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Abstract. Poor convergence to concave shapes is a main limitation of
snakes as a standard segmentation and shape modelling technique. The
gradient of the external energy of the snake represents a force that pushes
the snake into concave regions, as its internal energy increases when new
in�exion points are created. In spite of the improvement of the external
energy by the gradient vector �ow technique, highly non convex shapes
can not be obtained, yet. In the present paper, we develop a new external
energy based on the geometry of the curve to be modelled. By tracking
back the deformation of a curve that evolves by minimum curvature
�ow, we construct a distance map that encapsulates the natural way of
adapting to non convex shapes. The gradient of this map, which we call
curvature vector �ow (CVF), is capable of attracting a snake towards any
contour, whatever its geometry. Our experiments show that, any initial
snake condition converges to the curve to be modelled in optimal time.

1 Introduction
Shape modelling arises in many �elds of computer vision and graphics [13], [8],
[25], to mention just a few. The most e�cient way of producing smooth models
of shapes is by means of a snake [14], [1], [2]. Snakes are curves that minimize
an energy functional. In classic snakes [14], this functional splits into an external
energy, depending on the set of points to be approached, and an internal one that
serves to smoothly interpolate the curve to be modelled when no information is
available. Geodesic snakes [1], [2] blend both the internal and external energies
and seek for the curve of minimal length in a Riemmanian manifold with the
external energy as metric. In any case the minimum of the energy functional is
obtained by gradient descent of an initial contour. Hence the de�nition of the
external energy is crucial for a successful model of the shape.

Distance maps are one of the most used external energies, simple and quick
to compute. Curves of level zero correspond to the contour of interest and the
snake moves in the direction opposite to the gradient of the distance map. Un-
fortunately, the geometry of the curve of level zero may produce maps with null
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gradients along some curves. The snake gets caught in these local minima and
produces a wrong model of the shape. There are several ways of addressing this
problem. We can initialize the snake close to the �nal shape so that we make sure
that it is far away from these local minima. This is certainly not a very elegant
approach for automated procedures. Some authors [3], [20] suggest searching
for the global minimum of the energy, but global minimums of real images are
hard to �nd in an e�cient way without manual intervention. The most sensi-
ble solution up to now consists in using the Gradient Vector Flow (GVF) or the
Generalized Gradient Vector Flow (GGVF) to obtain a regularized version of the
gradient of the external energy [22], [24], [23] that only admits isolated zeros.
The technique succeeds in producing smooth gradients in the whole image that
guide the snake to the �nal contour for a large variety of geometries. However
the vector �eld obtained with GVF may have saddle points which also trap the
snake. No technique will remove saddle points because they are inherent to the
distance map. We need a new de�nition of the distance map.

The novelty of this work is that we study distance maps from a geometric
point of view, which clearly shows the limitations of the current external forces.
By means of the formulas developed, we build a new distance map to closed
contours.

An analysis of the Euclidean distance map points out that propagating a
shape with constant speed produces shocks in the map that di�cult using its
gradient as external force in the snake equation. In this paper we propose a
distance map that takes into account the local geometry of the closed contour
we want to approach. A back-tracking of the evolution of the contour of level
zero by minimum curvature �ow [17] is the natural geometric way of converging
to non-convex regions. Since the PDE associated to this evolution is of elliptic
type, we can assure that propagation of non convex regions will not develop
shocks during the process. In this manner we build a distance map having the
contour of level zero as unique local minimum. The gradient of the map, called
Curvature Vector Flow, is capable of attracting any initial interior or exterior
curve towards the contour of interest, independently of its geometric features.

Experiments done on synthetic shapes and contours extracted from real im-
ages, show that CVF adapts snakes to any geometry of the curve to be mod-
elled, provided the initial snake lies completely either in the interior or exterior
of the shape to model. Comparing to other external forces (GVF and Euclidean
distance map), not only is CVF the most e�cient and accurate but also the
graphs of the snake total energy present a smoother asymptotic behavior. This
minimizes the snake oscillation in a neighborhood of the equilibrium state and
provides CVF with a stop criterion either in terms of the magnitude of the en-
ergy or in terms of stabilization of the iterative numerical scheme. Shapes that
CVF yields represent accurate smooth models of the contours. Further, using
B-spline parametric snakes a compact representation is obtained.

The paper is organized as follows: the theoretical analysis of shape propaga-
tion is given in Section 2; advantages and drawbacks of the Euclidean distance
map and GVF are described in Sections 2.1 and 2.2, respectively; the formu-



lation of CVF in Section 2.3. Applications to shape modelling are presented in
Section 3 and, �nally, Section 4 is devoted to conclusions and further research.

2 Shape Propagation
Distance maps encode the evolution of the curve of level zero, γ0, under a geo-
metric �ow de�ned, generically, by a parabolic PDE:

γt(u, t) = β(u, t)−→n . (1)
with initial condition γ(u, 0) = γ0(u) a closed curve and −→n denoting the

unit inward normal. Each level curve of a given distance, d, corresponds to the
solution to (1) at time t = d. This point of view, reduces the study of distance
maps to the analysis of the propagation of the zero level curve governed by means
of a geometric �ow. We will use the machinery developed in [4] in order to study
the drawbacks of the Euclidean distance map and de�ne a more natural way of
propagating shapes that will produce distance maps capable of guiding a snake
to any closed curve. Since a plane curve is de�ned, up to rigid transformations,
by its unit tangent, a pleasant way of handling geometric �ows is by means of the
equation of the angle of the unit tangent, θ, in the arc length, s, parameterization.
The advantage of this formulation is that we reduce the study of the properties
of (1) to the analysis of a single equation, so that standard results on PDE's can
be applied. The parabolic PDE for θ when the curve solves (1) is given by:

θt(s, t) = ∂s(β) +
(∫ s

0

βθsds

)
θs . (2)

with initial condition the angle of the unit tangent, θ0, of the initial curve.
An important remark is that the �rst order term arises due to the change of
parameter, and, hence, it is present in any geometric �ow.

2.1 Euclidean Distance Maps
In Euclidean distance maps, propagation of the initial curve, γ0, is equivalent to
mathematical morphology with a circle of radius 1 as structural element. Erosion
corresponds to the inward propagation and dilation to the outward one. Hence
the geometric �ow associated [12] [18] is given by:

γt = ±−→n .

The minus sign corresponds to the dilation and the plus to the erosion. Since,
in this case, β = ±1 is constant, the corresponding equation (2) for θ is simply:

θt(s, t) = ±(
∫ s

0

θsds)θs . (3)

This equation is a �rst order non-linear PDE that is solved [7] by means of the
computation of the characteristic curves, that is, those curves in the s-t plane,



α(u), such that the function solving (3) keeps constant, that is θ(α(u)) ≡ const.
Assuming this last condition for α(u) = (s(u), t(u)), we obtain that:

0 =
d

du
(θ(s(u), t(u)) = tuθt + suθs = tu(±(

∫ s

0

θsds)θs) + suθs = (±tuθ + su)θs .

Since the equality holds for all points in the characteristic, we have that α
solves the �rst order PDE:

±tuθ + su = 0

And, consequently, its tangent vector ful�ls the following system of ODE's:

tu = 1
su = ±θ

}

Therefore, the characteristics through a point (s0, 0) are parameterized as:

α(u) = (±θ0u + s0, u) .

where θ0 equals θ0(s0, 0) and is constant along the characteristics.

(a) (b)

Fig. 1. Highly non-convex curve (a) and gradient of Euclidean distance map (b).

This means that we have straight lines in a plane which slopes, θ0(s0), do
not need to be a monotonous function of the curve parameter. Variation of the
characteristics slope along the initial curve is given by the derivative of the angle
θ′0. Since the initial curve is parameterized by its arc length, we have that the
sign of the curvature of the initial curve determines whether the slopes increase
or decrease. For convex curves, characteristics slope are either increasing (in-
ward propagation) or decreasing (outward propagation) along the curve. Hence,
two di�erent characteristics never cross during the curve propagation and the
distance map is a smooth map. However, for non-convex shapes, changes in the



monotonicity of the slopes induced by the curve in�exion points make charac-
teristics meet each other in �nite positive time (squared region of �g. 1(b)) . At
this time, the evolution of the angle develops a discontinuity or shock and the
corresponding curve is not smooth any more. Indeed shocks in the angle domain
translate into points or, even, curves where the gradient of the distance map can-
cels, that is, they correspond to crests and valleys of the distance map. Although
this property is used in computer vision for extraction of shape skeletons [19],
[21], it constitutes a main hindrance for shape modelling with snakes. Highly
non-convex shapes (see �g. 1(a)) with the angle turning around more than π
between two consecutive in�exion points produce distance maps with crests of
positive slope (�g. 3(a)). These crests and valleys induce local minima in the
snake energy functional that our deformable model, which seeks for zeros of the
energy gradient, will never cross.

The best approach up to our knowledge to overcome the null gradient problem
along curves is by means of the use of a regularized gradient (that only cancels
at isolated points) as external force. Such regularization is obtained by means
of the GVF [22] or its generalized faster version GGVF [24].

2.2 Gradient Vector Flow and Saddle Points

The GVF/GGVF technique [22], [24] consists in substituting the gradient of the
external energy, ∇Ee, by the vector �eld v(x) that is the steady-state of the
reaction-di�usion vector equation:

ut = g(|∇Ee|)∇u− h(|∇Ee|)(u−∇Ee) with u(x, 0) = ∇Ee (4)

The weighting functions, g(·) and h(·) are monotonically non-increasing and
non-decreasing functions of the norm |∇Ee|, respectively. An important remark
is that h(0) = 0. In this manner, the equilibrium vector �eld smoothly extends
∇Ee, thanks to the Laplacian, keeping close to the original gradient when it is
signi�cant enough. It can be used either to extend the edge map to the whole
image or to regularize a gradient of a distance map. The main di�erence between
GVF and GGVF is that the latter �eld keeps enough force as to drive the snake
until the edge.

Notice that, in any of the two cases (GVF or GGVF), at parts of null gradient
the equilibrium point is an harmonic function. Harmonic functions [16] do not
admit accumulation of zeros and, thus, our vector �eld v will only have isolated
points with |v| = 0. This important feature solves the problem of the distance
map null gradient along curves (�g. 2 (b)). However, in both cases the geometry
of the contours introduces saddle points in the vector �eld v, as the close up in
�g. 2 (c) illustrates. These false minima of the snake energy trap, once again,
the snake and prevent the deformable contour from entering into concave regions
where the angle of the unit tangent, θ, turns around more than π.

For regularization of gradients of Euclidean distance maps, saddle points
appear because of shock formation during the propagation of the curve of level
zero. In the case of extension of image gradients we �nd a similar problem. The



(a) (b) (c)

Fig. 2. Gradient of Euclidean distance map to non-convex curve (a), GGVF (b) and
saddle point of GGVF (c).

Laplacian is an isotropic linear constant way of extending information. Therefore
in every image region such that the contour/edge of interest is concave and the
angle of the image gradient (parallel to the unit normal of the curve) turns more
than π, two opposite directions meet (�g. 2 (c)) and we have a saddle point.

In order to eliminate saddle points we need changing the propagation of
shapes, so that the geometry of the contour to be extended is taken into account.

2.3 Curvature Vector Flow

Let us analyze the problem of the Euclidean distance map. From an analytic
point of view, we see that equation (3) is a non-linear �rst order PDE, prone to
develop shocks during the evolution. From a geometric one, it lies on the fact that
we are propagating the curve at constant speed whatever its geometric features.
In other words, the structural element used in the mathematical morphology is
a circle of constant radius, which means that all points in the curve travel equal
distance at the same time. We argue that the evolution should consider di�erent
metrics depending on the local geometry around each point so that structural
circular elements of non constant radius are used. And what characterizes the
local geometry of a curve better than curvature?. We propose [5] a distance map
based on the Mean Curvature Flow, that is, the evolution of the curve of level
zero under the PDE given by:

γt = κ−→n . (5)
This equation makes points on the curve travel a distance that depends on

the magnitude of the curvature, the higher its absolute value, the faster and
further the point will move. From the mathematical morphology point of view
we make the radius of the structural circle depend on the absolute value of the



curvature. Now, can we assure, analytically speaking, that our evolution will stay
smooth for all times?. On one hand we have that the equation (3) associated to
θ in arc length parameter has turned into a PDE of parabolic elliptic type:

θt = θss + (
∫ s

0

θ2
sds)θs . (6)

Hence by general theory on PDE's [7], we already know that our Curvature
Distance Map (CDM) will be in�nitely di�erentiable. Intuitively, the Laplacian
that equation (6) contains introduces curvature into the characteristic lines, so
that two characteristics do not intersect any more. Besides, the large amount of
literature [9], [10], [11] on MCF, states that any initial curve evolves smoothly
towards a convex shape, circular in the limit, before collapsing to a point. This
is the key point to the de�nition of CDM.
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Fig. 3. Detail of Euclidean distance map, showing a crest of positive slope (a) and
detail of Elliptic Distance Map (b) .

Evolution by negative curvature Evolution by positive curvature
γt = min((κ, 0))−→n γt = max((κ, 0))−→n

(7)
We will de�ne separately the outward and inward propagation in order to

ensure maximal accuracy in the position of the snake. The analysis of Section 2.1
points out that convex shapes do not develop shocks during their propagation.
An evolution of a non convex shape by negative curvature [17] stops as soon as
the curve becomes convex. Therefore, for the outward propagation, we will evolve
the initial shape under the �ow given by (7) until it stabilizes. The tracking of
the curve for each time produces the level sets of the outward CDM for the non
convex regions. To complete the outward CDM, we use an outward Euclidean
distance map to the stable state of the �ow by negative curvature. For the
inward propagation we use evolution under positive curvature (7) until the curve



becomes circular and then we use the Euclidean distance map to this circle to
complete the inward propagation.

(a) (b) (c)

Fig. 4. Gradient of the Elliptic Distance Map (a) and close-ups from the interior (b)
and exterior (c).

Since there are not any self intersections between the level curves of CDM,
we obtain maps (�g. 3 (b)) without curves of null gradient or saddle points (�g.
4 (a)). The gradient of this map, CVF, drives the snake [5] to the zero level curve
of CDM whatever its geometry. Details of CVF shown in �gure 4 illustrate the
absence of either saddle points or null gradients in both, the interior (�g. 4 (b))
and exterior (�g. 4 (c)) regions of a highly non-convex curve.

3 Applications to Shape Modelling

In this section we apply CVF to smooth shape representation. Given a closed
curve in the plane, we approach it by means of a parametric B-spline snake
that uses CVF as external force. In the case of discontinuous curves, CVF is
computed over their closing obtained by dilation. We recall the reader that a
parametric snake [14] is a curve γ(u) = (x(u), y(u)) that minimizes the energy
functional:

E(γ) =
∫

γ

(Eint + Eext)du =
∫

γ

(α||γ′ ||2 + β||γ′′ ||2 + Eext)du ,

where the external energy depends on the image object to model and can be
either a distance map or a function of the original image gradient. The parame-
ters α and β determine the sti�ness of the deformable model and are in the range
[0, 1]. In any case the optimal curve is obtained by means of the Euler-Lagrange
equations associated to E, which are equivalent to solving a linear system:

Ax = −∇Eext .



The numeric iterative scheme is given by:

xt+1 = (A + λI)−1 (λxt −∇Eext)

where I denotes the identity matrix, A the sti�ness matrix [14] and λ is a
viscosity parameter. An important remark is that stability of the �nite di�erence
scheme depends upon the viscosity parameter, which must be increased if α,
β decrease. This viscosity parameter determines the speed of convergence, the
higher it is, the slower the snake converges. We consider the snake has reached
its �nal state when its total energy stabilizes.

(a) (b) (c)

(d) (e)

Fig. 5. Set of test shapes: clover (a), highly non-convex curve (b), character 'S' (c),
hand (d) and horse (e).

3.1 Results
Experiments focus on the e�ciency and accuracy of CVF when non-convex con-
tours are modelled. Accuracy has been computed in terms of snake convergence,
given by the snake maximum Euclidean distance to the original closed contours.
E�ciency is given by the CPU-time the initial snake takes to reach its �nal state.



Since the stop criterion is in terms of the stabilization of the external energy,
the asymptotic behavior of the functional E is also a measure of the method
e�ciency. An oscillating graph for E hinders stopping the deformable model
with the former stop criterion and the �nal snake must be obtained after a �xed
number of iterations.

(a) (b) (c)

(d) (e)

Fig. 6. CVF on clover (a), highly non-convex curve (b), character 'S' (c), hand (d) and
horse (e).

We have tested the external potentials for di�erent values of the snake pa-
rameters, α and β, in order to check if the energies could support large values
and still guarantee convergence of the snake to the curve of interest. As noticed
before, supporting large values for α, β is also a signal of e�ciency, since the
larger these parameters are, the faster the snake converges. The snake has been
initialized inside and outside the object of interest. We have compared CVF to
the results obtained using a GVF-regularized gradient of the Euclidean distance
map (DM) and GVF applied to the edge map.



The shapes chosen are depicted in �gure 5. The external force given by CVF
is shown in �gure 6. Convergence of snakes for the di�erent external forces is
shown in �gure 9 and the �nal model obtained is depicted in �gure 10.
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Fig. 7. Snake accuracy, interior convergence for highly non convex shape (a) and the
clover (b) and the corresponding exterior convergence (c) and (d)

In terms of an accurate model of the shape, CVF is the only external energy
that adapts the deformable model to all curves, whatever position (inside or
outside the object of interest) of the initial snake. The other two external energies
fail to obtain an accurate model when the initial snake lies inside the object of
interest. Convergence to the character 'S' and horse in �g. 9 and the �nal shapes
of �g. 10 illustrate this bad-pose of the snake inner convergence with GVF and
DM. In the case of the character 'S', saddle points of both GVF and DM, make
the snake oscillate at closed shapes which fail to reach the extremal boundary of
the 'S'. Irregularities in the gradient of the horse external energy, produces open
�nal snakes (�g. 10(b),(c)) approaching only a part of the animal's contour.
Notice the accuracy and smoothness of the �nal model of the horse achieved
with CVF (last row of �g. 10(a)). In the case of an outer initial snake, GVF
succeeds in adapting to non convex shapes such that the angle θ does not turn
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Fig. 8. Evolution of snake energy, CVF exterior convergence for highly non-convex
shape (a), the clover (b) and the corresponding GVF/DM convergence (c) and (d)

more that π between two consecutive in�exion points (like the clover of �g.
10(b)). However the snake gets trapped at the saddle points that highly non
convex shapes (second row of �g. 10(b)) produce in the vector �eld. The external
force �eld obtained by a regularization of the gradient of DM using GVF is the
worst performer. Even for small values of α and β, the external force is not
strong enough to attract the snake to non-convex shapes, even in the case of
shapes (like the clover of �g. 10(c)) with the angle θ turning less than π between
two consecutive in�exion points. Figure 7 summarizes these results in the form
of maximum Euclidean distance to the contour of interest versus number of
iterations. Notice signi�cant di�erences of the maximum distance between CVF
and DM/GVF in the case of convergence to highly non-convex shapes (�g. 7
(a),(c)).

Concerning e�ciency, CVF is, again the best performer, since attains accu-
rate models in optimal time, meanwhile GVF is the worst of the methods. Times
for DM have not been taken into account since the method does not produce
good enough segmentations as to be taken into account. The main reason for
this di�erence in times lies on the fact that, due to the smoothness of the map,
deformable models guided by CVF do not need, in general to be re sampled



during evolution. On the other side, since GVF does not take into account the
geometry of shapes, the snake sampling must be re�ned at points where two op-
posite directions compete (that is when entering into concave regions) in order
to guarantee convergence to a closed contour. This increases the computational
time of GVF up to four times CVF time in the case of the hand or the horse.
Also in terms of the sti�ness parameters, α and β, CVF is the most e�cient.
Our tests done for di�erent values of the sti�ness parameters show that CVF
supports, in general, values in the whole range of [0, 1]. Only in extreme cases
like inner convergence to the horse and outer convergence to the hand, α and β
must be smaller than 0.3 if we want a reliable �nal model.

Another issue worth to be considered is the asymptotic behavior of the snake
convergence. Figure 8 shows the evolution of the snake energy in time for con-
vergence to the clover and the highly non-convex shape of �g. 9, in the case of a
CVF guided snake (�g. 8(a),(b)) and a DM/GVF one (�g. 8(c),(d)). Notice that
deformations under CVF present a smoother asymptotic behavior, compared
to the highly oscillating graphics of DM and GVF. This oscillating behavior
strengths when the snake gets trapped at saddle points. A smooth energy im-
plies a strong advantage since a stop criterion in terms of the snake total energy
is a robust way of determining the �nal state for CVF guided snakes.

4 Conclusions and Future Work

Shape modelling and reconstruction is an issue frequently addressed in di�er-
ent �elds of computer vision and graphics. Snakes or deformable models are a
common way of obtaining smooth shape models. The external force is crucial in
order to ensure the snake convergence. In the present paper we have introduced
a new distance map to closed contours. Based on the grounds that a distance
map represents the evolution of an initial curve in time under a geometric PDE,
we propose using the mean curvature �ow to avoid shock formation. The gradi-
ent of this map is a smooth external force that guides in a natural manner the
snake to the shape of interest. The fact that the force �eld takes into account the
geometry of the �nal curve, makes convergence robust whatever the concavity
of this curve is. The only requirement is that the initial snake must be either in-
side or outside the shape of interest. Experiments show the higher accuracy and
e�ciency of our model of shapes compared to the most commonly used external
force �elds in the framework of parametric snakes. Comparing to geodesic active
contours, our CVF converges faster to a comparable segmenting snake.

We are aware that requiring closed contours is a main limitation of CVF.
However we argue that ensuring convergence and a smooth potential should be
essential requirements for any external energy. In order to apply CVC to object
segmentation, special treatment must be made to noisy images well as to uncom-
pleted contours. In [6] we present a more general framework for segmentation
purposes where we embed CVF to segment real images with concave objects.
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(a) (b) (c)

Fig. 9. Snake convergence, CVF (a), GVF (b) and regularized DM (c).



(a) (b) (c)

Fig. 10. Models of shapes obtained with CVF (a), GVF (b) and regularized DM (c).


