: tracking of any point in the myocardium and segmenting it. The 

segmentation we propose is based on the displacement map given by the HARP motion 

estimation and it allows to avoid calculations over points out of the myocardium which are 

not of interest. The process follows these steps: we segment the first frame, which can be 

done manually (minimal human interaction). Once we have the initial segmentation, we can 

calculate the displacement map (just over the points in the region of interest). Due to the 

fact that we have the estimation where any point will move in the next frame, in particular, 

we can estimate next segmentation. Nevertheless due to the lack of tags out of the 

myocardium, it can make the segmentation locally fail. It is for this reason that we apply 

Active Shape Models, which allow correcting possible local misplacements of the 

estimated boundary as it is a global method that seeks for a valid shape that fits best all the 

points. 

 

 

 

Figure 3  First variation mode of our LV linear model. The central shape is the mean shape and the 
other shapes are obtained by varying the first component of parameter b. 

 

4.1 Active Shape Models 

This technique allows to build compact models of shape by capturing the statistics of sets 

of labelled points in a set of training images. Once the model is built, only plausible shapes 

(similar to the ones in the training set) can be obtained [11]. Having N training images, 

manual segmentation is performed on every image  jI . Let   M

1ijjj y,xs


 ~~~  be the ordered 

set of its landmark coordinates. We align js~ to a reference shape 0s by applying a 

transformation )s(Ls jTθ,r,j
~  that scales, rotates and translates js . This process is done 

using Procrustes analysis and allows to capture the intrinsic variation of shapes avoiding 

similarities. Let   M

1ijj y,x


 be the aligned coordinates of the jth training image, we 

construct the vector )y,x,,y,x,y,(xX j

N

j

N

j

2

j

2

j

1

j

1j   by concatenating the coordinates of the 

points. Applying Principal Component Analysis (PCA) to the data, we reduce the 

dimensionality while maintaining relevant information. Any shape in the training shape can 

now be approximated using the mean shape  


N

1j jX1/NX and a linear combination of 

the first m < M modes of variation PbXX   where )P,,P,(PP m21  is the matrix of 

the first m modes with IdPPT  and )b,,b,(bb m21   is the shape parameter vector. If 

we have an aligned shape X
~

, and we want to find the most similar plausible shape, we just 

have to project it into the space to get the parameter vector b, )XX(Pb T 
~

 and ensure 



 

 

that b lives into a certain valid m-dimensional hyper box. Then plausible shape is exactly 

PbXX  . 

3.2 Segmentation algorithm 

Given an initial segmentation of the first frame characterised by a set of points  N
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and the segmentation in the jth step  N
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 , we estimate the next segmentation result 

using the displacement map as follows:    N
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overcome possible local misplacements we seek for a valid shape in our Shape Model that 

best fits the estimated points: for every i we obtain the parameter in the shape space 1jb   as 

we discussed in the previous section and get the valid shape as 1j

1j PbXS 

    

 

 

 

 

Figure 4  (a) Synthetic tagged MR sequences. (b) Real tagged MR sequences. (c) & (d) Mean of the 
distance errors obtained for every synthetic and real sequences, respectively. 

 

5. Experimental results 

In this section we show the performance of the two algorithms: motion estimation and LV 

segmentation using both synthetic and real data. 

We have created a 2D synthetic model (Figure 4.a) based on the work presented in 

[12], that allows to create tagged MR sequences and which is governed by six parameters 

(translation in x and y, rotation, shear, eliptication and radial compression). From the 

synthetic sequence we know exactly its displacement map, which will be compared to the 

one given by the algorithm. Five synthetic sequences have been created and for each of 

them we have calculated the difference between both displacement maps at every point. 

Mean difference have been extracted (Figure 4.c). Notice that error is less than 0.4 pixels. 

To test the algorithm on real data, we have used 5 sequences similar than in figure 4.b and 



 

 

for them we have manually marked points to obtain a discrete displacement map over 

which we have compared the displacement map provided by the algorithm. Also mean 

distance has been calculated for these points and shown in figure 4.d. The mean error is 

about 1 pixels and it increases as the sequence evolve due to the fact that tagged MR 

sequences loses tag contrast in time. 

To test the segmentation algorithm we used the same real data and to create the 

linear model of the LV shape, we used a training set of 50 images manually segmented 

using 32 landmarks for this purpose. After applying the PCA to the points, we have 

obtained an 8-dimensional linear model that explain the 98.75% of shape variation. In 

figure 3 we can appreciate the first main mode of variation. We empirically show the 

performance of our segmentation algorithm in figure 5.a and 5.b. Due to the fact that the 

base of the segmentation is the displacement map, error in segmentation is, as much as the 

one given by HARP method but, in addition, ASM often reduces it due to its a priori shape 

knowledge incorporation. In figure 5.c .d  and .e we show the displacement map restricted 

to the LV (region of interest). 

 

 

 

   

Figure 5  (a) and (b) output of our segmentation algorithm. (c), (d) and (e) detail of the dense 
displacement map for a synthetic and a real tagged images. 

 

6. Conclusions 

In this article we overview an interesting method that exploits the frequential nature of 

tagged MRI and which does not need further interpolation processes to obtain dense motion 

estimations. Taking advantage of this information we developed a segmentation method 

that is supervised by a shape model that acts as a correction factor. Thus, given a tagged 

MRI sequence, we described the framework to localize the object of interest, the LV 

(segmentation) and track its points. This gives the base for any kind of quantitative data 

extraction for further interpretation or simulation. 
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