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Abstract

Medial structures (skeletons and medial manifolds) have shown capacity to de-
scribe shape in a compact way. In the field of medical imaging they have been
employed to enrich the description of organ anatomy, to improve segmentation
or to describe organ position in relation to surrounding structures. Methods for
generation of medial structures, however, are prone to the generation of medial
artifacts (spurious branches) that traditionally need to be pruned before the
medial structure can be used for further computations. The act of pruning, can
affect main sections of the medial surface, hindering its performance as shape
descriptor. In this work we present a method for the computation of medial
structures that generates smooth medial surfaces that do not need to be explic-
itly pruned. Additionally, a validation framework for medial surface evaluation
is presented. Finally, we apply this method to create a parametric model of the
cochlea shape that yields better registration results between cochleae.

Keywords: medial axis, medial manifold, medial maps, shape modeling,
cochlea registration, validation framework.
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1 Medial Maps for Reliable Extraction of Anatom-
ical Medial Surfaces

Many organs in the human anatomy have shapes that can be represented by
genus zero surfaces (surfaces that are homeomorphic to a sphere). Nevertheless,
such generalization cannot hide the complexity of human anatomical shapes.
Even with this broad common characteristics, anatomical shapes display a large
amount of variability between different organs but also variability between the
same organ over different patients. This large variability makes anatomical
shapes challenging to process by computer techniques. Medial structures have
demonstrated to be a compact shape descriptor and have shown potential to
capture shape variations. Medial structures [Blum, 1967] such as the medial
axis and the medial manifold (medial surface), completely determine the geom-
etry of the boundary volume [Gray, 2004]. In the field of medical imaging, they
can be used in many applications: information provided by medial surfaces has
shown to improve segmentation results [Pizer et al., 2005; Sun et al., 2010], me-
dial structures have been used to characterize pathological abnormalities [Styner
and Gerig, 2003; Styner and Lieberman, 2004], and provide detailed represen-
tations of complex organs [Yao and Summers, 2009]. They also provide more
intuitive and easily interpretable representations of complex organs [Yao and
Summers, 2009] and their relative positions [Liu et al., 2010]. Medial informa-
tion enhanced modelling has been used in a variety of medical imaging analysis
applications, including computational neuroanatomy [Yushkevich et al., 2008;
Styner and Lieberman, 2004], 3D cardiac modelling [Sun et al., 2008] or cancer
treatment planning [Stough et al., 2007; Crouch et al., 2007]. In shape analysis,
medial representations can provide better information than Point Distribution
Models since they can model not only the shape but also the interior variations
too [Yushkevich et al., 2006a].

In any task where a medial surface is to be used to help the modelization,
one must ensure that the medial surfaces have certain properties that do not
hinder further computations. Ideally the medial surface should be complete
enough to capture the key anatomical shapes of an organ but simple enough
so that the topology of the medial structure respond to true changes in shape
and not to artifacts (spurious branches). In order to provide accurate meshes
of anatomical geometry, the extraction of medial manifolds should satisfy three
main conditions [Pudney, 1998]:

• Homotopy: The medial manifold should maintain the same topology (num-
ber of holes and components) of the original shape.

• Medialness: The medial structure has to lie as close as possible to the
center of the original object.

• Thinness: The resulting medial shape should be as thin as possible without
breaking the homotopy rule. The ideal case is to have one pixel-wide
structures. However, this concept is too generic, and it heavily depends
on the selected connectivity.
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Figure 1.1: Medial surfaces obtained using a 6-connected neighbourhood, (a),
and a 26-connected neighbourhood, (b).

The stability of medial manifold properties depends on the domain on which
the medial manifold is computed. Existing methods compute medial structures
on either the volumetric voxel domain or a tetrahedral mesh of the volume
boundary.

Volumetric approaches can be classified into two big types: morphological
thinning and energy-based methods. Morphological methods compute medial
manifolds by iterative thinning of the exterior layers of the volumetric object
until more thinning breaks surface topology [Bouix et al., 2005; Pudney, 1998;
Siddiqi et al., 2002; Palágyi and Kuba, 1999; Ju et al., 2007; Svensson et al.,
2002]. Such methods require the definition of a neighbourhood set and condi-
tions for the removal of simple voxels, i.e. voxels that can be removed without
changing the topology of the object. Furthermore, simplicity tests alone produce
(1D) medial axis. Computation of medial manifolds (medial sheets) requires ad-
ditional tests to know if a voxel lies in a surface and thus cannot be deleted even
if it is simple [Pudney, 1998]. Moreover, surface tests might introduce medial
axis segments in the medial surface, which is against the mathematical defini-
tion of manifold and that may require further pruning [Pudney, 1998; Amenta
et al., 2001]. There are many definitions possible for the simplicity and the pres-
ence or not of a medial surface voxel, also depending on the local connectivity
considered when doing the tests. This means that the skeleton of a shape is not
unique and that different methods will generate different medial structures (see
Fig. 1.1).

Alternative methods rely on an energy map to ensure medialness on the
manifold. Often, this energy image is the distance map of the object [Pudney,
1998] or another energy derived from it, like the average outward flux [Siddiqi
et al., 2002; Bouix et al., 2005], level set [Sabry and Farag, 2005; Telea and van
Wijk, 2002] or ridges of the distance map [Chang, 2007]. However, to obtain a
manifold from the energy image, most methods rely on morphological thinning,
in a two step process [Bouix et al., 2005; Pudney, 1998; Siddiqi et al., 2002],
thus inheriting the weak points of pure morphological methods.

An alternative to volumetric methods is using the Voronoi diagram tetrahe-
dral mesh of a set of points sampled on the object boundary [Dey and Zhao,
2002; Sheehy et al., 1996; Amenta and Bern, 1998; Amenta et al., 2001; Giesen
et al., 2009]. Voronoi methods work on a continuous domain and can natu-
rally resolve branching medial surfaces. However, they still introduce one di-
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mensional spikes associated to boundary irregularities that have to be further
pruned [Amenta et al., 2001; Giesen et al., 2009]. Also their computational cost
and quality depend on the number of vertices defining the volume boundary
mesh and, thus, on the volume resolution [Dey and Zhao, 2002]. Although some
recent methods [Giesen et al., 2009] are capable of efficiently dealing with sur-
face perturbations, they are prone to introduce medial loops that distort the
medial topology [N.Faraj et al., 2013]. Finally, in the context of medical ap-
plications, the voxel discrete domain is the format in which medical data are
acquired from medical imaging devices and, thus, it is the natural domain for
the implementation of image processing [Khalifa et al., 2010; LL.Dinguraru and
et al, 2010] and shape modelling [Peters and Cleary, 2008; Park et al., 2003]
algorithms.
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Figure 2.1: Schema of medial surface generation methods.

We have seen that medial surface generation methods are prone to produce
noisy medial surfaces with spurial branches. Unwanted branching patterns on
the medial surface makes them sub-optimal for the purpose of being used in these
medical imaging applications. Pruning operations will decrease these artifacts at
the cost of increasing the risk of removing a relevant part of the medial structure.
With all this considered, obtaining a good medial structure for usage in medical
imaging means to find a compromise between the shape representation and
simplicity of medial structure.

We present a method to compute medial structures that is well suited to
applications of medical imaging:

1. A novel energy-based method for medial surface computation in images
of arbitrary dimensions based on the combination of Gaussian and nor-
malized operators as medialness map followed by non iterative thinning
binarization based binarization step is free of topology rules, as it is based
on Non-Maxima Suppression (NMS) [Canny, 1986] (Section 2).

2. A validation framework for fair comparison of the quality of medial sur-
faces: the variability in existing methods for medial surface generation
makes comparisons with other methods difficult (Sections 3 and 4).

3. An application of the computation of medial axis for improved registration
between human cochleas (Section 5).

2 Extracting Anatomical Medial Surfaces Using
Medialness Maps

The computation of medial manifolds from a segmented volume may be split
into two main steps: computation of a medial map from the original volume and
binarization of such map (Fig. 2.1). Medial maps should achieve a discriminant
value on the shape central voxels, while the binarization step should ensure that
the resulting medial structures fulfill the three quality conditions [Pudney, 1998]
that ensure fair representation of volumes geometry: medialness, thinness and
homotopy.

Distance transforms are the basis for obtaining medial manifolds from vol-
umes in any dimension [Pudney, 1998]. The distance transform, also called
distance map, is an operator that given a binary volume of a closed domain B,
computes for each volume voxel its distance to the domain boundary, ∂B. By
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definition, maximum values are achieved at the center of B. These voxels cor-
respond to the volume’s medial structure and their values depend on the local
thickess of the shape.

By the maximality property of distance maps, the medial surface can be
obtained using several methods such as iterative thinning [Pudney, 1998], but it
can lead to generation of spikes and other discretization artifacts due to the dif-
ferent neighbourhood definitions available. An alternative to iterative thinning
is applying a threshold th to D(B). The selection of a good thresholding value
of th ensuring homotopy and thinness is problematic. The maximum value of
the distance map represents the minimum distance from the medial manifold to
the object’s boundary. Its value is, therefore, related with the local thickness
of the object, and cannot be considered as a global constant value through all
the object. On one hand, a too high threshold value is prone to generate un-
connected manifold structures violating the homotopy property. On the other
hand, a too small value for th means that the medial structure may not be
thin. Albeit useful, the distance map is a less than an optimal medialness en-
ergy map because it is not selective enough and hinders the binarization step.
Further examination of the distance map shows that its central maximal voxels
are connected and constitute a ridge surface of the distance map. That is why
we claim that the ridges of the distance map provide a better tool to describe
the medialness of a set of shape pixels.

2.1 Gaussian Steerable Medial Maps

Ridges/valleys in a digital N -Dimensional image are defined as the set of points
that are extrema (minima for ridges and maxima for valleys) in the direction of
greatest magnitude of the second order directional derivative [Haralick, 1983].
In image processing, ridge detectors are based either on image intensity profiles
[Freeman and Adelson, 1991] or level sets geometry [Lopez et al., 1999]. From
the available operators for ridge detection, we have chosen the creaseness mea-
sure described in [Lopez et al., 1999] because it provides (normalized) values in
the range [−N,N ]. The ridgeness operator is computed by the structure tensor
of the distance map as follows.

Let D denote the distance map to the shape and let its gradient, ∇D, be
computed by convolution with partial derivatives of a Gaussian kernel gσ of
variance σ.

The structure tensor or second order matrix [Bigun and Granlund, 1987] is
given by averaging the projection matrices onto the distance map gradient:

ST ρ,σ(D) =

 gρ ∗ ∂xD2
σ gρ ∗ ∂xDσ∂yDσ gρ ∗ ∂xDσ∂zDσ

gρ ∗ ∂xDσ∂yDσ gρ ∗ ∂yD2
σ gρ ∗ ∂yDσ∂zDσ

gρ ∗ ∂xDσ∂zDσ gρ ∗ ∂yDσ∂zDσ gρ ∗ ∂zD2
σ

 (1)

for gρ a Gaussian kernel of variance ρ and ∂x, ∂y and ∂z partial derivative
operators. Let V be the eigenvector of principal eigenvalue of ST ρ,σ(D) and

consider its reorientation along the distance gradient, Ṽ = (P,Q,R), given as:

Ṽ = sign(< Ṽ · ∇D >) · Ṽ (2)

where < · > the scalar product. The ridgeness measure or NRM (Normalized
Ridge Map) [Lopez et al., 1999] is given by the divergence:
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NRM := div(Ṽ ) = ∂xP + ∂yQ+ ∂zR (3)

The above operator assigns positive values to ridge pixels and negative values
to valley ones. The more positive the value is, the stronger the ridge patterns are.
A main advantage over other operators (such as second order oriented Gaussian
derivatives) is that NRM ∈ [−N,N ] for N the dimension of the volume. In this
way, it is possible to set a threshold, τ , common to any volume for detecting
significant ridges and, thus, points highly likely to belong to the medial surface.
However, by its geometric nature, NRM has two main limitations. In order to be
properly defined, NRM requires that the vector Ṽ uniquely defines the tangent
space to image level sets. Therefore, the operator achieves strong responses
in the case of one-fold medial manifolds, but significantly drops anywhere two
or more medial surfaces intersect each other. Additionally, NRM responses
are not continuous maps but step-wise almost binary images (Fig.2.2). Such
discrete nature of the map is prone to hinder the performance of the NMS
binarization step that removes some internal voxels of the medial structure and,
thus, introduces holes in the final medial surface.

Ridge maps based on image intensity are computed by convolution with a
bank of steerable filters [Freeman and Adelson, 1991]. Steerable filters are given
by derivatives of oriented anisotropic 3D Gaussian kernels. Let σ = (σx, σy, σz)
be the scale of the filter and Θ = (θ, φ) its orientation given by the unitary
vector η = (cos(φ)cos(θ), cos(φ)sin(θ), sin(φ)), then the oriented anisotropic
3D Gaussian kernel, gΘ

σ , is given by:

gΘ
σ = g

(θ,φ)
(σx,σy,σz) =

1

(2π)3/2σxσyσz
e
−
(
x̃2

2σ2x
+ ỹ2

2σ2y
+ z̃2

2σ2z

)
(4)

for (x̃, ỹ, z̃) the change of coordinates given by the rotations of angles θ and φ
that transform the z-axis into the unitary vector η: x̃

ỹ
z̃

 = Rx(θ)Ry(φ)Rx(−θ)

 x
y
z

 (5)

with Rx(θ), Ry(φ) the following rotation matrices:

Rx(θ) =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 Ry(φ) =

 cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)


(6)

The second partial derivative of gΘ
σ along the z̃ axis constitutes the principal

kernel for computing ridge maps:

∂2
zg

Θ
σ = (z̃2/σ4

z − 1/σ2
z)gΘ

σ (7)

We note that by tuning the anisotropy of the Gaussian, we can detect inde-
pendently medial surfaces and medial axes. For detecting sheet-like ridges, the
scales should be set to σz > σx = σy, while for medial axes they should fulfill
σz < σx < σy.
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Figure 2.2: Performance of different ridge operators. From left to right: NRM,
SGR and GSM2.

The maximum response across Gaussian kernel orientations and the scales
gives the Standard Gaussian Ridge (SGR) medial map:

SGR := max
Θ,σ

(
∂2
zg

Θ
σ ∗D

)
(8)

for Θ expressing different orientations of the Gaussian kernel, and σ the scales.
A main advantage of using steerable filters is that their response does not

decrease at self-intersections. Their main counterpart is that their response is
not normalized, so setting the threshold for binarization becomes a delicate issue
[Bouix et al., 2005; Malandain and Fernández-Vidal, 1998].

Given that geometric and intensity methods have complementary properties,
we propose combining them into a Geometric Steerable Medial Map (GSM2):

GSM2 := SGR(NRM) (9)

GSM2 generates medial maps with good combination of specificity in detecting
medial voxels while having good characteristics for NMS binarization, which
does not introduce internal holes.

The three images of Figure 2.2 show the performance of different ridge op-
erators at a 2 dimensional branch (highlighted in the square close up). The
geometric NRM (left) produces highly discriminant ridge values. However, they
depend on the uniqueness of the direction surface normal, and thus its response
significantly decreases at surface branches or self intersections. Steerable Gaus-
sian filters (center) are less sensitive to strong ridges while having increased
sensitivity to small, secondary noisy ridges. Finally, the combined approach
GSM2 (right) inherits the strong features of each approach. It follows that
it achieves a homogeneous response along ridges (induced by NRM normaliza-
tion) which does not decrease at branches (thanks to the orientations provided
by SGR).

2.1.1 Non-Maxima Suppression Binarization

Converting the medialness energy map into a binary set of voxels can be achieved
in several ways. As previously stated, thresholding the intensity values of the
medialness map yields a reduced set of voxels that are likely to belong to the
medial manifold. However, the subset of voxels obtained using thresholding
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does not necessarily fulfill the property of thinness, and the homotopy heavily
depends on the threshold value and the performance of the medial operator at
intersections. The usage of iterative thinning schemes after thresholding can
generate a thin structure [Bouix et al., 2005], but at the risk of introducing
spikes and different surfaces depending on the definition of simple or medial
voxels and the order in which voxels are processed.

As an alternative we propose to use Non-Maxima Suppression (NMS) to
obtain a thin, one voxel wide medial surface. Non-Maxima Suppression is a well
known technique for getting the local maxima of an energy map [Canny, 1986].
For each voxel, NMS consists in checking that the value of its neighbours in
a specific direction, V are lower than the actual voxel value. If this condition
is not met, the voxel is discarded. In this manner, only voxels that are local
maxima along the direction V are preserved. Neighbours of a pixel in a specific
direction, V , and delete pixels if their value is not the maximum one:

NMS(x, y, z) =

{
M(x, y, z) if M(x, y, z) > max(MV+(x, y, z), MV−(x, y, z))
0 otherwise

(10)
for MV+ =M(x+ Vx, y + Vy, z + Vz) and MV− =M(x− Vx, y − Vy, z − Vz).

A main requirement to apply NMS is identifying the local-maxima direc-
tion from the medial map derivatives. The search direction for local maxima
is given by the eigenvector with highest eigenvalue of the structure tensor of
the ridge map, STρ,σ(M) given by Eq. (1), since it indicates the direction of
highest variation of the ridge image. In order to overcome small glitches due to
discretization of the direction, NMS is computed using trilinear interpolation.

2.1.2 Parameter Setting

Unlike most of existing parametric methods, the theoretical properties of GSM2
provide a natural way of setting parametric values regardless of the volume
size and shape. This new method depends on the parameters involved in the
definition of the map GSM2 and in the NMS binarization step.

The parameters arising in the definition of GSM2 are the derivation, σ, and
integration, ρ, scales of the structure tensor STρ,σ(M) used to compute NRM.
The derivation scale σ is used to obtain regular gradients in the case of noisy
images. The larger it is the more regular the gradient will be at the cost of
losing contrast. The integration scale ρ used to average the projection matrices
corresponds to time in a solution to the heat equation with initial condition
the projection matrix. Therefore large values provide a regular extension of the
level sets normal vector, which can be used for contour closing [Gil and Radeva,
2005]. Since in our case we apply NRM to a regular distance map with well
defined completed ridges, σ and ρ can be set to their minimum values, σ = 0.5
and ρ = 1.

Concerning steerable filters, the parameters, are the scales, σ = (σx, σy, σz),
and orientations Θ, defining the steerable filter bank in Eq. (9). These last
parameters are usually sampled on a discrete grid, so that Eq. (8) becomes

SGR := max
i,j,k

(
∂2
zg

Θi,j
σk
∗D
)

(11)

for Θi,j given by θi = {i πN ,∀i = 1, . . . , N} and φj = {j πM ,∀j = 1, . . . ,M} and
σk = (σkx, σ

k
y , σ

k
z ) = (2k+1, 2k+1, 2k), k = [0,K]. Scale depends on the thickness
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of the ridge and orientations on the complexity of the ridge geometry. The
selection of the scale might be critical in the general setting of natural scenes
[Lindeberg, 1998]. However in our case, SGR is applied to a normalized ridge
map that defines step-wise almost binary images of ridges (see Fig. 2.2, left).
Therefore, the choice of scale is not critical anymore. In order to get medial maps
as accurate as possible, we recommend using a minimum anisotropic setting:
σz = 1, σx = σy = 2. Finally, orientation sampling should be dense enough in
order to capture any local geometry of medial surfaces. In the case of using the
minimum scale, eight orientations, N = M = 8, are enough.

Therefore, GSM2 is given by:

GSM2 = max
i,j

(
∂2
zg

Θi,j
(2,2,1) ∗NRM

)
(12)

for NRM computed over ST1,0.5(M) and Θi,j computed setting N = M = 8.
The parameters involved in NMS binarization step are the scales of the struc-

ture tensor STρ,σ(GSM2) and the binarizing threshold, τ . Like in the case of
NRM, GSM2 is a regular function which maximums define closed medial mani-
folds, so we set the structure tensor scales to their minimum values σ = 0.5 and
ρ = 1. Concerning τ , it can be obtained using any histogram threshold calcula-
tion, since GSM2 inherits the uniform discriminative response along ridges of
NRM .

3 Validation Framework for Medial Anatomy Asess-
ment

In order to address the representation of organs for medical use, medial represen-
tations should achieve a good reconstruction of the full anatomy and guarantee
that the boundaries of the organ are reached from the medial surface. Given
that small differences in algorithm criteria can generate different surfaces, we
are interested in evaluating the quality of the generated manifold as a tool to
recover the original shape.

Validation in the medical imaging field is a delicate issue due to the difficul-
ties for generating ground truth data and quantitative scores valid for reliable
application to clinical practice. In this section, we describe our validation frame-
work for evaluating medial surface quality in the context of medical applications.
In particular we will generate a synthetic database with ground truth (GT) and
two quality tests for assessing the quality of the medial anatomy for data with
and without GT. The database can be used to benchmark algorithms using two
tests.

3.1 Synthetic Database

The test set of synthetic volumes / surfaces aims to cover different key aspects
of medial surface generation (see first row in Fig.4.1). The first batch of surfaces
(labelled ’Simple’) includes objects generated with a single medial surface. A
second batch of surfaces is generated using two intersecting medial surfaces
(labelled ’Multiple’), while a last batch of objects (labelled ’Homotopy’) covers
shapes with different number of holes. Each family of medial topology has
20 samples. The volumetric object obtained from a surface can be generated
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by using spheres of uniform radii (identified as ’UnifDist’) or with spheres of
varying radii (identified as ’VarDist’).

Volumes are constructed by assigning a radial coordinate to each medial
point. In the case of UnifDist, all medial points have the same radial value, while
for VarDist they are assigned a value in the range [5, 10] using a polynomial.
The values of the radial coordinate must be in a range ensuring that volumes
will not present self intersections. Therefore, the maximum range and procedure
this radius is assigned depends on the medial topology:

• Simple. In this case, there are no restrictions on the radial range.

• Multiple. For branching medial surfaces, special care must be taken at
surface self-intersecting points. At these locations, radii have to be below
the maximum value that ensures that the medial representation defines a
local coordinate change [Gray, 2004]. This maximum value depends on
the principal curvatures of the intersecting surfaces [Gray, 2004] and it
is computed for each surface. Let M be the medial surface, Z denote
the self-intersection points and D(Z) the distance map to Z. The radial
coordinate is assigned as follows:

R(X) = min(R(X),max(rZ , D(Z))) (13)

being R(X) the value of the polynomial function and rZ the maximum
value allowed at self-intersections. In this manner, we obtain a smooth
distribution of the radii ensuring volume integrity.

• Homotopy. In order to be consistent with the third main property of
medial surfaces [Pudney, 1998], volumes must preserve all holes of medial
surfaces. In order to do so, the maximum radius r2 is set to be under the
minimum of all surface holes radii.

3.2 Medial Surface Quality Metrics

The database can be used to benchmark algorithms using two tests. The first
test evaluates the quality of the medial surface generated, while the second one
explores the capabilities of the generated surfaces to recover the original volume
and describing anatomical structures. Surface quality tests start from known
medial surfaces, that will be considered as ground truth. From this surfaces,
volumetric objects can be generated by placing spheres of different radii at each
point of the surface. The newly created object is then used as input to several
medial surface algorithms and the resulting medial surfaces, compared with the
ground truth.

The quality of medial surfaces has been assessed by comparing them to
ground truth surfaces in terms of surface distance [Heimann and van Ginneken et
al, 2009]. The distance of a voxel y to a surface X is given by: DX(y) =
minx∈X ‖y − x‖, for ‖ · ‖ the Euclidean norm. If we denote by X the reference
surface and Y the computed one, the scores considered are:

1. Standard Surface Distances:

AvD =
1

|Y |
∑
y∈Y

DX(y) (14)
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MxD = max
y∈Y

(DX(y)) (15)

2. Symmetric Surface Distances:

AvSD =
1

|X|+ |Y |

∑
x∈X

DY (x) +
∑
y∈Y

DX(y)

 (16)

MxSD = max

(
max
x∈X

(DY (x)),max
y∈Y

(DX(y))

)
(17)

Standard distances measure deviation from medialness, while differences be-
tween standard and symmetric distances indicate the presence of homotopy
artifacts and presence of unnecessary medial segments.

For each family and method, we have computed quality scores statistical
ranges as µ ± σ, for µ and σ the average and standard deviation computed
over the 20 samples of each group of shapes. The Wilcoxon signed rank test
[Wilcoxon, 1945] has been used to detect significant differences across perfor-
mances.

In medical imaging applications the aim is to generate the simplest medial
surface that allows recovering the original volume without losing significant vox-
els. Volumes recovered from surfaces generated with the different methods are
compared with ground truth volumes. Volumes are reconstructed by computing
the medial representation [Blum, 1967] with radius given by the values of the
distance map on the computed medial surfaces. Ground truth volumes are given
by anatomical meshes extracted from original medical scans.

Comparisons with the original anatomical volumes are based on the average
and maximum symmetric surface distances (AvSD and MxSD given in (16) and
(17)) respectively, computed using the anatomic boundary surface and recon-
structed volume boundaries, as well as the following volumetric measures:

1. Volume Overlap Error:

VOE (A,B) = 100×
(

1− 2
|A ∩B|
|A|+ |B|

)
(18)

2. Relative Volume Difference:

RVD(A,B) = 100× |A| − |B|
|B|

(19)

3. Dice coefficient:

Dice(A,B) =
2|A ∩B|
|A|+ |B|

(20)

for A, B, being respectively the original and reconstructed volumes. Aside from
dice coefficient, lower metric values indicate better reconstruction capability.
Like in the case of the synthetic surfaces, for each medial surface method we
have computed quality scores statistical ranges as µ± σ, for µ, σ computed on
the medical data set, and Wilcoxon signed rank tests.
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4 Validation Experiments

Our validation protocol has been applied to the method described in Section
2.1. To provide a real scenario for the reconstruction tests we have used 14
livers from the SLIVER07 challenge [Heimann and van Ginneken et al, 2009] as
a source of anatomical volumes. In order to compare to morphological methods,
we have also applied it to an ordered thinning using a 6-connected neighbour-
hood criterion for defining medial surfaces (labelled Th6) described in [Bouix
and Siddiqi, 2000], a 26-connected neighbourhood surface test (labelled Th26)
following [Pudney, 1998]. The consistency of surface pruning is tested on a
pruned version of the 26-connected neighbourhood method (labelled ThP26)
that does not allow degenerated medial axis segments and the scheme (labelled
Tao6) described in [Ju et al., 2007] that alternates 6-connected curve and surface
thinning with more sophisticated pruning stages.

4.1 Medial Surface Quality

Figure 4.1 shows an example of the synthetic volumes in the first row and
the computed medial surfaces in the remaining rows. Columns exemplify the
different families of volumes generated: one (Simple in 1st and 2nd columns)
and two (Multiple in 3rd and 4th columns) foil surfaces, as well as, surfaces with
holes (Homotopy in 5th and 6th columns). For each kind of topology we show a
volume generated with constant (1st, 3rd and 5th columns) and variable distance
(2nd, 4th and last columns). We show medial surfaces in solid meshes and the
synthetic volume in semi-transparent color. The shape of surfaces produced
using morphological thinning strongly depends on the connectivity rule used.
In the absence of pruning, surfaces, in addition, have either extra medial axes
attached or extra surface branches in the case pruning is included as part of the
thinning surface tests (Tao6). On the contrary, GSM2 medial surfaces have a
well defined shape matching the original synthetic surface.

Table 1 reports error ranges for the four methods and the different types of
synthetic volumes, as well as total errors in the last column. For all methods,
there are not significant differences between standard and symmetric distances
for a given volume. This indicates a good preservation of homotopy. Even
with pruning, thinning has significant geometric artifacts (maximum distances
increase) and might drop its performance for variable distance volumes due to
a different ordering for pixel removal and type of surface preserved.

According to a Wilcoxon signed rank test, strategies alternating curve and
surface thinning with pruning stages have worse average distances than other
morphological strategies (p < 0.0001 for AvD and p < 0.0001 for AvSD). Given
that maximum distances do not significantly differ ( p = 0.4717, p = 0.6932,
p = 0.7752 for MxD and p = 0.9144, p = 0.7463, p = 0.6669 for MxSD),
this indicates the introduction of extra structures of larger size (extra surface
branches in Tao6 for the variable volumes shown in Fig. 4.1).

The performance of GSM2 is significantly better than other methods (Wilcoxon
signed rank test with p < 0.0001), presents high stability across volume geome-
tries and produces accurate surfaces matching synthetic shapes. The small
increase in errors for multiple self-crossing surfaces is explained by the presence
of holes at intersections between medial manifolds. Still its overall performance
clearly surpasses performance of morphological approaches.
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Figure 4.1: Medial surfaces. Examples of the compared methods for each syn-
thetic volume family.

4.2 Reconstruction Power for Clinical Applications

Table 2 reports the statistical ranges for all methods and measures computed
for the 14 livers. There are no significant differences among methods and best
performers vary depending on the quality measure. However, our approach and
the two thinnings, ThP26 and Tao6, have an overall better reconstruction power.

Medial surface of a healthy liver obtained with the thinning methods can be
seen in Fig. 4.2 shows the and the GSM2 medial surface in Fig. 4.3 left. In the
case of thinning based methods, medial manifolds have a more complex geometry
than GSM2 and might include extra structures and self intersections (Fig. 4.2).
In medical applications such extra structures might hinder the identification of
abnormal or pathological structures. This is not the case for GSM2 surfaces
as exemplified in Fig. 4.3. The oversized superior lobe on the right liver is
captured by the presence of an unusual medial manifold configuration.

5 Application to Cochlea Registration

The cochlea is the inner ear structure that controls the sensation of hearing and
balance, and an understanding of the anatomy and anatomical variability plays
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Simple Multiple Homotopy Total

UnifDist VarDist UnifDist VarDist UnifDist VarDist

GSM2

AvD 0.28± 0.09 0.28± 0.07 0.38± 0.09 0.43± 0.18 0.37± 0.18 0.34± 0.14 0.34± 0.14

MxD 2.99± 0.50 3.50± 1.53 3.56± 0.53 4.76± 1.51 3.39± 0.48 3.70± 0.84 3.65± 1.13

AvSD 0.24± 0.05 0.25± 0.05 0.37± 0.32 0.37± 0.18 0.29± 0.10 0.28± 0.08 0.30± 0.17

MxSD 3.02± 0.46 3.66± 1.52 4.10± 2.61 4.76± 1.51 3.39± 0.48 3.70± 0.84 3.78± 1.52

Th6

AvD 1.52± 0.27 5.63± 2.19 1.66± 0.30 3.05± 0.75 1.56± 0.35 2.96± 1.17 2.73± 1.80

MxD 5.55± 0.26 16.21± 4.76 5.82± 0.27 10.75± 3.40 5.54± 0.20 10.17± 3.20 9.01± 4.72

AvSD 1.04± 0.21 4.34± 1.94 1.16± 0.24 2.24± 0.56 1.09± 0.28 2.13± 0.98 2.00± 1.48

MxSD 5.55± 0.26 16.21± 4.76 5.82± 0.27 10.75± 3.40 5.54± 0.20 10.17± 3.20 9.01± 4.72

Th26

AvD 0.85± 0.25 3.15± 1.34 1.00± 0.19 1.89± 0.52 0.86± 0.37 1.63± 0.84 1.56± 1.07

MxD 5.51± 0.25 16.17± 4.78 5.58± 0.19 10.64± 3.43 5.46± 0.25 10.09± 3.21 8.91± 4.75

AvSD 0.56± 0.14 2.02± 0.92 0.67± 0.12 1.24± 0.35 0.59± 0.22 1.05± 0.56 1.02± 0.69

MxSD 5.51± 0.25 16.17± 4.78 5.58± 0.19 10.64± 3.43 5.46± 0.25 10.09± 3.21 8.91± 4.75

ThP26

AvD 0.57± 0.20 2.24± 1.00 0.70± 0.17 1.38± 0.37 0.54± 0.24 1.11± 0.62 1.09± 0.79

MxD 5.49± 0.27 16.16± 4.78 5.58± 0.19 10.61± 3.43 5.41± 0.27 10.08± 3.23 8.89± 4.76

AvSD 0.41± 0.11 1.38± 0.61 0.50± 0.11 0.92± 0.24 0.41± 0.12 0.72± 0.37 0.72± 0.47

MxSD 5.49± 0.27 16.16± 4.78 5.58± 0.19 10.61± 3.43 5.41± 0.27 10.08± 3.23 8.89± 4.76

Tao6

AvD 0.79± 0.21 4.82± 2.05 0.86± 0.17 2.46± 1.09 0.85± 0.29 2.48± 1.20 2.04± 1.79

MxD 4.87± 0.20 17.55± 5.19 4.92± 0.17 11.10± 3.71 4.79± 0.21 11.64± 4.33 9.14± 5.68

AvSD 0.51± 0.14 3.92± 1.73 0.59± 0.13 2.00± 0.96 0.59± 0.27 1.99± 1.03 1.60± 1.52

MxSD 4.89± 0.18 17.55± 5.19 5.32± 1.42 11.10± 3.71 5.53± 3.26 11.87± 4.25 9.38± 5.73

Table 1: Error ranges (mean and standard deviation) for the Synthetic Volumes.

GSM2 Th6 Th26 ThP26 Tao6

Volume Error
VOE 7.96± 1.70 8.84± 1.73 8.25± 1.72 7.84± 1.68 8.49± 1.77
RVD 8.49± 2.03 9.10± 2.10 8.96± 2.08 7.86± 2.23 5.91± 1.99
Dice .959± .009 .954± .009 .957± .009 .963± .005 .955± .010

Surface Dist.
AvSD 0.80± 0.06 0.89± 0.06 0.83± 0.05 0.70± 0.11 0.83± 0.06
MxSD 5.61± 2.68 6.00± 2.58 5.52± 2.56 5.94± 1.45 6.42± 2.33

Table 2: Mean and standard deviation of errors in volume reconstruction for
each metric.

an important part in utilizing the full potential of Cochlear Implants [Wilson and
Dorman, 2008]. Detailed anatomical models have interesting patient-specific ap-
plications as they can provide information about the type of electrode design
that best suits the anatomy of the user [Vera et al., 2014], or by allowing im-
provements to the implant programming based on simulations mimicking the
actual anatomical and physiological situation [Ceresa et al., 2014].
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Figure 4.2: Medial manifolds of a healthy liver generated with morphological
methods. Th6 (a), Th26 (b), ThP26 (c) and Tao6 (d).

Figure 4.3: GSM2 medial manifolds of a healthy liver (left) and a liver with an
unusual lobe (right).

Image registration of the cochlea is challenging for a couple of reasons. The
human cochlea is a spiral structure with outer dimensions of approximately
10x8x4 mm. The size and the shape of the spiral can vary extensively. On
average, the cochlea winds 2.6 turns [Erixon et al., 2009] but can approach up
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Figure 5.1: Left: Impression of the µCT data and segmentation. Notice the
small spacing separating the cochlear turns (right side of CT image), the weak
contrast towards internal cochlea borders, and the opening into the middle ear
cavity (middle of the image). Right: The corresponding surface model provides
an overview of the inner ear topology.

to three full turns - corresponding to a difference in the order of 1-2 mm following
the path of the spiral. The separation between the cochlear turns is typically
one order of magnitude smaller. Deformations to properly align the most apical
region of spiral have been difficult to model to our experience. Further, the
whole spiral is a tube-like structure (see Figure5.1, right) with a large degree
of self-similarity in the cross-sections. This lack of distinct features makes it
difficult to identify corresponding anatomical positions across samples.

The desired registration model should not just expand or compress the apical
part of the spiral to align two samples, but rather model a change along the entire
spiral. Essentially the model should be able to handle very local deformations
while still adhering to the global structure of the samples. This type of behavior
is usually not native to non-rigid registration models without some kind of prior
or regularization included.

Modifications to a registration model to include such prior knowledge have
been studied previously. A way of introducing anatomical shape priors is the
use of a statistical shape model [Berendsen et al., 2013; Heimann and Meinzer,
2009]. However, building statistical shape models is in itself a labor intensive
task rivaling if not surpassing the task of the registration, as the prerequisite for
building the model is data that is already registered to have correspondences.

A multitude of physical constraints have also been proposed as regulariza-
tions. For example, local tissue rigidity can be enforced in specified areas [Star-
ing et al., 2007], or conditions of incompressibility or volume-preservation can be
applied [Rohlfing et al., 2003]. However, finding the suitable physical constraint
for a registration task is not straightforward, as this is case- and application
dependent.

In the work of [Baiker et al., 2011] an articulated skeleton model was pre-
registered to intra-mouse data studies in order to recover large pose-differences
between data acquisitions. The presented application is narrow in its scope,
but the registration methodology of using landmark correspondences as regu-
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larization is more generally applicable, thus we adopt this approach for this
work.

In this section we explore the potential of using the skeleton of the cochlea
as anatomical prior in free-form registrations using a B-spline transformation
model. The skeleton provides a global description of shape in a simplified and
structured form. Matching based on skeleton similarity could provide a global
anatomical guidance or regularization to a locally defined free-form image reg-
istration procedure with a high resistance to noise compared to using only the
image intensity similarity.

The use of skeleton similarity in image registrations should be applicable to
many different problems and there are many published methods and approaches
for finding and matching the skeletons for differing types of data and geome-
tries [Sundar et al., 2003; Tangelder and Veltkamp, 2004]. Skeleton correspon-
dence has been seen in image registration tasks before, relating to for instance
2D/3D multi-modal registration [Liu et al., 1998] and matching of vessels in
time-series angiography data [Tom et al., 1994]. More related to our approach
is the work of [Tang and Hamarneh, 2008], where multiple different shape fea-
tures were calculated from surface objects and transformed into vector-valued
2D feature images, which were aligned with a classic image registration formu-
lation. Skeleton features were used for global alignment in the coarser levels of
the registration. Our strategy is similar although the prior will be included into
the registration model differently.

5.1 Material and methods

A collection of 17 dried temporal bones from the University of Bern were pre-
pared and scanned with a Scanco Medical µCT100 system. The data was
reconstructed and processed to obtain image volumes of 24 micron isotropic
voxel-sizes containing the inner ear (Figure 5.1, left).

Image segmentation: The border of the inner ear was segmented in all
datasets semi-automatically using ITK-SNAP [Yushkevich et al., 2006b].

The semi-automatic tool in the segmentation software was critical for achiev-
ing smooth and rounded segmentations in data with that kind of resolution, and
for reducing the amount of manual work. A surface model was generated for
each dataset using Marching Cubes [Lorensen and Cline, 1987] followed by a
surface reconstruction [Paulsen et al., 2010] to obtain a well-formed triangular
mesh (Figure 5.1, right).

5.2 Skeletonization

To avoid working with a genus 3 surface, we exclude the vestibular system and
focus only on a skeleton of the spiral shaped cochlea. We propose to use a
set of corresponding pseudo-landmarks, ZLM, of the cochleae obtained from a
parametric ‘curved skeleton’ that will improve registration results.

We compute the medial axis of the skeleton by using the GSM2 method
on the binary segmentations of each cochlea. The computed centerline of the
cochlea runs close to the spiral lamina ossea, an internal feature of the cochlea
that is tied to the perception of different frequencies of sound. We manually
define the cochlear apex landmark (Ai), at the extreme of the coclea in each
dataset.
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Figure 5.2: The cochlear skeletonization. Left: White ’x’ annotations are sam-
pled skeleton information. Right: cochlear apex (Ai) in white. Points on the
surface represent parametric pseudo-landmarks.

We generate a naive parametric model of the cochlea. First, we create a
parametric description of the cochlea skeleton by sampling 37 corresponding
positions on the skeleton with equal arc-length (ZS

i ). Secondly, we extract
planar surface cross-section at each of the points, p, in ZS

i . The cross-section
plane is determined by the tangent of the skeleton at p. Each cross-section of
the surface mesh is then parameterized using 40 points. These cross-sectional
points together with the apex landmark (Ai) provides a set, ZLM

i , of 1481
corresponding surface pseudo-landmarks (Figure 5.2, right) to be included in a
registration model. Finding the cochlea cross-section in the apical region of the
cochlear can potentially lead to some ambiguity, as they could intersect with
themselves. To avoid this the skeleton cross-sections in the apical turn were not
included.

5.3 Image Registration

The registration procedure follows a common work-flow. One dataset was chosen
as the reference, to which the remaining moving datasets were registered in two
steps - rigid initialization followed by the deformable registration, both detailed
in the following subsections.

5.3.1 Initial rigid alignment

There are many approaches for finding rigid transformations. The chosen pro-
cedure is independent from the skeleton information and is the same no matter
the chosen deformable registration model. In that way, later comparisons of reg-
istration results are not affected by the initialization. The whole initialization
procedure relies solely upon the extracted surface meshes, but the calculated
rigid transformations were also applied to the gray-scale volumes and their seg-
mentations.

Translation: Let p(i,j) be the j-th vertex position of dataset i. A translation
was applied so that the center of mass is placed in position (0,0,0), i.e. the mean
vertex position, p̄i, was subtracted from all vertices. This places all datasets in
a coordinate system where the inner ear center of mass of each dataset is in the
origin.
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Rotation: Let Σi be the 3-x-3 covariance matrix of the mesh vertex posi-
tions of dataset i (after the translation). The eigenvectors, Wi, of Σi provides
a rotation matrix, which when applied transforms the data to the principal
component directions. This essentially corresponds to fitting an ellipsoid to the
point cloud and aligning the axes.

Check directions: This alignment procedure is robust due to the asymme-
try of the inner ear shape (Figure 5.1, right). However, the sign of a principal
direction in the i-th dataset could potentially be opposite compared to that of
the reference. To handle this we make a simple check. The bounding box of the
reference and of the moving point cloud is divided into a coarse grid. We use
the sum of squared grid vertex-density difference between the two as a check
metric. If the axis-flip would result in a lower metric, then the flip is made to
the moving dataset. While there is no guarantee for this to work in all cases, it
has worked well for our data. In principle, any kind of rigid alignment could be
used instead of the one suggested here.

5.3.2 Deformable registration

The non-rigid image registration follows the formulation and framework of
elastix [Klein et al., 2010].

The registration is done between the segmentations rather than the gray-
scale volumes for two reasons. First, the µCT data contain smaller artifacts
and certain weakly contrasted edges, that were handled during the segmentation.
Secondly, the registration should not be influenced by the anatomical differences
in the surrounding bone structure.

The registration of the moving dataset, IM , towards the reference, IF , is
formulated as a (parametric) transformation, Tµ, where the vector µ containing
the p-parameters of the transformation model are found as an optimization of
a cost function, C.

µ̂ = arg min
µ
C(Tµ, IF , IM ) (21)

The transformation model used in this paper is the cubic B-spline in a multi-
resolution setting. We apply image smoothing with a Gaussian kernel to both
the fixed and moving image. For each level of resolution the spacing between grid
points and the width of the smoothing kernel follows a decreasing scheme, start-
ing with a coarse registration that is gradually refined. The following scheme
was chosen by experimentation:
Control point grid spacing (isotropic, voxels):

[144, 72, 48, 48, 36, 24, 18, 12, 6]

Width of Guassian kernel (isotropic, voxels):

[10, 10, 1, 1, 1, 1, 1, 1, 1]

The width of the kernel was deliberately kept narrow in most levels to avoid
that small and sharp features would be blurred out (for instance the separation
of the cochlear turns). Two of the levels have the same values to overcome
limitations of maximum deformation per step.

The cost function used in this ‘basic’ registration set-up:

C1 = α · SSim(µ, IF , IM ) + (1− α) · PBE(µ) (22)
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where α is a weight parameter in the interval [0,1]. The similarity term, SSim,
is chosen as the sum of squared differences (SSD). The term PBE is the en-
ergy bending regularization used to penalize strong changes and foldings in the
transformation [Rueckert et al., 1999]. The weighting of the similarity term was
chosen to 0.9 by experimentation. Increasing α would provide more freedom
for deformation of the shapes, but also increase the risk of having non-plausible
anatomical results.

The optimization is solved using Adaptive Stochastic Gradient Descent [Klein
et al., 2009]. The maximum number iterations was set to 2500. To reduce the
computational burden of the optimization only a subset voxels are sampled for
the evaluation. For each iteration 214 random coordinate points were sampled.
These settings were fixed for all resolutions.

5.3.3 Deformable registration with guidance from skeleton

The free-form registration set-up remains largely the same when a skeleton is
included in order to make comparisons fair. The cost function is modified to
include a landmark similarity term [Baiker et al., 2011]:

C2 = α · SSim (µ, IF , IM ) +

β · SCP (µ,ZF ,ZM ) + (1− α− β) · PBE(µ) (23)

where α and β are weightings in the interval [0,1] and fulfilling α + β ≤ 1.
The landmark similarity term, SCP (µ,ZF ,ZM ), uses the Euclidean distance
between the set of corresponding landmarks, ZF and ZM . In this way intensity-
based image registration is guided with features extracted from the anatomical
skeleton (i.e. using ZLM

i from Section 5.2). By experimentation the weightings
were set to α = 0.8 and β = 0.11. The landmark similarity is kept small in
order not to force the alignment, and the ratio between image similarity and
bending energy regularization is kept similar to the previous set-up C1 (Eq. 22).
Settings for the transformation model and optimizer were unchanged from the
previous registration model.

5.4 Evaluation

We are interested in comparing the 16 registration results of model 1 (Eq. 22)
and model 2 (Eq. 23) using a number of different image and mesh based metrics.

Image based evaluation: Let Ii(µ) be the moving segmentation vol-
ume after application of the resulting transformation. We compare the Dice
Score [Dice, 1945] to the segmentation of the reference dataset, IRef.

DSC =
2 · |IRef

⋂
Ii(µ)|

|IRef|+ |Ii(µ)|
(24)

Mesh based evaluation: We define the surface based scores as follows.
Let SRef(µ) be the reference surface mesh after application of the resulting
transformation. There is no direct point correspondence between the reference
and the ground truth surfaces, Si, and they each contain a varying number of
vertices. Metrics are therefore based on the closest points, i.e. the minimum
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Euclidean distance from a point, p, to any of the points, q, in the other surface,
S:

d(p,S) = min
∀q∈S

(||p− q||2) (25)

The mean surface error, ds̄, of each sample is defined as the average of all
the closest point distances:

ds̄ =
1

NRef +Ni

 ∑
∀p∈SRef(µ)

d(p,Si) +
∑
∀p∈Si

d(p,SRef(µ))

 (26)

where NRef and Ni are the total number of points in the reference and the
moving surface respectively.

The Hausdorff distance, dH , is the maximum of all the closest point dis-
tances:

dH = max

{
max

∀p∈SRef(µ)
d(p,Si), max

∀p∈Si
d(p, SRef(µ))

}
(27)

The above mentioned metrics are very generic and will hardly be able to
reflect and evaluate the change in the registration model that we intend to
explore. We therefore include two additional scores, apex error and torque.

First, we calculate the euclidean distance between apexes of the target data
and of the reference.

dA = ||A′Ref(µ)−Ai||2 (28)

The apex is one of the few locations on the cochlea that can be placed relatively
precisely. Even though an arc-length distance might be more correct to use,
the euclidean apex error should be indicative of the registration model behavior
in the apical region, even though this point is also included in the registration
model.

Secondly, we look at the differences in the vector deformation fields obtained
by the registration models. The cochlear samples have a different number of
turns, and we wish to evaluate the registration models ability to capture this
rotational behavior of the anatomy. Our postulation and assumption is that
this ability of the registration model should correlate with the ‘torque’, τ , on
the central axis of the cochlear exerted by the deformation field.

Let the force vector, ~Fp, on the vertex, p, in the reference mesh be defined
simply as the vector between the vertex position before and after application of
the registration transformation:

~Fp = p(µ)− p

Further, we can calculate the perpendicular arm from the central axis to the
mesh vertex, v̂p. This vector is normalized to unit length, so that the vertices
farther from the axis will not contribute with a greater torque.

The scalar projection of the force vector, Fp, onto the unit arm that is per-
pendicular to both the central axis and v̂p is then the acting force contributing
to the torque:

Fp = ~Fp · (~n× v̂p)
Using this local vertex torque force leads to our definition of the torque of the
registration:

τ =
1

NRef

∑
∀p∈SRef

Fp =
1

NRef

∑
∀p∈SRef

(p(µ)− p) · (~n× v̂p) (29)
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Dice Score Surf. Error Hausdorff Apex Error Avg. Torque

M1 0.96 ± 0.01 0.040 ± 0.01 0.69 ± 0.24 1.01 ± 0.59 -0.04 ± 0.09
M2 0.95 ± 0.01 0.045 ± 0.01 0.73 ± 0.35 0.69 ± 0.52 -0.53 ± 0.28

Table 3: Statistics of registration evaluation metrics, reported as the mean +/- 1
std. Model 1 is the non-rigid image registration model and Model 2 the non-rigid
image registration model incorporating a skeleton prior. Suf Error, Hausdorff
and Apex Error metrix are expressed in mm. Average Torque in mm2

Figure 5.3: Sample-wise apex error (Left) and average torque (Right) plotted
against the number of cochlear turns of the target samples. Vertical black line
indicate the number of turns in the reference sample.

5.5 Results

The registrations were done on a desktop with a quad-core 3.6 GHz processor,
64 GB RAM, running elastix v4.7. The average time per registration was ap-
proximately 0.8 hours and we observed no notable difference in run times or
convergence speed between the two registration models.

The statistics of the different metric scores are presented in Table 3. Fig-
ure 5.3 elaborates on the sample-wise apex error and torque metric, and Fig-
ure 5.4 and 5.5 show the qualitative difference between the registration models.

The general metrics (DSC, ds̄, dH) show a small decrease in performance
accuracy for model 2.

From Figure 5.3 it is observed that the apex errors of model 1 grow more
or less proportionally to the discrepancy in cochlear turns. The torque is close
to zero on average. These observations reflect that model 1 only adapts very
locally and behaves indifferently with regards to the turning of the target shape.
I.e. the resulting cochlear shapes after registration have little variation in the
turns.

The apex errors are seen to be generally lower for model 2. Note, that
the apex landmark used to calculate this error was a part of the optimization
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Figure 5.4: Qualitative difference in the local torque acting on the cochlea
central axis (black vector). The target sample has 2.60 turns, compared to the
2.46 of the reference (the shown surface). Positive direction of the central axis
is defined from the cochlea base towards the apex.

Figure 5.5: The visual difference between registration models. The reference
surface is deformed using either model 1 (right, light-grey) or model 2 (left,
dark-grey) to align with the target sample (middle, grey). The surfaces have
been moved apart to avoid overlap between shapes.

procedure. That the error is reduced is therefore no surprise and it is a biased
metric for considering the model accuracy and precision. However, it provides
a summarizing pseudo-measure of how much more turning registration model 2
on average is able to capture, which is further illustrated in Figure 5.5. For very
large differences in cochlear turns it would seem that both of the registration
models have trouble with aligning the apexes.

The torque of model 2 is in most of the cases negative. This indicate vector
fields pointing more tangentially in the direction of the spiral towards to the
apical region. This would be the expectation as most of the target samples
have more turns than the reference. The torque is not a measure of accuracy
nor precision. The torque merely provides a simple quantification of the overall
rotation of the cochlear shape. Further is gives a good way of illustrating the
differences between the registration models as demonstrated in Figure 5.4.

6 Discussion

Medial manifolds are powerful descriptors of shapes. The method presented
in this chapter allows the computation of medial manifolds without relying in
morphological methods nor neighbourhood or surface tests. Additionally, it can
be seamlessly implemented regardless of the dimension of the embedding space.

The performance of our method has been compared to current morpholog-
ical thinning methods in terms of the quality of medial manifolds and their
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capability to recover the original volume. For the first experiment a battery
of synthetic shapes covering different medial topologies and volume thickness
has been generated. For the second one, we have used a public database of CT
volumes of livers, including pathological cases with unusual deformations.

The proposed method has several advantages over thinning strategies. It
performs equally across medial topologies and volume thickness. The resulting
medial surfaces are of greater simplicity than the generated by thinning meth-
ods. Although having this minimalistic property, the resulting medial manifolds
are suitable for locating unusual pathological shapes and properly restore orig-
inal volumes. We conclude that our methodology reaches the best compromise
between simplicity in geometry and capability for restoring the original volu-
metric shape.

Any simplification of a medial surface results in a drop in reconstruction
quality as illustrated in the images of Fig. 6.1. The images show a medial sur-
face of a liver with a pruned version removing the top branch on the top. Fig.
6.1 (b) shows the volumes reconstructed using the pruned surface (dark color),
as well as, the complete one (light color). In this case, the pruned surface can-
not reconstruct the external part of the superior lobe of the liver. This drop
in accuracy is hard to relate to the simplification process because the branch-
ing topology of thinning-based medial manifolds is not always related to the
anatomy curvature (concavity-convexity pattern). A main advantage of GSM2
medial surfaces is that their branches are linked to the shape concavities due to
the geometrical and normalized nature of the operator. In this context, GSM2
manifolds can be simplified (pruned) ensuring that the loss of reconstruction
power will be minimum [Vera and González, 2012].

Figure 6.1: Impact of pruning in reconstructed volumes: medial manifolds (a)
and reconstructed volumes (b).

Regarding computational efficiency, our method is up to 5 times faster than
thinning strategies. Unlike parallelization of topological strategies which require
special treatment of topological constrains [B., 1995; Palágyi and Kuba, 1999],
our code is straightforward to parallelize, even on GPU.

We have shown also how medial information can be used to improve reg-
istration of complex anatomy, in this case the cochlea.The Dice Score, surface
error and Hausdorff distance serve as very general metrics for evaluating the
local adaptability of the registration models. Further, they indicate the general
accuracy and precision that we are achieving with the data. The performance
with model 2 was decreased on these scores. It would seem that we are trading
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some local adaption for guiding the model with the landmarks. The determi-
nation of the skeleton inherently carries some uncertainties. By introducing the
landmarks into the registration model extra noise is added to the procedure. It
may happen that a poor skeleton estimate is drawing the spiral in the wrong
direction. By providing a more robustly determined skeleton that additionally
could fully reach the most apical turn, we expect that the performance of model
of 2 could be increased.

Aspects of the skeletonization and its influence can be studied furthermore.
For instance the number of landmarks used to represent the skeleton. By exper-
imentation we found an amount of cross-sections that works, but the number of
landmarks per cross-section could potentially be reduced. However, the primary
concern is the current lack of information in the most apical cochlear turn. For
this to be included it would be interesting to look into other skeletal represen-
tations. That would in turn potentially require a different way of measuring the
similarity of skeletons and possibly an extension to the registration framework
to accommodate this. It holds an interesting research potential as both the field
of skeletonization and image registration are well-researched areas, but so far
joining the two have received little focus. A reason might be the challenge in
automatically obtaining consistent skeletons from volumetric data. In this work
the skeletons were based on the surface models (i.e. the data segmentation),
which in many cases are difficult and/or time-consuming to obtain. Ideally the
skeletons should be extracted from volumetric gray-scale data similar to the
work of [Abeysinghe et al., 2008; Antúnez and Guibas, 2008].

Using the B-spline grid as the transformation model in the registration has
limitations. Choosing a fluid- or optical flow-based model [Oliveira and Tavares,
2014] could potentially be more suited for this kind of spiral anatomy. Alter-
natively, the performance of the B-spline approach could perhaps be improved
with some data preprocessing. If the cochlea was unfolded, possibly based on
the skeleton cross-sections, it would be in a space more suited for a B-spline grid
transformation. Along the same line of thinking, the deformation control points
could be placed in a non-cubic grid structure favoring the spiral nature of the
data. However, these suggestions may be difficult to realize and involves adapt-
ing the registration method to one very specific task or anatomy. In this and
potentially other cases finding a skeleton and including it into the a registration
model may be an easier or more feasible approach. The results reflect that it is
possible to modify and regularize the registration by using skeleton similarity
as a prior, even though there is room for improvements in our methodology.

The registration parameters used in this work were manually determined. A
set of parameters that works well on all data samples while running within a
reasonable time frame can be difficult to find. Regarding the choice of metric
weights, an interval of α = 0.7 − 0.9, would seem to be the most appropriate
for model 1. Higher α increases the flexibility of the model, which is needed
for capturing the cochlear turning. However, increasing beyond 0.9 made some
cases fail. In particular the behavior of the deformations in the semi-circular
canals performed poorly. The same holds true for model 2. For having a fair
comparison between the registration models, the same relative weight of the im-
age similarity and bending energy metric was kept. Having β < 0.15 was found
to be reasonable. Forcing more weight on the landmarks could result in too
strong deformations in some cases, and going much lower counters the idea of
having the landmarks. Variable metric weights throughout the resolutions were
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also tested for model 2. I.e. a scheme where a strong weighting was placed on
the landmarks in the initial resolutions and then gradually reduced. It worked
well in some cases only, so to keep the registration models comparable the fixed
weightings scheme was used. Regarding the optimization only the default opti-
mizer and automatically determined settings were used. A number of samples in
the range of 214 − 217 and a maximum number of iterations between 1000-2500
seemed to produce stable results. Tweaking of registration parameters could
result in minor changes of the performance scores, but the same tendencies of
the registration models would be observed.

The local torque forces (Figure 5.4) provides the most qualitative view of the
differences between the registration models. There is no ground truth torque,
but it illustrates that the normal registration model is very local in its adaption,
whereas model 2 provides more turning in the region where the skeleton is
defined. Ideally we could have shown a more convincingly stronger negative
correlation (Figure 5.3) between the differences in the cochlear turns and the
average size of the torque. However, we have a low number of samples and the
registration also has to deal with general differences in the size and orientation
of the samples apart from the turning. In future work the torque could perhaps
even be used as a regularization in the registration model, where it could favor
a constant torque in the B-spline grid points near the spiral.
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