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Abstract .  This paper deals with the recognition of symbols and struc- 
tural textures in architectural plans using string matching techniques. 
A plan is represented by an attributed graph whose nodes represent 
characteristic points and whose edges represent segments. Symbols and 
textures can be seen as a set of regions, i.e. closed loops in the graph, 
with a particular arrangement. The search for a symbol involves a graph 
matching between the regions of a model graph and the regions of the 
graph representing the document. Discriminating a texture means a clus- 
tering of neighbouring regions of this graph. Both procedures involve a 
similarity measure between graph regions. A string codification is used 
to represent the sequence of outlining edges of a region. Thus, the simila- 
rity between two regions is defined in terms of the string edit distance 
between their boundary strings. The use of string matching allows the 
recognition method to work also under presence of distortion. 

1 I n t r o d u c t i o n  

One of the most promising areas within the field of graphics recognition is the 
interpretation of maps  and plans. An accurate vectorization constitutes a first 
approach to solve this goal. However, a vectorization only gives the segments 
constituting the document and their geometrical attributes. Interpreting a doc- 
ument  requires an additional stage: understanding the document in terms of its 
structural  elements. Usually maps and plans contain three types of elements: 
symbols, structurM textures and dimensioning elements. This work focuses on 
two of these three entities: symbols and textures, proposing a structural method 
that  is able to recognize both of them. This method has been applied to architec- 
tural  drawings, either printed or hand drawn, consisting in floor plan sketches. 
Symbols represent building elements in the plan, like doors, windows, furniture, 
etc. They have an a priori defined pat tern and their recognition is performed 
by matching with a set of models stored in a library. In contrast, textures do 
not represent particular entities but show regions with a particular meaning: 
tiled floors, level, solid regions, etc. Textures do not have a fixed pat tern  but 
are characterized by a repetitive element, called texel, and a structural rule. 
Interestingly, the problem of texture discrimination in map  documents usually 
assumes a previously defined texture (hatched patterns in most  cases [1][3][8]). 
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In this work, the only a priori assumed constraint is that  the texture texel is a 
polygon with a regular structure but its particular shape and structure, will be 
inferred in mn time. 

Since maps and plans are documents mainly composed by lines, attributed 
9raphs are an efficient structure to represent them. In this work, the input doc- 
ument is scanned and vectorized obtaining an attributed graph structure. The 
graph nodes represent the characteristic points of the document (junctions, end 
points or corner points), and the graph edges approximate the segments between 
characteristic points. Starting from this structure, a Region Adjacency Graph 
(RAG) is computed. The RAG nodes represent the regions, i.e. minimal closed 
loops of the former graph, and the edges are the neighbouring relations between 
loops. A given graph region (RAG node) is represented by an attributed cyclic 
string containing the sequence of graph edges defining the region. Thus, tile sim- 
ilarity between two regions can be computed in terms of the string edit distance 
between them. This is the basis of our algorithm. Notice that, since symbols as 
well as textures can be seen as a set of regions with a particular arrangement, the 
basis for the recognition is a matching between these regions and those stored 
in the library of patterns, for symbols, or a matching between neighbouring re- 
gions, for textures. The use of string matching techniques offers the advantage 
that,  since a measure of similarity is given, the method can also be applied to 
disturbed documents such as hand drawn, inaccurately vectorized or documents 
scanned with an insufficient resolution. 

Graph matching methods are often proposed to solve the problem of recogni- 
zing symbols in diagrams (e.g. [6] [9] [11]). The problem consists in finding a model 
graph that  represents the symbol as a subgraph of an input graph representing 
the diagram. To deal with the presence of noise and distortion, a usual prob- 
lem in computer vision, inexact or error-tolerant graph matching techniques are 
proposed [5]. In this work, symbols are recognized in terms of an error-tolerant 
graph matching that  computes the minimmn distance from a model RAG, rep- 
resenting the symbol to recognize, to an input RAG, representing the document. 
This distance measure is considered to be the weighted sum of the costs of edit 
operations (insertion, deletion and substitution of RAG nodes and edges) to 
transform one graph into the other. Since RAG nodes are represented as strings, 
the RAG edit operations must be defined in terms of string edit distance. The 
texture discrimination problem consists in grouping the neighbouring regions of 
the input RAG according to their similarity. This is computed in terms of a 
weighted sum of the string edit distance between their boundary strings and the 
difference of their areas. 

The remainder of this paper is organized as follows: Section 2 describes the 
graph-based structure used to represent our documents, and summarizes the 
string rnatching techniques as the basis tbr the further described algorithms. 
In Section 3 an error-tolerant subgraph isomorphism for symbol recognition is 
described. Section 4 describes a hierarchical clustering algorithm designed to ex- 
tract structural textures in plans. Experimental results are presented in Section 
5. Finally, Section 6 is devoted to the conclusion. 
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2 D e f i n i t i o n s  a n d  n o t a t i o n  

2.1 From raster images to RAGs 

In this work, after a vectorization step, a line drawing is represented by an 
attributed graph. An attributed graph G is defined as a 4-pla (V, E, Lv , LE) where 
V is the set of nodes; E C_ V x V is the set of edges; Lv and LE are two labeling 
functions defined as Lv : V -+ L' x A k and LE : E -+ Z x A l, where ~ is a set 

! of symbolic labels and A is a set of attributes. A graph G'(V', E', L'v, , LE, ) is a 
subgvaph of G (denoted by G' C_ G) if V' C_ V and E '  C_ E. Matching between two 
graphs G and G' by a graph isomorphism means a bijective mapping f : V --+ V' 
such that the structure of the edges is preserved by the matching function f .  An 
injective mapping f : V --+ V' is a subgraph isomorphism if there is a subgraph 
G" C_ G' such that  f is a graph isomorphism from G to G". In this paper we 
use, for the sake of simplicity, G(V, E) instead of G(V, E, Lv, LE). 

As it has been discussed above, since symbols and textures can be seen as a set 
of regions with a particular arrangement, in both cases their recognition can be 
made on tile basis of a procedure that computes region similarities. Thus, given 
a graph G(V, E), their minimM closed loops are extracted using the Jiang and 
Bunke's algorithm [7]. As can be seen below, every graph region is represented 
by an attr ibuted cyclic string. Afterwards, an RAG- (Region Adjacency Graph) 
g(g,g, £v, L;s) which describes the regions of G and their adjacency relations 
is constructed. Thus, g is the set of nodes which correspond to regions in G 
and g is the set of edges which represent the region adjaeencies. £v and £s  are 
two labeling flmctions defined as /;v : F --+ E* and Z;g : g --+ E*, where /;v 
returns the string representing a region and L;g returns the string shared by two 
neighbouring regions. In this paper, analogously to plain graphs, RAG notation 
is simplified as g(P, $) instead of g(l;,  g, £v ,  Ee). 

2.2 Cyclic string matching: the basis o f  o u r  a l g o r i t h m s  

String matching is a widespread technique used in the recognition of 21) shapes 
represented by their boundaries [4][12][14]. The basic idea is to represent the 
boundaries of the input and the prototype shapes as sequences of symbols and 
use an approximate string matching algorithm to compute their similarity. The 
well-known algorithm of Wagner and Fischer [15] computes it in polynomial 
time o~nd space. Let G(V, E) and G('g, g) be a graph representing a document 
and its corresponding RAG, respectively. A graph region w E V is represented 
by an attr ibuted string, i.e. 12v(CO) = el . . .  e~, where ei C E are the graph edges 
which outline the region w. Each symbol of the string is at tr ibuted by its length 
and orientation. The distance between two regions w and w', represented by 
the strings X and Y respectively, is computed in terms of the elementary edit 
operations required to transform X into Y with minimum cost. Conventionally, 
three edit operations are defined: 

t. substitution of a symbol x in X by a symbol y in Y, denoted as x-+y; 
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2. insertion of a symbol x in Y, denoted as A-+x; 
3. deletion of a symbol x in X, denoted as x-+A; 

where ~ denotes the empty string. An edit sequence S is defined as an ordered 
sequence of edit operations sl, • •., sp. Let 7 be a cost function that assigns a non- 
negative real number 7(s) to each edit operation s. The cost of an edit sequence 
S is defined as 7(S) P = ~ i=1  7(si). The edit distance between the strings X 
and Y is defined by d(X, Y)  = min{^/(S) : S is a sequence of edit operations 
transforming X into Y}. 

Two considerations must be made. First, given the unsuitability to define the 
starting point of a closed boundary, our strings are considered to be cyclic, i.e. 
strings representing all possible cyclic shifts of their symbols. The edit distance 
between two cyclic strings can also be computed in polynomial time and space 
by the Mgorithm proposed by Maes in [12]. Second, shape boundaries in images 
may contain some distortions and the three basic edit operations may not be 
enough, to efficiently compute the similarity between two shapes. To overcome 
this problem Tsai and Yu [13] extended the three basic edit operations by a 
merging operation which allows a whole sequence of symbols to be substituted 
by another. 

In this work, given two graph regions a~ and a/ their similarity is computed 
by the cyclic string edit distance between their boundary strings £v(w) and 
/2v ( J ) .  The costs of the edit operations are defined as a weighted sum of an 
angle cost and a length cost, analogously to [14]. 

3 S y m b o l  r e c o g n i t i o n  

Two major drawbacks arise when symbols are to be recognized: first, the pres- 
ence of noise and distortion in the document, and second, the segmentation of 
symbols, i.e. selection of regions of interest. The former requires an error model 
underlying the matching process. The latter depends on the availability of an a 
priori knowledge about the nature of the document: in circuit diagrams, symbols 
are large entities connected by lines, in music notation symbols have a uniform 
background. However, in plans, symbols appear embedded in the diagram and 
their recognition is the unique way to segment them. 'Ib overcome the prob- 
lem of distorted documents, an error-tolerant subgraph isomorphism algorithm 
between RAGs has been designed. Moreover, subgraph isomorphism is a high 
time-consuming procedure, that belongs to the class of NP-complete problems. 
In architectural drawings, the combinatorial component is especially noticeable 
due to the ditficulty in extracting regions of interest. With the aim to speed 
up the matching we propose an heuristic criterion in which the neighbourhood 
between regions guides the order of the matching. 

3.1 A n  e r r o r - t o l e r a n t  s u b g r a p h  i s o m o r p h i s m  fo r  s y m b o l  r e c o g n i t i o n  

Given a model graph GM and an input graph GI our goal is to find those sub- 
graphs of Gr close to GM under a similarity function. The use of RAGs instead 
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of plain graphs allows the similarity between two graphs to be computed in 
terms of the global distortion of graph regions rather than the local distortion 
of edges and nodes. Our algorithm computes an error-tolerant subgraph isomor- 
phism between a model RAG and an input RAG. It requires the definition of 
a distance function between two RAGs. This distance function is considered to 
be the weighted sum of the costs of edit operations (insertion, deletion and sub- 
stitution of nodes and edges) to transform one RAG to the other. Actually, in 
this work, this set of operations is reduced to node substitution and node shift 
which are described below. Since a subgraph isomorphism means a mapping 
from the model nodes to a subset of input nodes, the remainder input nodes are 
implicitly inserted to transform the model graph into the input graph. For this 
reason, node insertion has no cost associated. Concerning to the node deletion 
operation, removing a whole region is supposed to be an excessive distortion and 
hence, it is not considered. Thus, given a model RAG GM(~2M, gM) and an input 
RAG ~i(]2i, gl), we define the following edit operations to transform GM into 

~I: 

1. Substitution of a node co~ E VM by a node co} C 12:, denoted by c0}w / ~ co}. 
The cost for this operation is computed in terms of the string edit distance 
between the corresponding region strings, i.e., 

2. Shift of a node w~ G 12z, which is adjacent to a node w~ ff YI, along the 

boundary of co}; denoted as co} oco~[X, Y], where X is the substring shared 

by w} and w}, and Y is the substring shared by co} and w} after being w} 
shifted. The cost for this operation is computed in terms of the overlapping 
percentage between X and Y, i.e., 

where Ix and Iy are the lengths of X and Y, respectively, and Ixy is the 
length of the common substring of X and Y. Shift is a joint operation for edge 
substitution, insertion and deletion which allows the adjacency relationships 
between graph regions to be preserved. 

Using these edit operations, an error-tolerant subgraph isomorphism between 
~M and 6x is computed in terms of the minimum cost edit sequence transforming 
~M into GX- Our algorithm is a state-space search based on an A* algorithm. It 
expands a search tree such that each state in the tree represents a partial match 
from a subset of GM nodes to a subset of Gx nodes. The generation of successor 
states is guided by the cost of edit operations, i.e. the state with the minimum 
cost is expanded at each step by mapping a new model region to every input 
region not yet used in this partial match. The cost of each mapping is a sum of the 
cost of substituting a model region by an input region and shifting this input 
region. In this state expansion only the neighbouring regions of the matched 
regions are considered to be candidates. A partial match is represented by a 
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5 - p l a  ( R M ,  R I ,  c t ,  S ,  S )  where . / ~ M  and R1 are the regions obtained by merging 
the matched model regions and the matched input regions, respectively, S is 
the string edit sequence which transforms the boundary string of RM into the 
boundary string of Rx, ct is the cost of this partial match, and S is the edit 
sequence transforming the model RAG into the input RAG. 

string edit sequences 
between region boundaries 

S = ma --~- a', b ~,~ b', c ~  c', d - ~  d', e--~ e', f . .+ f', 
g -~g ' ,  h --~h', i -,-i'j ', j - ~  k'l*, k--~ m', 1 -a,- n' 

C - ~  C = a ~-o ' ,  n - ~  p', o--~-q', c - ~  c', b- ,~b '  

C - ~  D' = a + u ' ,  n - ~ v ' o ' ,  o -+a ' r ' ,  c - ~ s ' ,  b --~l ~ 

C ~ - E '  = a--~w' ,  n - ~  x', o--~ y', c - -~k ' ,b -~  j' 

Fig. 1. Shift operation in a partial matching. 

Figure 1 shows an example of an intermediate state of the search tree corre- 
sponding to the partial match (AB, A'B', ct, S, (A-+A', B-+B')). The shadowed 
regions represent the already matched regions. At this point, there are three pos- 
sible successors depending on whether tile selected operation is C--+ C', C-+ D' 
or C-+  E'.  Each of these three successors would have a similar cost if the sub- 
stitution cost was just considered (clearly, 7(C -+ C') ~ 7(C -+ D') "~ 7(C --+ 
E')) .  This might result in a wrong match. The shift operation adds structure- 
preserving information which prevents us from these conflictive cases. Let us 
further analyse the case C--+C'. C is adjacent to AB by the substring abc, and 
C'  is adjacent to A'B' by the substring b'c'. Moreover, according to the edit se- 
quence S, abe is mapped to a'b'c', i.e. the region C' should be adjacent to B'C' 
by the substring a~b'c ' to best preserve the adjacency relationship between C and 
AB. Therefore, to transform the model graph into the input graph, a shift nmst 
be applied to the region C when it is substituted by C'. According to our nota- 
tion, it is denoted by A'B'oC'[b'c', a'b'c']. As stated above, 7(A'B'oC'[b'c', a'b'c']) 
is computed in terms of the overlapping percentage between b~c ' and a'b~c ~. Anal- 
ogously, 7(A'B'oD'[a', a'b'c']) and 7(A'B'oE'[fk' ,  a'b'c']) are computed, and the 
three successor states generated. 

Figure 1 also illustrates a second problem. Although the successor guided 
by the operation C -+ D ~ is clearly a mismatch due to the wrong orientation 
of D', the shift cost 7(A'B'o[a', a'b'c']) is likely to be low. This suggests that,  
to guarantee an adjacency-preserving constraint, the shift cost should also be 
computed in the reverse order, i.e. 7(D'  oA'B'[a', s't'u']). In summary, the cost 
in a node expansion is computed in terms of a sum of the cost of substitution 
and the maximum of the two shift costs. 
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3.2  G r o w i n g  s t r i n g s  as an h e u r i s t i c  c r i t e r i o n  t o  p r u n e  t h e  s e a r c h  
s p a c e  

In an A*-based algorithm the number of states in the search space grows expo- 
nentially in the worst case. Thus, some works propose to complete the cost of 
the partial matching in a certain state with the result of a lookahead procedure 
which represents an heuristic estimation of the future cost. This carries out a re- 
duction in the number of the expanded states. Let (RM, RI, ct, S, S) be a partial 
match. We define a simple lookahead criterion which can be stated as follows: 
given a model region w~u C IJM adjacent to RM by a substring X, the unique 
neighbouring regions of Rx that will be considered as candidates are those that  
have boundary substrings that appear in S as mappings of X. For example, in 
Fig. 1, X = abc is mapped in S to a'b'c', thus only C/ and D'  are considered 
as candidates and E '  is rejected. This criterion brings forward the adjacency 
constraint consideration modeled as the shift operation• The overall idea is that  
after an initial model region is matched to an input region, the boundary strings 
of these regions grow in terms of the similarity of their neighbourhood. 

An illustrative example of matching two graphs by growing one of their re- 
gions is shown in Fig. 2. In this figure we can follow the progress of the mapping 
from model regions to input regions until the subgraph isomorphism is com- 
pleted. The matching starts by mapping the model region A to the input region 
A'. In the next level of the search tree one of the neighbouring regions of model 
region A is mapped to one of the neighbouring regions of the input region A t. In 
the example, the mapping B -+ B I is selected. Then, the new mapped regions 
are integrated in the partial matching, that is, regions A and B are merged 
(denoted by AB), i.e. their boundary strings are merged into a single boundary 
string which outlines the region AB, and analogously the regions A / and B' are 
merged into a region A'B'. In Fig. 2, thicker lines represent the boundary strings 
of the partial matchings at each level. New model-to-input region mappings are 
gradually incorporated into partial matchings until the subgraph isomorphism 
is attained. 

Level 1 2 3 4 5 

B' B' 

Graph 

Partial { } {A-*-A' } {A*A', R -~B' } {A~,-A', B ~-B', C .~.C' } { A ~,- A', B~,-B', C4-C ', D~-D'} 
Match 

Fig. 2. Example of string growing in terms of the neighbouring region similarity. 
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4 T e x t u r e d - r e g i o n  s e g m e n t a t i o n  

Graphic documents, and plans in particular, usually contain structured textures 
with a regular repetition, i.e. textures where an element, called texet, is regularly 
placed according to certain rules. Finding these textured zones and analyzing 
their structure would be an important  step into the global understanding of the 
document. Since symbol recognition is a high time-consuming process, an effi- 
cient extraction of the segments defining the texture would drastically reduce 
the information and focus further interpretation on the remainder lines. Further- 
more an efficient recognition of tile structure allows the texture to be stored in 
a more compact way. 

Two types of texels are addressed in this work: straight segments and poly- 
gonal shapes. According to the placement rules, we can distinguish two types 
of textures: those formed by adjacent polygonal shapes, and those formed by 
isolated texels, placed following a tessellated structure. The first type of tex- 
tures are discriminated by grouping similar adjacent polygonal shapes. Their 
similarity is determined according to their areas and shapes. The second type of 
textures requires a previous step where a neighbourhood relation between texels 
is established. Voronoi Polygons (VP) [2] are a useful tool to partition the plane 
in terms of a nearest-neighbour criteria between its elements. VP are computed 
from isolated texels. With the VP computation, a texture of the second type be- 
comes a texture of the first type, so the same clustering method can be applied. 
Figure 3(a) shows an example of the two kinds of textures. 

The global process is applied to the RAGs representing: the input image 
G ( F , / ) ,  in order to find textures formed by adjacent polygonals, as in Fig. 
3(b), and the Voronoi tessellation computed from it, ~vP(FVP,gVP), in order 
to find textures formed by isolated segments as in Fig. 3(d). Given an RAG, 
the process groups its similar neighbouring regions according to their area and 
shape. When the regions have been grouped, the textured zones are obtained. 
The clustering algorithm applied for grouping the regions is a modification of the 
Mgorithm described in [10]. Both use an irregular pyramid to build a hierarchical 
clustering. However, our algorithm is applied to an RAG instead of a grey image 
as done in [10]. Furthermore, a different distance function dt has been defined 
as: 

dt(P, Q) = wld(£v(P), £v(Q)) + w2da(P, Q), 

where da is the difference between P's area and Q's area, d is the cyclic string edit 
distance from P to Q, and wl and w~ are two weighting constants experimentally 
set. First of all, the algorithm computes the area of each region of 6(F,  g) and 
the string edit distance between each pair of neighbouring regions. A graph 
whose vertices represent clusters, and whose edges represent neighbourhoods is 
constructed. Initially, each region is a cluster. A random weight is associated 
to each cluster, and the clusters with the highest local weight are marked as 
survivors. Each non-survivor cluster is associated to the closest neighbouring 
survivor according to the distance dt. If this distance exceeds a certain threshold, 
the cluster becomes a survivor. Each survivor becomes a new vertex in the new 
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Fig. 3. (a)Vectorized image. (b) Polygonal textured zone. (c) Voronoi polygons from 
the vectorized original image. (d) Clusters fl'om the Voronoi tesselation. 

level, and tile area. and the distance between the other clusters is computed as 
the mean of tile clusters that are children of the previous level. The process 
iterates until the number of clusters in one level is the same as in the previous 
one. The regions of the G(F, g), that are children of clusters with a high number 
of descendants, define the textured areas. 

5 R e s u l t s  a n d  d i s c u s s i o n  

The described algorithms have been applied to a set. of fifteen documents of plans 
with different instances of symbols and textures and different rates of distortion. 
Every instance was drawn in a letter-sized sheet and was scanned in a range 
between 150 and 300 dpi. 

In Fig. 4, after a veetorization of the original image (Fig. 4(a)) the matching 
algorithm proposed in section 3 has been applied. The recognized symbols are 
displayed with bolded lines in Fig. 4(b), on the graph approximation of the 
input image. The value written on each symbol is the dissimilarity degree. Fig. 
4(c) shows the textured regions found in the input graph. In the borders of a 
textured area, the texels could be cut off and then they would be grouped in 
a separate cluster. This problem can be solved by a post-clustering procedure 
with a more tolerant dissimilarity measure between clustered texels. Finally, the 
symbol recognition procedure has been applied to the input graph after removing 
the edges belonging to textured regions (Fig. 4(d)). This drastically reduces the 
computation time. 
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Fig. 4. (a) Original image, (b) Recognized symbols, (c) Textured regions, (d) Symbol 
recognition after removing the textured regions from the input graph. 

--C2iZ 

(~) (b) (e) 

Fig. 5. (a)(b)(c) Results in a hand drawn image: (a) Original image. (b) Recognized 
symbols. (c) Textured regions. 
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Figure 5 illustrates the reliability of the method even in presence of distortion 
when it is applied to a hand drawn input document (Fig. 5(a)). Figure 5(5) shows 
three instances of the symbol chair with increasing degrees of distortion, as could 
be expected at first glance. This symbol illustrates in Fig. 5(c) a conflict which 
sometimes may appear: some regularly placed regions of the symbol have been 
discriminated as a texture. This suggests that,  though the texture and symbol 
procedures can operate in parallel, a dialog should be established between them 
to solve these ambiguities. 

/ 

(~) (b) (c) 
i . . . . . . . . . . . . . . . .  UL; , 

(d) (e) (f) 

Fig. 6. Results in two different versions of the same document with different distortion 
rates. (a)(b)(c) Printed document and (d)(e)(r) hand-drawn document. 

Figures 6(a) and 6(d) represent a computer-drawn and a hand-drawn in- 
stances, respectively, of the same document. In both cases, symbols (Figs. 6(b) 
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and 6(e)) and textures (Figs. 6(c) and 6(f)) have been recognized. This example 
illustrates that  local distortions due to hand input do not result in a very in- 
creased degree of dissimilarity, but this is rather a global measure, to the extent 
of having a higher value in Fig. 6(b) than in Fig. 6(e) for the bo t tom instances 
of the symbol shelf. 

6 C o n c l u s i o n  

An interpretation method for architectural floor plans has been proposed. The 
input document  is represented in terms of its closed loop structure by an RAG. 
Attr ibuted strings are used to represent the boundaries of the regions (RAG 
nodes). Using this representation, the similarity between two regions can be 
computed in terms of string matching procedures. This is the basis to develop two 
recognition goals in a document: building elements, by graph matching methods,  
and structural textures, by clustering methods. The use of at tr ibuted strings to 
represent the regions of a document offers two main advantages: the algorithms 
developed for symbol recognition and texture discrimination have a common 
basis, and the method also works for disturbed documents as string edit distance 
is an error-tolerant measure. 
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