
A String Based Method to Recognize Symbols
and Structural Textures in Architectural Plans

Josep Lladds, G e m m a S£nchez, and Enric Martf

Computer Vision Center - Dep. Informktica
Universitat Autbnoma de Barcelona
08193 Bellaterra (Barcelona), Spain

Abstract . This paper deals with the recognition of symbols and struc-
tural textures in architectural plans using string matching techniques.
A plan is represented by an attributed graph whose nodes represent
characteristic points and whose edges represent segments. Symbols and
textures can be seen as a set of regions, i.e. closed loops in the graph,
with a particular arrangement. The search for a symbol involves a graph
matching between the regions of a model graph and the regions of the
graph representing the document. Discriminating a texture means a clus-
tering of neighbouring regions of this graph. Both procedures involve a
similarity measure between graph regions. A string codification is used
to represent the sequence of outlining edges of a region. Thus, the simila-
rity between two regions is defined in terms of the string edit distance
between their boundary strings. The use of string matching allows the
recognition method to work also under presence of distortion.

1 I n t r o d u c t i o n

One of the most promising areas within the field of graphics recognition is the
interpretation of maps and plans. An accurate vectorization constitutes a first
approach to solve this goal. However, a vectorization only gives the segments
constituting the document and their geometrical attributes. Interpreting a doc-
ument requires an additional stage: understanding the document in terms of its
structural elements. Usually maps and plans contain three types of elements:
symbols, structurM textures and dimensioning elements. This work focuses on
two of these three entities: symbols and textures, proposing a structural method
that is able to recognize both of them. This method has been applied to architec-
tural drawings, either printed or hand drawn, consisting in floor plan sketches.
Symbols represent building elements in the plan, like doors, windows, furniture,
etc. They have an a priori defined pat tern and their recognition is performed
by matching with a set of models stored in a library. In contrast, textures do
not represent particular entities but show regions with a particular meaning:
tiled floors, level, solid regions, etc. Textures do not have a fixed pat tern but
are characterized by a repetitive element, called texel, and a structural rule.
Interestingly, the problem of texture discrimination in map documents usually
assumes a previously defined texture (hatched patterns in most cases [1][3][8]).

92

In this work, the only a priori assumed constraint is that the texture texel is a
polygon with a regular structure but its particular shape and structure, will be
inferred in mn time.

Since maps and plans are documents mainly composed by lines, attributed
9raphs are an efficient structure to represent them. In this work, the input doc-
ument is scanned and vectorized obtaining an attributed graph structure. The
graph nodes represent the characteristic points of the document (junctions, end
points or corner points), and the graph edges approximate the segments between
characteristic points. Starting from this structure, a Region Adjacency Graph
(RAG) is computed. The RAG nodes represent the regions, i.e. minimal closed
loops of the former graph, and the edges are the neighbouring relations between
loops. A given graph region (RAG node) is represented by an attributed cyclic
string containing the sequence of graph edges defining the region. Thus, tile sim-
ilarity between two regions can be computed in terms of the string edit distance
between them. This is the basis of our algorithm. Notice that, since symbols as
well as textures can be seen as a set of regions with a particular arrangement, the
basis for the recognition is a matching between these regions and those stored
in the library of patterns, for symbols, or a matching between neighbouring re-
gions, for textures. The use of string matching techniques offers the advantage
that, since a measure of similarity is given, the method can also be applied to
disturbed documents such as hand drawn, inaccurately vectorized or documents
scanned with an insufficient resolution.

Graph matching methods are often proposed to solve the problem of recogni-
zing symbols in diagrams (e.g. [6] [9] [11]). The problem consists in finding a model
graph that represents the symbol as a subgraph of an input graph representing
the diagram. To deal with the presence of noise and distortion, a usual prob-
lem in computer vision, inexact or error-tolerant graph matching techniques are
proposed [5]. In this work, symbols are recognized in terms of an error-tolerant
graph matching that computes the minimmn distance from a model RAG, rep-
resenting the symbol to recognize, to an input RAG, representing the document.
This distance measure is considered to be the weighted sum of the costs of edit
operations (insertion, deletion and substitution of RAG nodes and edges) to
transform one graph into the other. Since RAG nodes are represented as strings,
the RAG edit operations must be defined in terms of string edit distance. The
texture discrimination problem consists in grouping the neighbouring regions of
the input RAG according to their similarity. This is computed in terms of a
weighted sum of the string edit distance between their boundary strings and the
difference of their areas.

The remainder of this paper is organized as follows: Section 2 describes the
graph-based structure used to represent our documents, and summarizes the
string rnatching techniques as the basis tbr the further described algorithms.
In Section 3 an error-tolerant subgraph isomorphism for symbol recognition is
described. Section 4 describes a hierarchical clustering algorithm designed to ex-
tract structural textures in plans. Experimental results are presented in Section
5. Finally, Section 6 is devoted to the conclusion.

93

2 D e f i n i t i o n s a n d n o t a t i o n

2.1 From raster images to RAGs

In this work, after a vectorization step, a line drawing is represented by an
attributed graph. An attributed graph G is defined as a 4-pla (V, E, Lv , LE) where
V is the set of nodes; E C_ V x V is the set of edges; Lv and LE are two labeling
functions defined as Lv : V -+ L' x A k and LE : E -+ Z x A l, where ~ is a set

! of symbolic labels and A is a set of attributes. A graph G'(V', E', L'v, , LE,) is a
subgvaph of G (denoted by G' C_ G) if V' C_ V and E ' C_ E. Matching between two
graphs G and G' by a graph isomorphism means a bijective mapping f : V --+ V'
such that the structure of the edges is preserved by the matching function f . An
injective mapping f : V --+ V' is a subgraph isomorphism if there is a subgraph
G" C_ G' such that f is a graph isomorphism from G to G". In this paper we
use, for the sake of simplicity, G(V, E) instead of G(V, E, Lv, LE).

As it has been discussed above, since symbols and textures can be seen as a set
of regions with a particular arrangement, in both cases their recognition can be
made on tile basis of a procedure that computes region similarities. Thus, given
a graph G(V, E), their minimM closed loops are extracted using the Jiang and
Bunke's algorithm [7]. As can be seen below, every graph region is represented
by an attr ibuted cyclic string. Afterwards, an RAG- (Region Adjacency Graph)
g(g,g, £v, L;s) which describes the regions of G and their adjacency relations
is constructed. Thus, g is the set of nodes which correspond to regions in G
and g is the set of edges which represent the region adjaeencies. £v and £s are
two labeling flmctions defined as /;v : F --+ E* and Z;g : g --+ E*, where /;v
returns the string representing a region and L;g returns the string shared by two
neighbouring regions. In this paper, analogously to plain graphs, RAG notation
is simplified as g(P, $) instead of g(l;, g, £v , Ee).

2.2 Cyclic string matching: the basis o f o u r a l g o r i t h m s

String matching is a widespread technique used in the recognition of 21) shapes
represented by their boundaries [4][12][14]. The basic idea is to represent the
boundaries of the input and the prototype shapes as sequences of symbols and
use an approximate string matching algorithm to compute their similarity. The
well-known algorithm of Wagner and Fischer [15] computes it in polynomial
time o~nd space. Let G(V, E) and G('g, g) be a graph representing a document
and its corresponding RAG, respectively. A graph region w E V is represented
by an attr ibuted string, i.e. 12v(CO) = el . . . e~, where ei C E are the graph edges
which outline the region w. Each symbol of the string is at tr ibuted by its length
and orientation. The distance between two regions w and w', represented by
the strings X and Y respectively, is computed in terms of the elementary edit
operations required to transform X into Y with minimum cost. Conventionally,
three edit operations are defined:

t. substitution of a symbol x in X by a symbol y in Y, denoted as x-+y;

94

2. insertion of a symbol x in Y, denoted as A-+x;
3. deletion of a symbol x in X, denoted as x-+A;

where ~ denotes the empty string. An edit sequence S is defined as an ordered
sequence of edit operations sl, • •., sp. Let 7 be a cost function that assigns a non-
negative real number 7(s) to each edit operation s. The cost of an edit sequence
S is defined as 7(S) P = ~ i=1 7(si). The edit distance between the strings X
and Y is defined by d(X, Y) = min{^/(S) : S is a sequence of edit operations
transforming X into Y}.

Two considerations must be made. First, given the unsuitability to define the
starting point of a closed boundary, our strings are considered to be cyclic, i.e.
strings representing all possible cyclic shifts of their symbols. The edit distance
between two cyclic strings can also be computed in polynomial time and space
by the Mgorithm proposed by Maes in [12]. Second, shape boundaries in images
may contain some distortions and the three basic edit operations may not be
enough, to efficiently compute the similarity between two shapes. To overcome
this problem Tsai and Yu [13] extended the three basic edit operations by a
merging operation which allows a whole sequence of symbols to be substituted
by another.

In this work, given two graph regions a~ and a/ their similarity is computed
by the cyclic string edit distance between their boundary strings £v(w) and
/2v (J) . The costs of the edit operations are defined as a weighted sum of an
angle cost and a length cost, analogously to [14].

3 S y m b o l r e c o g n i t i o n

Two major drawbacks arise when symbols are to be recognized: first, the pres-
ence of noise and distortion in the document, and second, the segmentation of
symbols, i.e. selection of regions of interest. The former requires an error model
underlying the matching process. The latter depends on the availability of an a
priori knowledge about the nature of the document: in circuit diagrams, symbols
are large entities connected by lines, in music notation symbols have a uniform
background. However, in plans, symbols appear embedded in the diagram and
their recognition is the unique way to segment them. 'Ib overcome the prob-
lem of distorted documents, an error-tolerant subgraph isomorphism algorithm
between RAGs has been designed. Moreover, subgraph isomorphism is a high
time-consuming procedure, that belongs to the class of NP-complete problems.
In architectural drawings, the combinatorial component is especially noticeable
due to the ditficulty in extracting regions of interest. With the aim to speed
up the matching we propose an heuristic criterion in which the neighbourhood
between regions guides the order of the matching.

3.1 A n e r r o r - t o l e r a n t s u b g r a p h i s o m o r p h i s m fo r s y m b o l r e c o g n i t i o n

Given a model graph GM and an input graph GI our goal is to find those sub-
graphs of Gr close to GM under a similarity function. The use of RAGs instead

95

of plain graphs allows the similarity between two graphs to be computed in
terms of the global distortion of graph regions rather than the local distortion
of edges and nodes. Our algorithm computes an error-tolerant subgraph isomor-
phism between a model RAG and an input RAG. It requires the definition of
a distance function between two RAGs. This distance function is considered to
be the weighted sum of the costs of edit operations (insertion, deletion and sub-
stitution of nodes and edges) to transform one RAG to the other. Actually, in
this work, this set of operations is reduced to node substitution and node shift
which are described below. Since a subgraph isomorphism means a mapping
from the model nodes to a subset of input nodes, the remainder input nodes are
implicitly inserted to transform the model graph into the input graph. For this
reason, node insertion has no cost associated. Concerning to the node deletion
operation, removing a whole region is supposed to be an excessive distortion and
hence, it is not considered. Thus, given a model RAG GM(~2M, gM) and an input
RAG ~i(]2i, gl), we define the following edit operations to transform GM into

~I:

1. Substitution of a node co~ E VM by a node co} C 12:, denoted by c0}w / ~ co}.
The cost for this operation is computed in terms of the string edit distance
between the corresponding region strings, i.e.,

2. Shift of a node w~ G 12z, which is adjacent to a node w~ ff YI, along the

boundary of co}; denoted as co} oco~[X, Y], where X is the substring shared

by w} and w}, and Y is the substring shared by co} and w} after being w}
shifted. The cost for this operation is computed in terms of the overlapping
percentage between X and Y, i.e.,

where Ix and Iy are the lengths of X and Y, respectively, and Ixy is the
length of the common substring of X and Y. Shift is a joint operation for edge
substitution, insertion and deletion which allows the adjacency relationships
between graph regions to be preserved.

Using these edit operations, an error-tolerant subgraph isomorphism between
~M and 6x is computed in terms of the minimum cost edit sequence transforming
~M into GX- Our algorithm is a state-space search based on an A* algorithm. It
expands a search tree such that each state in the tree represents a partial match
from a subset of GM nodes to a subset of Gx nodes. The generation of successor
states is guided by the cost of edit operations, i.e. the state with the minimum
cost is expanded at each step by mapping a new model region to every input
region not yet used in this partial match. The cost of each mapping is a sum of the
cost of substituting a model region by an input region and shifting this input
region. In this state expansion only the neighbouring regions of the matched
regions are considered to be candidates. A partial match is represented by a

96

5 - p l a (R M , R I , c t , S , S) where . / ~ M and R1 are the regions obtained by merging
the matched model regions and the matched input regions, respectively, S is
the string edit sequence which transforms the boundary string of RM into the
boundary string of Rx, ct is the cost of this partial match, and S is the edit
sequence transforming the model RAG into the input RAG.

string edit sequences
between region boundaries

S = ma --~- a', b ~,~ b', c ~ c', d - ~ d', e--~ e', f . .+ f',
g -~g ' , h --~h', i -,-i'j ', j - ~ k'l*, k--~ m', 1 -a,- n'

C - ~ C = a ~-o ' , n - ~ p', o--~-q', c - ~ c', b- ,~b '

C - ~ D' = a + u ' , n - ~ v ' o ' , o -+a ' r ' , c - ~ s ' , b --~l ~

C ~ - E ' = a--~w' , n - ~ x', o--~ y', c - -~k ' ,b -~ j'

Fig. 1. Shift operation in a partial matching.

Figure 1 shows an example of an intermediate state of the search tree corre-
sponding to the partial match (AB, A'B', ct, S, (A-+A', B-+B')). The shadowed
regions represent the already matched regions. At this point, there are three pos-
sible successors depending on whether tile selected operation is C--+ C', C-+ D'
or C-+ E'. Each of these three successors would have a similar cost if the sub-
stitution cost was just considered (clearly, 7(C -+ C') ~ 7(C -+ D') "~ 7(C --+
E')) . This might result in a wrong match. The shift operation adds structure-
preserving information which prevents us from these conflictive cases. Let us
further analyse the case C--+C'. C is adjacent to AB by the substring abc, and
C' is adjacent to A'B' by the substring b'c'. Moreover, according to the edit se-
quence S, abe is mapped to a'b'c', i.e. the region C' should be adjacent to B'C'
by the substring a~b'c ' to best preserve the adjacency relationship between C and
AB. Therefore, to transform the model graph into the input graph, a shift nmst
be applied to the region C when it is substituted by C'. According to our nota-
tion, it is denoted by A'B'oC'[b'c', a'b'c']. As stated above, 7(A'B'oC'[b'c', a'b'c'])
is computed in terms of the overlapping percentage between b~c ' and a'b~c ~. Anal-
ogously, 7(A'B'oD'[a', a'b'c']) and 7(A'B'oE'[fk' , a'b'c']) are computed, and the
three successor states generated.

Figure 1 also illustrates a second problem. Although the successor guided
by the operation C -+ D ~ is clearly a mismatch due to the wrong orientation
of D', the shift cost 7(A'B'o[a', a'b'c']) is likely to be low. This suggests that,
to guarantee an adjacency-preserving constraint, the shift cost should also be
computed in the reverse order, i.e. 7(D' oA'B'[a', s't'u']). In summary, the cost
in a node expansion is computed in terms of a sum of the cost of substitution
and the maximum of the two shift costs.

97

3.2 G r o w i n g s t r i n g s as an h e u r i s t i c c r i t e r i o n t o p r u n e t h e s e a r c h
s p a c e

In an A*-based algorithm the number of states in the search space grows expo-
nentially in the worst case. Thus, some works propose to complete the cost of
the partial matching in a certain state with the result of a lookahead procedure
which represents an heuristic estimation of the future cost. This carries out a re-
duction in the number of the expanded states. Let (RM, RI, ct, S, S) be a partial
match. We define a simple lookahead criterion which can be stated as follows:
given a model region w~u C IJM adjacent to RM by a substring X, the unique
neighbouring regions of Rx that will be considered as candidates are those that
have boundary substrings that appear in S as mappings of X. For example, in
Fig. 1, X = abc is mapped in S to a'b'c', thus only C/ and D' are considered
as candidates and E ' is rejected. This criterion brings forward the adjacency
constraint consideration modeled as the shift operation• The overall idea is that
after an initial model region is matched to an input region, the boundary strings
of these regions grow in terms of the similarity of their neighbourhood.

An illustrative example of matching two graphs by growing one of their re-
gions is shown in Fig. 2. In this figure we can follow the progress of the mapping
from model regions to input regions until the subgraph isomorphism is com-
pleted. The matching starts by mapping the model region A to the input region
A'. In the next level of the search tree one of the neighbouring regions of model
region A is mapped to one of the neighbouring regions of the input region A t. In
the example, the mapping B -+ B I is selected. Then, the new mapped regions
are integrated in the partial matching, that is, regions A and B are merged
(denoted by AB), i.e. their boundary strings are merged into a single boundary
string which outlines the region AB, and analogously the regions A / and B' are
merged into a region A'B'. In Fig. 2, thicker lines represent the boundary strings
of the partial matchings at each level. New model-to-input region mappings are
gradually incorporated into partial matchings until the subgraph isomorphism
is attained.

Level 1 2 3 4 5

B' B'

Graph

Partial { } {A-*-A' } {A*A', R -~B' } {A~,-A', B ~-B', C .~.C' } { A ~,- A', B~,-B', C4-C ', D~-D'}
Match

Fig. 2. Example of string growing in terms of the neighbouring region similarity.

98

4 T e x t u r e d - r e g i o n s e g m e n t a t i o n

Graphic documents, and plans in particular, usually contain structured textures
with a regular repetition, i.e. textures where an element, called texet, is regularly
placed according to certain rules. Finding these textured zones and analyzing
their structure would be an important step into the global understanding of the
document. Since symbol recognition is a high time-consuming process, an effi-
cient extraction of the segments defining the texture would drastically reduce
the information and focus further interpretation on the remainder lines. Further-
more an efficient recognition of tile structure allows the texture to be stored in
a more compact way.

Two types of texels are addressed in this work: straight segments and poly-
gonal shapes. According to the placement rules, we can distinguish two types
of textures: those formed by adjacent polygonal shapes, and those formed by
isolated texels, placed following a tessellated structure. The first type of tex-
tures are discriminated by grouping similar adjacent polygonal shapes. Their
similarity is determined according to their areas and shapes. The second type of
textures requires a previous step where a neighbourhood relation between texels
is established. Voronoi Polygons (VP) [2] are a useful tool to partition the plane
in terms of a nearest-neighbour criteria between its elements. VP are computed
from isolated texels. With the VP computation, a texture of the second type be-
comes a texture of the first type, so the same clustering method can be applied.
Figure 3(a) shows an example of the two kinds of textures.

The global process is applied to the RAGs representing: the input image
G (F , /) , in order to find textures formed by adjacent polygonals, as in Fig.
3(b), and the Voronoi tessellation computed from it, ~vP(FVP,gVP), in order
to find textures formed by isolated segments as in Fig. 3(d). Given an RAG,
the process groups its similar neighbouring regions according to their area and
shape. When the regions have been grouped, the textured zones are obtained.
The clustering algorithm applied for grouping the regions is a modification of the
Mgorithm described in [10]. Both use an irregular pyramid to build a hierarchical
clustering. However, our algorithm is applied to an RAG instead of a grey image
as done in [10]. Furthermore, a different distance function dt has been defined
as:

dt(P, Q) = wld(£v(P), £v(Q)) + w2da(P, Q),

where da is the difference between P's area and Q's area, d is the cyclic string edit
distance from P to Q, and wl and w~ are two weighting constants experimentally
set. First of all, the algorithm computes the area of each region of 6(F, g) and
the string edit distance between each pair of neighbouring regions. A graph
whose vertices represent clusters, and whose edges represent neighbourhoods is
constructed. Initially, each region is a cluster. A random weight is associated
to each cluster, and the clusters with the highest local weight are marked as
survivors. Each non-survivor cluster is associated to the closest neighbouring
survivor according to the distance dt. If this distance exceeds a certain threshold,
the cluster becomes a survivor. Each survivor becomes a new vertex in the new

99

~ i / / /

/ / /
/ / /

s" / /

/I /I / I I

I

(a)
z / z /

/

/

/

(¢)

L ' Z / / Z /

/ / / /

/ / / /

/ / /

/ / /

. . . . _ _ i i l i
- I I II

- _ - _ - _ ! ! ! ! ! !
(b)

(d)

Fig. 3. (a)Vectorized image. (b) Polygonal textured zone. (c) Voronoi polygons from
the vectorized original image. (d) Clusters fl'om the Voronoi tesselation.

level, and tile area. and the distance between the other clusters is computed as
the mean of tile clusters that are children of the previous level. The process
iterates until the number of clusters in one level is the same as in the previous
one. The regions of the G(F, g), that are children of clusters with a high number
of descendants, define the textured areas.

5 R e s u l t s a n d d i s c u s s i o n

The described algorithms have been applied to a set. of fifteen documents of plans
with different instances of symbols and textures and different rates of distortion.
Every instance was drawn in a letter-sized sheet and was scanned in a range
between 150 and 300 dpi.

In Fig. 4, after a veetorization of the original image (Fig. 4(a)) the matching
algorithm proposed in section 3 has been applied. The recognized symbols are
displayed with bolded lines in Fig. 4(b), on the graph approximation of the
input image. The value written on each symbol is the dissimilarity degree. Fig.
4(c) shows the textured regions found in the input graph. In the borders of a
textured area, the texels could be cut off and then they would be grouped in
a separate cluster. This problem can be solved by a post-clustering procedure
with a more tolerant dissimilarity measure between clustered texels. Finally, the
symbol recognition procedure has been applied to the input graph after removing
the edges belonging to textured regions (Fig. 4(d)). This drastically reduces the
computation time.

I00

i/////////////1 t/~/~

(~)

~~//1////1 if "

(b)

(c) (d)

Fig. 4. (a) Original image, (b) Recognized symbols, (c) Textured regions, (d) Symbol
recognition after removing the textured regions from the input graph.

--C2iZ

(~) (b) (e)

Fig. 5. (a)(b)(c) Results in a hand drawn image: (a) Original image. (b) Recognized
symbols. (c) Textured regions.

101

Figure 5 illustrates the reliability of the method even in presence of distortion
when it is applied to a hand drawn input document (Fig. 5(a)). Figure 5(5) shows
three instances of the symbol chair with increasing degrees of distortion, as could
be expected at first glance. This symbol illustrates in Fig. 5(c) a conflict which
sometimes may appear: some regularly placed regions of the symbol have been
discriminated as a texture. This suggests that, though the texture and symbol
procedures can operate in parallel, a dialog should be established between them
to solve these ambiguities.

/

(~) (b) (c)
i UL; ,

(d) (e) (f)

Fig. 6. Results in two different versions of the same document with different distortion
rates. (a)(b)(c) Printed document and (d)(e)(r) hand-drawn document.

Figures 6(a) and 6(d) represent a computer-drawn and a hand-drawn in-
stances, respectively, of the same document. In both cases, symbols (Figs. 6(b)

102

and 6(e)) and textures (Figs. 6(c) and 6(f)) have been recognized. This example
illustrates that local distortions due to hand input do not result in a very in-
creased degree of dissimilarity, but this is rather a global measure, to the extent
of having a higher value in Fig. 6(b) than in Fig. 6(e) for the bo t tom instances
of the symbol shelf.

6 C o n c l u s i o n

An interpretation method for architectural floor plans has been proposed. The
input document is represented in terms of its closed loop structure by an RAG.
Attr ibuted strings are used to represent the boundaries of the regions (RAG
nodes). Using this representation, the similarity between two regions can be
computed in terms of string matching procedures. This is the basis to develop two
recognition goals in a document: building elements, by graph matching methods,
and structural textures, by clustering methods. The use of at tr ibuted strings to
represent the regions of a document offers two main advantages: the algorithms
developed for symbol recognition and texture discrimination have a common
basis, and the method also works for disturbed documents as string edit distance
is an error-tolerant measure.

R e f e r e n c e s

1. D. Antoine, S. Collin, and K. Tombre. Analysis of technical documents: The redraw
system. In H.S. Baird, H. Bunke, and K. Yamamoto, editors, Structured document
image analysis, pages 385-402. Springer Verlag, 1992.

2. F. Aurenhammer. Voronoi diagrams- a survey of a fundamental geometric data
structure. A CM Comput. Surveys, 23(3):345-405, 1991.

3. L. Boatto et al. An interpretation system for land register maps. Computer,
25(7):25-33, July 1992.

4. H. Bunke and U. Buhler. Apphcations of approximate string matching to 2d shape
recognition. Pattern Recognition, 26(12):1797-1812, 1993.

5. H. Bunke and B.T. Messmer. Efficient attributed graph matching and its appli-
cation to image analysis. In C. Braccini, L. DeFloriani, and G. Vernazza, editors,
Proc. of 8th ICIAP, San Remo, Italy, pages 45-55. Volume 974 of LNCS, Aug
1995.

6. A.H. Habacha. Structural recognition of disturbed symbols using discrete relax-
ation. In 1st. ICDAR, pages 170-178, Sep-Oet 1991. Saint Malo, France.

7. X.Y. Jiang and H. Bunke. An optimal algorithm for extracting the regions of a
plane graph. Pattern Recognition Letters, (14):553-558, 1993.

8. R. Kasturi, S.T. Bow, W. E1-Masri, J. Shah, Gattiker J.R., and Mokate U.B. A
system for interpretation of line drawings. IEEE Trans on PAMI, 12(10):978-992,
Oct 1990.

9. P. Kuner and B. Ueberreiter. Pattern recognition by graph matching. Combinato-
rial versus continuous optimization. IJPRAI, 2(3):527--542, Sep 1988.

10. Stephen W.C. Lam and Horace H.S. Ip. Structural texture segmentation using
irregular pyramid. Pattern Recognition Letters, pages 691-698, July 1994.

103

11. S.W. Lee, J.H. Kim, and F.C.A. Groen. Translation-, rotation-, and scale-invariant
recognition of hand-drawn symbols in schematic diagrams. IJPRAI, 4(1):1-25,
1990.

12. M. Maes. Polygonal shape recognition using string-matching techniques. Pattern
Recognition, 24(5):433-440, 1991.

13. W.H. Tsai and S.S. Yu. Attributed string matching with merging for shape recog-
nition, tn 7th. ICPR, pages 1162-1164, 1984. Montreal, Canada.

14. Y.T. Tsay and W.H. Tsai. Model-guided attributed string matching by split-and-
merge for shape recognition. IJPRAI, 3(2):159-179, 1989.

15. R.A. Wagner and M.J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168-173, 1974.

