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ABSTRACT In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch
head angles from raw facial images. Our approach is based on manifold learning-based methods, due to their
promising generalization properties shown for facemodeling from images. Themethod combines histograms
of oriented gradients, generalized discriminative common vectors, and continuous local regression to achieve
successful performance. Our proposal was tested on multiple standard face data sets, as well as in a realistic
scenario. Results show a considerable performance improvement and a higher consistence of our model
in comparison with other state-of-the-art methods, with angular errors varying between 9◦ and 17◦.

INDEX TERMS Head pose estimation, HOG features, generalized discriminative common vectors,
B-splines, multiple linear regression.

I. INTRODUCTION
Accurate head pose estimation is a challenging problem
in itself due to the variability introduced by multiple factors
such as illumination, identity and expression, to name a few.
During the last decade there has been an increasing interest
in developing head pose estimation methods for different
applications such as security and surveillance systems [1],
human-robot interaction [2], meeting rooms [3], intelligent
wheelchair systems [4], and drivingmonitoring [5]–[8]. Head
pose is typically expressed by three angles (yaw, pitch
and roll) that describe the orientation with respect to a head-
centered frame, being yaw and pitch the angles that are
more related with the gaze and attention of the subject under
consideration.

Automatic head pose estimation has been approached
from different points of view, from appearance based
methods, such as manifold embedding, regression or classifi-
cation approaches, to model based methods, which includes
deformable and geometric models. While model-based
methods exhibit excellent performance, specially in frontal
images or small angles, they require detecting/tracking
facial features with high precision and they are significantly
affected by partial occlusions of such facial landmarks or by
illumination changes, common in real environments. On the
contrary, appearance based methods are less sensitive to

partial occlusions and extreme angular views since these
approaches use the full image of the head, but at the cost of
higher computational cost.

In this paper, we propose a novel appearance based
approach for both yaw and pitch estimation that combines
an advance manifold embedding with regression in order
to achieve state-of-art performance. Furthermore, Histogram
of Oriented Gradients (HOG) are extracted from the image
as preliminary feature extraction step. Our approach can be
applied to both full head images or to face crops in combi-
nation with a face detector. Our system is thoroughly evalu-
ated in 6 different datasets and compared against state-of-art
methods HPE [9], [10], DRMF [11] and OPENFACE [12].
The main contributions of our paper are the proposal of
a manifold embedding based on discriminative common
vectors that allows a better modelling of the face image
subspace, and a fully continuous regression model that allows
continuous angle estimation, including extreme angles.

This paper is structured as follows: Section I-A briefly
introduces the relatedworks in this field. Section II introduces
the method proposed. Section III describes the empirical
validation and presents the results and the analysis of the
proposed approach as well as its comparison against the
state of the art. Finally, Section IV summarizes the main
conclusions and results.
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A. RELATED WORK
This section is limited to the most relevant literature to our
work, the appearance-based methods, i.e. those methods that
use the full raw image as input due to their advantages for
real unconstrained environments. A complete description of
all the methods available is out of the scope of this article so
we refer the reader to the survey [13], the paper [14] and the
book [15], although theses do not include methods based on
depth learning due to their recent appearance.

Appearance based methods have historically considered
the head estimation problem as a discrete problem -i.e. as a
classification problem-, or as a continuous problem -i.e as a
regression problem. Classification-based methods [13]–[15]
suffer from granularity of the estimated angles given the
difficulty to train two classes whose angles are very close.
In contrast, regression based methods provide a fully contin-
uous estimation, resulting on a higher proliferation of these
approaches in the literature. These approaches are mainly
composed of two main stages: a first stage where a feature
set is obtained from the raw image, and a second stage where
linear/nonlinear regression methods make use of a labelled
training set to create a mapping from images/features space
to their corresponding poses.

The feature extraction techniques employed vary from
applying conventional HOG features [16], to automatic
feature extraction using linear manifold embedding, such as
principal component analysis, or using complex non linear
methods such as convolutional neural networks (CNN) archi-
tectures. All these techniques aim to create a discrimina-
tive feature space where the correspondence between the
feature space location and the pose is easy to establish.
Thus, Huang et al. [17] used supervised local subspace
learning to learn a local linear model which showed promi-
nent potential to provide accurate head pose estimation
when the training data is pretty sparse and non-uniformly
sampled. Haj et al. [18] applied partial least squares regres-
sion to model the relationship between observed variables by
projecting them into a latent space. This alleviates the nega-
tive effect on pose estimation when there exists misalignment
of head location in the image. Wang and Song [19], [20]
presented a framework under the neighborhood construc-
tion, graph weight computation and projection learning. They
redefined inter-point distance for neighborhood construc-
tion as well as graph weight by constraining them with
the pose angle information. Then, they used a supervised
neighborhood-based linear feature transformation algorithm
to keep the data points with similar pose angles close together
but the data points with dissimilar pose angles far apart.
Peng et al. [21] proposed a coarse-to-fine pose estimation
framework in the latent space, where the unit circle and
3-spheres are employed to model the manifold topology on
the coarse and fine layers respectively. Chen et al. [16] esti-
mated the head pose by using gradient-based features and
support vector regression to low resolution images. Recently,
Drouard et al. [9], [10] proposed to use a mixture of linear
regressors with partially-latent output. First, the bounding

box containing the face is re-sized to 64 × 64, converted
to a grey-level image to which histogram equalization is
then applied. A HOG descriptor is extracted from this patch,
such as a HOG pyramid is build by stacking HOG descrip-
tors at multiple resolutions. Then, the proposed regression
method learns a map from this high-dimensional feature
vector onto the joint space of head-pose angles and bounding-
box shifts.

Recent advances in deep learning made possible to easily
train complex neural networks on large datasets, leading to
staggering progress in many different fields from natural
language processing to image processing, due to their ability
to automatically derived discriminative features, as it is the
case of CNNs. This has also been applied to the head
pose estimation problem, where many approaches have been
proposed. Foytik and Asari [22] presented a pose estima-
tion framework that seeks to describe the global nonlinear
relationship in terms of localized linear functions. A two
layer system is formulated on the assumptions that coarse
pose estimation can be performed adequately using super-
vised linear methods, and fine pose estimation can be
achieved using linear regressive functions if the scope of
the pose manifold is limited. Ahn et al. [23] proposed a
head pose estimation algorithm for monocular camera, by
using a convolutional filters and exploiting the neural archi-
tecture in a data regression manner to learn the mapping
function between visual appearance and three dimensional
head orientation angles. Patacchiola and Cangelosi [24] also
proposed an approach based on CNNs based on a divide-
and-conquer strategy, training different CNNs for each degree
of freedom. However, while CNN based methods provide
excellent performance if huge amount of training data is
available, this performance is only exhibited in the same
type of images and conditions present in training, due to
severe overfitting to the training set [25]. Their perfor-
mance in cross-dataset testing or realistic scenarios with little
available data decreases rapidly, in contrast to the manifold
embedding techniques which shows promising generalisation
properties [15].

II. HEAD POSE ESTIMATION
Our head pose estimation framework is composed of three
main components: an initial feature extraction based on the
computation of Histogram of Oriented Gradients, a mani-
fold embedding projection based on Generalized Discrimina-
tive Common Vectors (GDCV), and a continuous regression
composed of spline fitting and multivariate local regression.
This pipeline, as well as the resulting subspaces involved at
each step, are depicted in Figure 1.

A. HOG FEATURE EXTRACTION
First, HOG features are extracted to enhance the discrim-
inative information in the image [9], [10] before the final
feature embedding space is calculated. The underlying idea
is that local object appearance and shape are well character-
ized by the distribution of local intensity gradients and edge
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FIGURE 1. Proposed head pose estimation pipeline and generated subspaces for each component during the training process.

directions while being less sensitive to illumination changes
and cluttered and changing background. While the mani-
fold embedding could be generated directly using the raw
image as direct input (see Section III-C), the resulting space
using HOG feature enhances the discrimination between pose
orientations.

Locally normalized Histogram of Oriented Gradient
(HOG) descriptors [26] were selected as in [9] and [10]
due to their excellent performance to detect edge orien-
tation, relative to other existing feature sets. The imple-
mentation of these HOG descriptors can be achieved by
dividing the image into small connected regions (cells), and
for each cell computing a histogram of gradient directions
(i.e. edge orientations) for the pixels within the cell. In each
cell, HOG feature extraction computes centered horizontal
and vertical gradients orientation and magnitudes with no
smoothing. Finally, the histograms are normalised according
to the histograms or nearby cells -block-. The combination
of these histograms then represents the descriptor, such that
the local object appearance and shape within an image is
described by the distribution of intensity gradients or edge
directions. The main steps are summarized in:

1) Compute gradients in the cell region to be described
2) Put them in bins according to orientation
3) Group the cells into large blocks
4) Normalize each block

B. GDCV EMBEDDING
Once the HOG features (XHOG) are calculated, our proposed
system aims to find a linear mapping or projection onto a
feature manifold where the correspondence between the input
image and their angular pose is easier to be estimated than
in the original space.

While many dimensionality reduction methods such
as Principal Component Analysis (PCA) [27] or Linear
Discriminant Analysis (LDA) [28]can be applied to calcu-
late this embedding (see Section III-C), two particular char-
acteristics of the head pose estimation problem should be
taken into consideration. First, poses corresponding to the

same or very close angles should be kept together after the
projection, while poses with very different angles should be
separate as much as possible, in order to achieve an effective
regression later. Second, the method should be able to cope
with the large dimensionality of the face image data (and
the even larger HOG feature dimensionality) in comparison
with the available number of samples in the training set,
which leads to the well-known Small Sample Size (SSS)
problem [29] that produces singular matrices during compu-
tation.

Generalized Discriminative Common Vectors (GDCV)
[30], [31] is proposed in our framework since it combines
both properties. On the one hand, it provides discriminative
subspaces and exhibits good generalization properties in a
wider range of applications in computer vision and machine
learning, regardless of the SSS assumption. On the other
hand, GDCV is a supervised technique which makes use of
the class information (in our case, the angle associated to
the data sample) to obtain the most discriminative space by
maximizing the distance between classes while minimizing
the distance between the samples within the same class. In our
setup, the classes are the possible angles for the yaw and the
pitch. Although the angle estimation problem is a continuous
problem in reality, which would produce an infinity number
of classes, in practice, the number of angles in training is
discrete and finite, since it is limited by the acquisition
process and the number of steps between two poses in the
training set.

GDCVmethod divides the feature space into the range and
the null subspaces, being the later important for extracting
useful discriminative features for the final regression. Thus,
it generates a linear mapping onto the extend null space of
its within-class scattered matrix in which all training of the
same class collapse into the generalized common vectors,
whose scatter is at the same timemaximized. Formally, let the
training set after HOG feature extraction XHOG be composed
of c classes, where every class j has mj samples. The total
number of samples in the calibration set is M =

∑c
j=1 mj.

Let x ij be a d-dimensional column vector of XHOG which
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denotes the ith sample from the jth class. The within-class
scatter matrix, SXw , is defined as,

SXw =
c∑
j=1

mj∑
i=1

(x ij − x j)(x
i
j − x j)

T
= XcXcT (1)

where x j is the average of the samples in the jth class, and the
centered data matrix, Xc consists of column vectors (x ij − x j)
for all j = 1 . . . c and i = 1 . . .mj.
The extension of the null space of SXw (which implies

restricting the corresponding range space) is done from the
eigendecomposition of SXw .

EVD(SXw ) : Ur3rUT
r (2)

where Ur ∈ Rd×r are the eigenvectors associated to the
nonzero eigenvalues 3r . The scattering added to the null
space can be measured as the trace tr(UT

α S
X
wUα). This quan-

tity is zero when no directions are removed, Uα = Ur ,
and increases as more and more important directions disap-
pear from Ur . Consequently, the scattering preserved after a
projection, Uα , can be written as follows

α = 1−
tr(UT

α S
X
wUα)

tr(SXw )

The projection basis fulfilling the above conditions for a
given value of α can be obtained through Ur , such that r is
reassigned. The GDCV method is presented in Algorithm 1.

Any sample xi can be projected in the discriminative
subspace, for an easier classification, by using the projection
matrix WGDCV , according to

xgdcvi = W T
GDCV · (xi − xgcv) (3)

Given the usual bias of the training set to certain angles,
since datasets are usually recorded at regular intervals,
we exploit this feature in our advantage to reduce noise in the
projection in those cases. Specifically, the previous projected
sample i is refined to the location of the closest discriminative
common vector j if this distance di,j is below a small threshold
(see eq. 4). Otherwise, the projection remains unchanged as
given by eq. 3.

xgdcvi =

{
x jgcv if di,j < thgdcvj
xgdcvi otherwise

(4)

where di,j is the cosine distance:

di,j =

1−
x jgcvx

gdcv
i

T

(x jgcvx
j
gcv

T
)(xgdcvi xgdcvi

T
)



The threshold for each common vector is calculated as a
third of the minimum distance to all other common vectors,
that is:

thgdcvj = min
j′
(dj,j′ )/3 (5)

C. MULTIVARIATE REGRESSION
After the manifold has been created, regression in such
discriminative embedding space (W T

GDCVXHOG) is learned to
generate the final pose estimation. This regression consists of
two parts. First, a B-splines is used to construct a curve Y that
has the best fit to the project samples, where the control points
are the xgdcvj . This spline allows explicitly introducing the
continuous and smooth transition between classes, inherent
to the nature of the angular problem under consideration.
Second, a multiple linear regression to estimate the relation-
ships between the previous curve Y and the final angle(s) to
be estimated Z is calculated.

1) B-SPLINES
B-splines or Basis-splines [32] are mathematical curves with
convenient properties. The curve reconstruction problem is to
find a B-spline function f such that the geometric distance
between the implicit curve f (xi,Y (xi)) = 0 and the point
clouds be as small as possible. Meanwhile, the curve is
expected to have a good quality, for which they use the
condition that the implicit curve has a minimal simplified
thin-plate energy. A curve Y (xi) is defined in terms of the Pk
control points and the Bk (xi) B-spline basis functions.

Y (x ij ) =
n∑

k=1

PkBk (x ij ) (6)

where the previously computed generalized discrimina-
tive common vectors are used as control points P =

[xgdcv1 , ·, xgdcvj ], and each basis function Bk (xi) is a piecewise
polynomial with compact support determined by the position
of the knots.

2) MULTIPLE LINEAR REGRESSION
The final prediction of the estimated head pose angles is
provided by a regressionmodel that describes the relationship
between the dependent variables, Z = [yaw, pitch], and
one or more independent (explanatory) variables, Y in our
case. In the particular case of multiple linear regression,
the general model can be written as follows:

Z = Yβ + ε (7)

Algorithm 1 GDCV Method

Input: X ∈ Rd×M , α.
Output: WGDCV , xgcv.
1) Compute Uα such that SXw = Ur3rUT

r where 3α contains the smallest eigenvalues in 3r and tr(3α) = α · tr(3r ).
2) Project class means as x jgcv = x j − UαUT

α x j. These are the so-called generalized common vectors of each class.
3) Define X com = [x1gcv . . . x

c
gcv] and let X

com
c be its centered version with regard to the mean, xgcv = 1

c

∑c
j=1 x

j
gcv.

4) Obtain the projection WGDCV ∈ <
d×(c−1) such that tr(W T

GDCVX
com
c X comc

TWGDCV ) is maximum.
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which is equivalent to: z11.. z1d ′
.....

...

zM1.. zMd ′

 =
 1 y11.. y1k
...

.....
...

1 yM1.. yMk


 β01.. β0d ′

.....
...

βk1.. βkd ′


+

 ε11.. ε1d ′
.....

...

εM1.. εMd ′


and

zil = β0l + β1lyi1 + β2lyi2 + . . .+ βklyik + εil

is the ith response, i = 1, . . . ,M , of the lth output,
l = 1, . . . , d ′. βk ′l is the k’th regression coefficient,
k ′ = 1, . . . , k , and εil is the ith noise term, which models the
random error. d ′ = 2 in our problem, since yaw and pitch are
estimated, but the method can be tailored to only estimate one
of them, or further extend to also estimate the roll angle. k is
given by the dimensionality of the embedding space in the
previous step, k = (c− 1).
Given a set of training data Y and their corresponding

solution Z , the regression parameters can be easily estimated
as:

β = (Y TY )−1 Y T Z (8)

D. TRAINING AND TESTING PROCESS
Figure 2 presents the main steps of the training framework
propose as well as the learned parameters.

In the test process, new samples’ head poses are calculated
following the work flow shown in figure 3. Firstly, the HOG
features for the testing sample xtest are computed, then this is
projected into the discriminative subspace by using WGDCV .
The distances dtest,j are calculated between the test sample
and the generalized discriminative common vectors xgdcvj .
If dtest,j < thgdcvj the test sample is replaced by its corre-

sponding xgdcvj as show 4. Finally, by projecting into the

curve Y , the angle estimation of the test sample is predicted
using the multiple linear regression β.

In summary, let the training set X be composed of M
samples and their corresponding angles Z , Algorithm 2
shows the main steps of our framework propose.

III. EXPERIMENTS AND RESULTS
In order to ensure an exhaustive evaluation, our method
is validated with six publicly available standard datasets,
CMU-PIE [33], Taiwan [34], PRIMA [35] CASPEAL-1 and
2 [36] and DrivFace [7]. This selection was chosen to
ensure most possible situations and poses are considered.
Thus, maximum angular deviations (from -90 to 90 degrees)
for both yaw are present in CMU-PIE and Taiwan and
for both yaw and pitch in PRIMA. High angular resolu-
tion (small steps in angles) were used in Taiwan. Datasets
with high (CASPEAL-1) and low (CASPEAL-2) resolu-
tion images are also included, as well as datasets with few
(CMU-PIE) and many (CASPEAL-2) images and users.
Finally, the DrivFace [7] dataset is used for testing under real
conditions the different derived models. The table in Figure 4
shows the main characteristics of each datasets, where the
size of face crops has been normalized to 80× 80.

Our approach is compared against three state-of-the-
art head-pose estimation methods. The first one, called
HPE, proposed by Drouard et al. [9], [10], is a manifold-
embedding approach similar to us in the use of linear
regressions and HOG features, which can be trained in our
exact experimental setup due to the availability of the
code.1 Both other methods, the Discriminative Response
Map Fitting (DRMF) method [11] and OPENFACE [12] are
pretrained model approaches. DRMF, based on facial land-
marks, uses discriminative regression with constrained local
models to reconstruct unseen response maps.2 OpenFace is a

1The HPE code is available at https://team.inria.fr/perception/research/
head-pose/. In our experimentation K = 5.

2The DRMF code is available at https://ibug.doc.ic.ac.uk/resources/drmf-
matlab-code-cvpr-2013/

FIGURE 2. Training methodology and the resulting learned parameters (in light gray).
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FIGURE 3. Test methodology.

Algorithm 2 Main Steps of the Framework Propose to Head Pose Estimation

Input: X ∈ Rd×M , Z ∈ RM×1 or2

Output: WGDCV , x
j
gcv, thgdcvj , Y , β Training:

1) Compute XHOG = HOG(X ).
2) Compute GDCV (XHOG) and obtain WGDCV , x

j
gcv, and thgdcvj .

3) Build Y by using Eq. 6, where Pk = x jgcv and k = j.
4) Compute β by using Eq. 8.

Test: xtest
1) Compute xtestHOG = HOG(xtest ).
2) Project xtestHOG as xtestGDCV = W T

GDCV xtestHOG .
3) Calculate the distance dtest,j between xtestGDCV and the x jgcv. If dtest,j < thgdcvj , xtestGDCV = xgdcvj .
4) Project xtestGDCV into the curve Y .
5) The angular prediction is allocated as xtestGDCV β.

CNN-based framework capable of facial landmark detection,
head pose estimation, facial action unit recognition and eye-
gaze estimation.3

In our validation, two main scenarios are considered. In the
first scenario, an intra-set experimental setup is considered
where a model is generated for every dataset considered
and both training and testing partitions for every model are
coming from the same dataset. A second and more chal-
lenging cross-dataset scenario in also considered, where a
model is training in all datasets except the one used in testing
(all against one) to simulate more realistic conditions.

The parameters of our method used were set to conven-
tional values according to their authors and without any
particular optimization. Once chosen, they were kept constant
for all experiments. Thus, to obtain the HOG features,
the gradient computation uses a central difference filter
[−1 0 1] and using forward difference at the image borders,
the gradient directions are between −180 and 180 degrees
measured counter clockwise from the positive x axis, with
9 bins. The size of a HOG cell in pixels is 5 × 5, the block
size is 2× 2.4 Regarding the GDCV method, the α value was

3The OPENFACE code is available at https://www.cl.cam.ac.uk/
research/rainbow/projects/openface/

4The extractHOGFeatures function of Matlab is used.

set to 0.95 as in [37] and [38], and the cosine distance is used
to calculated the thgdcvj . Finally, the Boor’s algorithm [39]
is used for generating the spline curves.5 All algorithms
have been run on a computer with a Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz, 3601 Mhz, and 32-GB RAM.

A. FIRST SCENARIO: INTRA-DATASET VALIDATION
In this experiment, the method is trained and tested
in different partitions of the same dataset. Specifically, all
five standard datasets are used, and a model for each dataset
under consideration is generated (training) with the 50% of
the samples and tested with the remain 50%, Cross vali-
dation is applied as evaluation protocol to avoid bias to a
particular training/testing split, where each experiment is
run 10 times with different random training/testing sample
choices. Our approach is compared against HPE in the same
training/testing setup. DRMF andOPENFACE are also added
to the comparison for reference according to their results
in the testing partitions, but using the best trained model
provided by the authors.

Experimental results are provided for both cases when all
the head image (and surrounded background) is used as input

5The code is available at http://www.mathworks.com/matlabcentral/
fileexchange/27374-b-splines
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FIGURE 4. Datasets used in validation along with their corresponding details. c is the number of classes. mj is the number of samples
per class.

TABLE 1. Average error in degrees for the intra-dataset experiment using
the full head image as input.

by the system for or when only the face crop is provided (with
the exception of OPENFACEwhose software requires the full
head to fit their 3D model). Table 1 shows the average result
over the iterations as well as dispersion for the full head image
variation, and Table 2 the same results when using the face
crop only.

Several relevant conclusions can be achieved from these
results. First, our proposed approach provides the best results
in all cases for both possible inputs, improving greatly the
next best result, HPE. As it could be expected, since less
distracters are present in the image, all methods behave

significantly better when using only the face crop (except in a
couple of cases whose difference is not significant). However,
this assumes that a face detector/segmentation algorithm is
available with almost perfect performance, which is chal-
lenging and unrealistic in real-life scenarios. In these situa-
tion, it may be easier to provide the full head image. While
HPE increases the error between 0 and 37 degrees for the
yaw and up to 25 degrees for the pitch, depending on the
dataset, our approach only increases between 0 and 9 degrees
for the yaw and up to 20 degrees for the pitch. It can also be
noticed that pitch angle seems more difficult to be estimated,
although it is likely that this is the result of having less
training examples since not all datasets have images with
varying pitch. An unusually large error value of the pitch
in the CASPEAL-2 is given by our method, which is caused
by the limited information contained on low resolution face
crops.

Both DRMF and OPENFACE methods provide very poor
result, some of which can be considered almost random, since
they have not been trained on the testing image types. This is
therefore a not fair or conclusive comparison but they have
been added here to illustrate the difficulty of generate useful
models in real life applications, as well as the limitations
of current methods. Next subsection makes emphasis in this
problem and fair comparison.
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TABLE 2. Average error in degrees for the intra-dataset experiment using the face crop as input.

TABLE 3. Average error in degrees for the cross-dataset experiment using the full head image as input.

TABLE 4. Average error in degrees for the cross-dataset experiment using the face crop as input. N/A is reported for HPE in some cases due to the
limitation of the algorithm to run, such as a lower number of classes in training than in testing.

B. SECOND SCENARIO: CROSS-DATASET VALIDATION
In order to compare all methods under equal conditions,
as well as present a more challenging and realistic scenarios,
we perform a cross dataset experiment. Specifically, an all-
against-one strategy is adopted for our method and HPE,
where a model using all images in four standard datasets
except one are used for training and the fifth dataset is used
for testing. This is repeated generating a different model
for all possible combinations. This experiment also aims
to validate the previous conclusions and results and ensure
that the validity of our approach is not the result of overfit-
ting. The pretrained approaches DRMF and OPENFACE are
added in the comparison using the same test sets but this time
the comparison is fair (even if the training sets are different)
since no methods have seen the testing type of images.

Table 3 and 4 shows the average result over the iterations as
well as dispersion for the cases that the full image or the face
crops are used, respectively. It can be notice how all reported
errors for HPE and our method increases due to the most
challenging problem, getting closer results to the pretrained
methods. For the full image experiment, our method still
reports the best results in all cases. For the face crop exper-
iment, results are not so clear and HPE provides in many
cases similar or better results. However, our approach is
still providing the best pitch estimation without having a
significantly lower yaw estimation, and without restrictions
regarding the training data capture, such as the number of
classes or the angular resolution.

Finally, in order to provide our best possible system
for its application in real scenario, a final experiment is
designed where the model is trained using Taiwan and
PRIMA datasets. This is due to them having the best pitch
and yaw resolution. Face crops is used as input due to its
superior performance demonstrated in previous experiments.
This model is tested in all remaining datasets, including the
DrivFace [7] dataset which contains real variations such as
illumination changes, vibrations and imperfect face crops,
and compared against all other competitors (HPE with the
same training and DRMF using the best training provided by
the authors).

Table 5 shows the comparative among all methods. It can
be seen how our approach with a carefully selected training
provides the best performance in almost all cases (expect for
CMU-PIE, the smallest set where HPE gives the best result),
with errors ranging between 9 and 16 degrees for the yaw and
around 10 degrees for the pitch, which are acceptable for most
applications.

C. ABLATION STUDIES
In order to justify and validate our pipeline, we repeat the
previous cross-dataset experiment in Table 5 but removing
or replacing with conventional approaches some of the
modules in our pipeline.

First, HoG feature extraction is removed and image raw
pixels are given to GDCV as direct input. The comparison is
shown in Table 6. It can be observed how the use of HOG
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TABLE 5. State of the art comparison, by using Taiwan and PRIMA
datasets in training.

TABLE 6. Average error in degrees with and without HOG feature
extraction.

TABLE 7. Average error in degrees using LDA or GDCV as discriminant
subspace.

features help to obtain a more discriminative subspace and
a better performance, reducing the angular error between
12 and 31 degrees, depending the dataset. This is particularly
noticeable in realistic conditions (DrivFace), where illumina-
tion changes are frequent and can affect greatly the raw pixel
values.

In a second ablation experiment, the discriminant subspace
is generated using the well-known Linear Discriminant Anal-
ysis (LDA) [40] instead of our proposed GDCV. Results
in Table 7 indicate that GDCV is a technique better suited
for the head pose estimation problem, able to produce a more
discriminative embedding space.

IV. CONCLUSIONS
In this paper, we propose a novel appearance-based head
estimation system for both yaw and pitch estimation. Our
system combines HOG feature extraction with an GDCV
manifold embedding, that takes the granular high dimen-
sional nature of the problem, and multivariate regression, that
considers the continuous and smooth continuity of the esti-
mated angles by applying splines. Our system demonstrates
flexibility to work with raw head images, wildly available
in real conditions, or more refined facial crops, assuming a
good face detector is available. Our approach achieves state-
of-art performance in an exhaustive experimental validation
comprising six different datasets and both intra-set and cross-
dataset experiments. The final performance surpasses the

other three methods in the comparison, including CNN-based
methods, with angular errors between 9 and 17 degrees, and
was evaluated in a realistic datasets for autonomous driving.
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