|
Records |
Links |
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil |
|
|
Title |
Continuous head pose estimation using manifold subspace embedding and multivariate regression |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
6 |
Issue |
|
Pages |
18325 - 18334 |
|
|
Keywords |
Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression |
|
|
Abstract |
In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2169-3536 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2018b |
Serial |
3091 |
|
Permanent link to this record |
|
|
|
|
Author |
Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil |
|
|
Title |
BronchoX: bronchoscopy exploration software for biopsy intervention planning |
Type |
Journal |
|
Year |
2018 |
Publication |
Healthcare Technology Letters |
Abbreviated Journal |
HTL |
|
|
Volume |
5 |
Issue |
5 |
Pages |
177–182 |
|
|
Keywords |
|
|
|
Abstract |
Virtual bronchoscopy (VB) is a non-invasive exploration tool for intervention planning and navigation of possible pulmonary lesions (PLs). A VB software involves the location of a PL and the calculation of a route, starting from the trachea, to reach it. The selection of a VB software might be a complex process, and there is no consensus in the community of medical software developers in which is the best-suited system to use or framework to choose. The authors present Bronchoscopy Exploration (BronchoX), a VB software to plan biopsy interventions that generate physician-readable instructions to reach the PLs. The authors’ solution is open source, multiplatform, and extensible for future functionalities, designed by their multidisciplinary research and development group. BronchoX is a compound of different algorithms for segmentation, visualisation, and navigation of the respiratory tract. Performed results are a focus on the test the effectiveness of their proposal as an exploration software, also to measure its accuracy as a guiding system to reach PLs. Then, 40 different virtual planning paths were created to guide physicians until distal bronchioles. These results provide a functional software for BronchoX and demonstrate how following simple instructions is possible to reach distal lesions from the trachea. |
|
|
Address |
|
|
|
Corporate Author |
rank (SJR) |
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.096; 600.075; 601.323; 601.337; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RSB2018a |
Serial |
3132 |
|
Permanent link to this record |
|
|
|
|
Author |
Marta Diez-Ferrer; Debora Gil; Cristian Tebe; Carles Sanchez |
|
|
Title |
Positive Airway Pressure to Enhance Computed Tomography Imaging for Airway Segmentation for Virtual Bronchoscopic Navigation |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Respiration |
Abbreviated Journal |
RES |
|
|
Volume |
96 |
Issue |
6 |
Pages |
525-534 |
|
|
Keywords |
Multidetector computed tomography; Bronchoscopy; Continuous positive airway pressure; Image enhancement; Virtual bronchoscopic navigation |
|
|
Abstract |
Abstract
RATIONALE:
Virtual bronchoscopic navigation (VBN) guidance to peripheral pulmonary lesions is often limited by insufficient segmentation of the peripheral airways.
OBJECTIVES:
To test the effect of applying positive airway pressure (PAP) during CT acquisition to improve segmentation, particularly at end-expiration.
METHODS:
CT acquisitions in inspiration and expiration with 4 PAP protocols were recorded prospectively and compared to baseline inspiratory acquisitions in 20 patients. The 4 protocols explored differences between devices (flow vs. turbine), exposures (within seconds vs. 15-min) and pressure levels (10 vs. 14 cmH2O). Segmentation quality was evaluated with the number of airways and number of endpoints reached. A generalized mixed-effects model explored the estimated effect of each protocol.
MEASUREMENTS AND MAIN RESULTS:
Patient characteristics and lung function did not significantly differ between protocols. Compared to baseline inspiratory acquisitions, expiratory acquisitions after 15 min of 14 cmH2O PAP segmented 1.63-fold more airways (95% CI 1.07-2.48; p = 0.018) and reached 1.34-fold more endpoints (95% CI 1.08-1.66; p = 0.004). Inspiratory acquisitions performed immediately under 10 cmH2O PAP reached 1.20-fold (95% CI 1.09-1.33; p < 0.001) more endpoints; after 15 min the increase was 1.14-fold (95% CI 1.05-1.24; p < 0.001).
CONCLUSIONS:
CT acquisitions with PAP segment more airways and reach more endpoints than baseline inspiratory acquisitions. The improvement is particularly evident at end-expiration after 15 min of 14 cmH2O PAP. Further studies must confirm that the improvement increases diagnostic yield when using VBN to evaluate peripheral pulmonary lesions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DGT2018 |
Serial |
3135 |
|
Permanent link to this record |
|
|
|
|
Author |
Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil |
|
|
Title |
Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy |
Type |
Conference Article |
|
Year |
2018 |
Publication |
OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
11041 |
Issue |
|
Pages |
|
|
|
Keywords |
Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification |
|
|
Abstract |
Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems. |
|
|
Address |
Granada; September 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MICCAIW |
|
|
Notes |
IAM; 600.096; 600.075; 601.323; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RSB2018b |
Serial |
3137 |
|
Permanent link to this record |
|
|
|
|
Author |
Santi Puch; Irina Sanchez; Aura Hernandez-Sabate; Gemma Piella; Vesna Prckovska |
|
|
Title |
Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation |
Type |
Conference Article |
|
Year |
2018 |
Publication |
International MICCAI Brainlesion Workshop |
Abbreviated Journal |
|
|
|
Volume |
11384 |
Issue |
|
Pages |
393-405 |
|
|
Keywords |
Brain tumors; 3D fully-convolutional CNN; Magnetic resonance imaging; Global planar convolution |
|
|
Abstract |
In this work, we introduce the Global Planar Convolution module as a building-block for fully-convolutional networks that aggregates global information and, therefore, enhances the context perception capabilities of segmentation networks in the context of brain tumor segmentation. We implement two baseline architectures (3D UNet and a residual version of 3D UNet, ResUNet) and present a novel architecture based on these two architectures, ContextNet, that includes the proposed Global Planar Convolution module. We show that the addition of such module eliminates the need of building networks with several representation levels, which tend to be over-parametrized and to showcase slow rates of convergence. Furthermore, we provide a visual demonstration of the behavior of GPC modules via visualization of intermediate representations. We finally participate in the 2018 edition of the BraTS challenge with our best performing models, that are based on ContextNet, and report the evaluation scores on the validation and the test sets of the challenge. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MICCAIW |
|
|
Notes |
ADAS; 600.118;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ PSH2018 |
Serial |
3251 |
|
Permanent link to this record |
|
|
|
|
Author |
Spyridon Bakas; Mauricio Reyes; Andras Jakab; Stefan Bauer; Markus Rempfler; Alessandro Crimi; Russell Takeshi Shinohara; Christoph Berger; Sung Min Ha; Martin Rozycki; Marcel Prastawa; Esther Alberts; Jana Lipkova; John Freymann; Justin Kirby; Michel Bilello; Hassan Fathallah-Shaykh; Roland Wiest; Jan Kirschke; Benedikt Wiestler; Rivka Colen; Aikaterini Kotrotsou; Pamela Lamontagne; Daniel Marcus; Mikhail Milchenko; Arash Nazeri; Marc-Andre Weber; Abhishek Mahajan; Ujjwal Baid; Dongjin Kwon; Manu Agarwal; Mahbubul Alam; Alberto Albiol; Antonio Albiol; Varghese Alex; Tuan Anh Tran; Tal Arbel; Aaron Avery; Subhashis Banerjee; Thomas Batchelder; Kayhan Batmanghelich; Enzo Battistella; Martin Bendszus; Eze Benson; Jose Bernal; George Biros; Mariano Cabezas; Siddhartha Chandra; Yi-Ju Chang; Joseph Chazalon; Shengcong Chen; Wei Chen; Jefferson Chen; Kun Cheng; Meinel Christoph; Roger Chylla; Albert Clérigues; Anthony Costa; Xiaomeng Cui; Zhenzhen Dai; Lutao Dai; Eric Deutsch; Changxing Ding; Chao Dong; Wojciech Dudzik; Theo Estienne; Hyung Eun Shin; Richard Everson; Jonathan Fabrizio; Longwei Fang; Xue Feng; Lucas Fidon; Naomi Fridman; Huan Fu; David Fuentes; David G Gering; Yaozong Gao; Evan Gates; Amir Gholami; Mingming Gong; Sandra Gonzalez-Villa; J Gregory Pauloski; Yuanfang Guan; Sheng Guo; Sudeep Gupta; Meenakshi H Thakur; Klaus H Maier-Hein; Woo-Sup Han; Huiguang He; Aura Hernandez-Sabate; Evelyn Herrmann; Naveen Himthani; Winston Hsu; Cheyu Hsu; Xiaojun Hu; Xiaobin Hu; Yan Hu; Yifan Hu; Rui Hua |
|
|
Title |
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge |
Type |
Miscellaneous |
|
Year |
2018 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
BraTS; challenge; brain; tumor; segmentation; machine learning; glioma; glioblastoma; radiomics; survival; progression; RECIST |
|
|
Abstract |
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multiparametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in preoperative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118;MILAB;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRJ2018 |
Serial |
3252 |
|
Permanent link to this record |
|
|
|
|
Author |
Carles Sanchez; Miguel Viñas; Coen Antens; Agnes Borras; Debora Gil |
|
|
Title |
Back to Front Architecture for Diagnosis as a Service |
Type |
Conference Article |
|
Year |
2018 |
Publication |
20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
343-346 |
|
|
Keywords |
|
|
|
Abstract |
Software as a Service (SaaS) is a cloud computing model in which a provider hosts applications in a server that customers use via internet. Since SaaS does not require to install applications on customers' own computers, it allows the use by multiple users of highly specialized software without extra expenses for hardware acquisition or licensing. A SaaS tailored for clinical needs not only would alleviate licensing costs, but also would facilitate easy access to new methods for diagnosis assistance. This paper presents a SaaS client-server architecture for Diagnosis as a Service (DaaS). The server is based on docker technology in order to allow execution of softwares implemented in different languages with the highest portability and scalability. The client is a content management system allowing the design of websites with multimedia content and interactive visualization of results allowing user editing. We explain a usage case that uses our DaaS as crowdsourcing platform in a multicentric pilot study carried out to evaluate the clinical benefits of a software for assessment of central airway obstruction. |
|
|
Address |
Timisoara; Rumania; September 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SYNASC |
|
|
Notes |
IAM; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SVA2018 |
Serial |
3360 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Sergio Vera; Agnes Borras; Albert Andaluz; Miguel Angel Gonzalez Ballester |
|
|
Title |
Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Medical Image Analysis |
Abbreviated Journal |
MIA |
|
|
Volume |
35 |
Issue |
|
Pages |
390-402 |
|
|
Keywords |
Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points |
|
|
Abstract |
Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a condent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier B.V. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.060; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2017 |
Serial |
2775 |
|
Permanent link to this record |
|
|
|
|
Author |
Marta Diez-Ferrer; Debora Gil; Elena Carreño; Susana Padrones; Samantha Aso |
|
|
Title |
Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Journal of Thoracic Oncology |
Abbreviated Journal |
JTO |
|
|
Volume |
12 |
Issue |
1S |
Pages |
S596-S597 |
|
|
Keywords |
Thorax CT; diagnosis; Peripheral Pulmonary Nodule |
|
|
Abstract |
A main weakness of virtual bronchoscopic navigation (VBN) is unsuccessful segmentation of distal branches approaching peripheral pulmonary nodules (PPN). CT scan acquisition protocol is pivotal for segmentation covering the utmost periphery. We hypothesize that application of continuous positive airway pressure (CPAP) during CT acquisition could improve visualization and segmentation of peripheral bronchi. The purpose of the present pilot study is to compare quality of segmentations under 4 CT acquisition modes: inspiration (INSP), expiration (EXP) and both with CPAP (INSP-CPAP and EXP-CPAP). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DGC2017a |
Serial |
2883 |
|
Permanent link to this record |
|
|
|
|
Author |
H. Martin Kjer; Jens Fagertun; Sergio Vera; Debora Gil |
|
|
Title |
Medial structure generation for registration of anatomical structures |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
Skeletonization, Theory, Methods and Applications |
Abbreviated Journal |
|
|
|
Volume |
11 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MFV2017a |
Serial |
2935 |
|
Permanent link to this record |