|
Records |
Links |
|
Author |
Jaume Garcia; Joel Barajas; Francesc Carreras; Sandra Pujades; Petia Radeva |
|
|
Title |
An intuitive validation technique to compare local versus global tagged MRI analysis |
Type |
Conference Article |
|
Year |
2005 |
Publication |
Computers In Cardiology |
Abbreviated Journal |
|
|
|
Volume |
32 |
Issue |
|
Pages |
29–32 |
|
|
Keywords |
|
|
|
Abstract |
Myocardium appears as a uniform tissue that seen in convectional Magnetic Resonance Images (MRI) shows just the contractile part of its movement. MR Tagging is a unique imaging technique that prints a grid over the tissue which moves according to the underlying movement of the myocardium revealing the true deformation of the cardiac muscle. Optical flow techniques based on spectral information estimate tissue displacement by analyzing information encoded in the phase maps which can be obtained using, local (Gabor) and global (HARP) methods. In this paper we compare both in synthetic and real Tagged MR sequences. We conclude that local method is slightly more accurate than the global one. On the other hand, global method is more efficient as it is much faster and less parameters have to be taken into account |
|
|
Address |
Lyon (France) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
0-7803-9337-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GBC2005 |
Serial |
639 |
|
Permanent link to this record |
|
|
|
|
Author |
Enric Marti; Jordi Regincos;Jaime Lopez-Krahe; Juan J.Villanueva |
|
|
Title |
Hand line drawing interpretation as three-dimensional objects |
Type |
Journal Article |
|
Year |
1993 |
Publication |
Signal Processing – Intelligent systems for signal and image understanding |
Abbreviated Journal |
|
|
|
Volume |
32 |
Issue |
1-2 |
Pages |
91-110 |
|
|
Keywords |
Line drawing interpretation; line labelling; scene analysis; man-machine interaction; CAD input; line extraction |
|
|
Abstract |
In this paper we present a technique to interpret hand line drawings as objects in a three-dimensional space. The object domain considered is based on planar surfaces with straight edges, concretely, on ansextension of Origami world to hidden lines. The line drawing represents the object under orthographic projection and it is sensed using a scanner. Our method is structured in two modules: feature extraction and feature interpretation. In the first one, image processing techniques are applied under certain tolerance margins to detect lines and junctions on the hand line drawing. Feature interpretation module is founded on line labelling techniques using a labelled junction dictionary. A labelling algorithm is here proposed. It uses relaxation techniques to reduce the number of incompatible labels with the junction dictionary so that the convergence of solutions can be accelerated. We formulate some labelling hypotheses tending to eliminate elements in two sets of labelled interpretations. That is, those which are compatible with the dictionary but do not correspond to three-dimensional objects and those which represent objects not very probable to be specified by means of a line drawing. New entities arise on the line drawing as a result of the extension of Origami world. These are defined to enunciate the assumptions of our method as well as to clarify the algorithms proposed. This technique is framed in a project aimed to implement a system to create 3D objects to improve man-machine interaction in CAD systems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier North-Holland, Inc. |
Place of Publication |
Amsterdam, The Netherlands, The Netherlands |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0165-1684 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;ISE; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MRL1993 |
Serial |
1611 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Petia Radeva; E.N.Nofrerias |
|
|
Title |
Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images |
Type |
Conference Article |
|
Year |
2004 |
Publication |
Proc. Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
31 |
Issue |
|
Pages |
229-232 |
|
|
Keywords |
|
|
|
Abstract |
The adventitia layer appears as a weak edge in IVUS images with a non-uniform grey level, which difficulties its detection. In order to enhance edges, we apply an anisotropic filter that homogenizes the grey level along the image significant structures (ridges, valleys and edges). A standard edge detector applied to the filtered image yields a set of candidate points prone to be unconnected. The final model is obtained by interpolating the former line segments along the tangent direction to the level curves of the filtered image with an anisotropic contour closing technique based on functional extension principles |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Chicago (USA) |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2004 |
Serial |
1555 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; David Rotger; Francesc Carreras; R.Leta; Petia Radeva |
|
|
Title |
Contrast echography segmentation and tracking by trained deformable models |
Type |
Conference Article |
|
Year |
2003 |
Publication |
Proc. Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
30 |
Issue |
|
Pages |
173-176 |
|
|
Keywords |
|
|
|
Abstract |
The objective of this work is to segment the human left ventricle myocardium (LVM) in contrast echocardiography imaging and thus track it along a cardiac cycle in order to extract quantitative data about heart function. Ultrasound images are hard to work with due to their speckle appearance. To overcome this we report the combination of active contour models (ACM) or snakes and active shape models (ASM). The ability of ACM in giving closed and smooth curves in addition to the power of the ASM in producing shapes similar to the ones learned, evoke to a robust algorithm. Meanwhile the snake is attracted towards image main features, ASM acts as a correction factor. The algorithm was tested independently on 180 frames and satisfying results were obtained: in 95% the maximum difference between automatic and experts segmentation was less than 12 pixels. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Centre de Visió per Computador – Dept. Informàtica, UAB Edifici O – Campus UAB, 08193 Bellater |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0276-6547 |
ISBN |
0-7803-8170-X |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRC2003 |
Serial |
1512 |
|
Permanent link to this record |
|
|
|
|
Author |
David Rotger; Misael Rosales; Jaume Garcia; Oriol Pujol ; J. Mauri; Petia Radeva |
|
|
Title |
Active Vessel: A New Multimedia Workstation for Intravascular Ultrasound and Angiography Fusion |
Type |
Journal Article |
|
Year |
2003 |
Publication |
Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
30 |
Issue |
|
Pages |
65-68 |
|
|
Keywords |
|
|
|
Abstract |
AcriveVessel is a new multimedia workstation which enables the visualization, acquisition and handling of both image modalities, on- and ofline. It enables DICOM v3.0 decompression and browsing, video acquisition,repmduction and storage for IntraVascular UltraSound (IVUS) and angiograms with their corresponding ECG,automatic catheter segmentation in angiography images (using fast marching algorithm). BSpline models definition for vessel layers on IVUS images sequence and an extensively validated tool to fuse information. This approach defines the correspondence of every IVUS image with its correspondent point in the angiogram and viceversa. The 3 0 reconstruction of the NUS catheterhessel enables real distance measurements as well as threedimensional visualization showing vessel tortuosity in the space. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RRG2003 |
Serial |
1647 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; Debora Gil; Luis Badiella; Aura Hernandez-Sabate; Francesc Carreras; Sandra Pujades; Enric Marti |
|
|
Title |
A Normalized Framework for the Design of Feature Spaces Assessing the Left Ventricular Function |
Type |
Journal Article |
|
Year |
2010 |
Publication |
IEEE Transactions on Medical Imaging |
Abbreviated Journal |
TMI |
|
|
Volume |
29 |
Issue |
3 |
Pages |
733-745 |
|
|
Keywords |
|
|
|
Abstract |
A through description of the left ventricle functionality requires combining complementary regional scores. A main limitation is the lack of multiparametric normality models oriented to the assessment of regional wall motion abnormalities (RWMA). This paper covers two main topics involved in RWMA assessment. We propose a general framework allowing the fusion and comparison across subjects of different regional scores. Our framework is used to explore which combination of regional scores (including 2-D motion and strains) is better suited for RWMA detection. Our statistical analysis indicates that for a proper (within interobserver variability) identification of RWMA, models should consider motion and extreme strains. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0278-0062 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GGH2010b |
Serial |
1507 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Ramos Terrades; Albert Berenguel; Debora Gil |
|
|
Title |
A Flexible Outlier Detector Based on a Topology Given by Graph Communities |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Big Data Research |
Abbreviated Journal |
BDR |
|
|
Volume |
29 |
Issue |
|
Pages |
100332 |
|
|
Keywords |
Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors |
|
|
Abstract |
Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings. |
|
|
Address |
August 28, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBG2022a |
Serial |
3718 |
|
Permanent link to this record |
|
|
|
|
Author |
Francesc Carreras; Jaume Garcia; Debora Gil; Sandra Pujadas; Chi ho Lion; R.Suarez-Arias; R.Leta; Xavier Alomar; Manuel Ballester; Guillem Pons-Llados |
|
|
Title |
Left ventricular torsion and longitudinal shortening: two fundamental components of myocardial mechanics assessed by tagged cine-MRI in normal subjects |
Type |
Journal Article |
|
Year |
2012 |
Publication |
International Journal of Cardiovascular Imaging |
Abbreviated Journal |
IJCI |
|
|
Volume |
28 |
Issue |
2 |
Pages |
273-284 |
|
|
Keywords |
Magnetic resonance imaging (MRI); Tagging MRI; Cardiac mechanics; Ventricular torsion |
|
|
Abstract |
Cardiac magnetic resonance imaging (Cardiac MRI) has become a gold standard diagnostic technique for the assessment of cardiac mechanics, allowing the non-invasive calculation of left ventric- ular long axis longitudinal shortening (LVLS) and absolute myocardial torsion (AMT) between basal and apical left ventricular slices, a movement directly related to the helicoidal anatomic disposition of the myocardial fibers. The aim of this study is to determine AMT and LVLS behaviour and normal values from a group of healthy subjects. A group of 21 healthy volunteers (15 males) (age: 23–55 y.o., mean:30.7 ± 7.5) were prospectively included in an obser- vational study by Cardiac MRI. Left ventricular rotation (degrees) was calculated by custom-made software (Harmonic Phase Flow) in consecutive LV short axis planes tagged cine-MRI sequences. AMT was determined from the difference between basal and apical planes LV rotations. LVLS (%) was determined from the LV longitudinal and horizontal axis cine-MRI images. All the 21 cases studied were interpretable, although in three cases the value of the LV apical rotation could not be determined. The mean rotation of the basal and apical planes at end-systole were -3.71° ± 0.84° and 6.73° ± 1.69° (n:18) respectively, resulting in a LV mean AMT of 10.48° ± 1.63° (n:18). End-systolic mean LVLS was 19.07 ± 2.71%. Cardiac MRI allows for the calculation of AMT and LVLS, fundamental functional components of the ventricular twist mechanics conditioned, in turn, by the anatomical helical layout of the myocardial fibers. These values provide complementary information about systolic ventricular function in relation to the traditional parameters used in daily practice. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Netherlands |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1569-5794 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ CGG2012 |
Serial |
1496 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti |
|
|
Title |
Approaching Artery Rigid Dynamics in IVUS |
Type |
Journal Article |
|
Year |
2009 |
Publication |
IEEE Transactions on Medical Imaging |
Abbreviated Journal |
TMI |
|
|
Volume |
28 |
Issue |
11 |
Pages |
1670-1680 |
|
|
Keywords |
Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation. |
|
|
Abstract |
Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0278-0062 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGF2009 |
Serial |
1545 |
|
Permanent link to this record |
|
|
|
|
Author |
Mariano Vazquez; Ruth Aris; Guillaume Hozeaux; R.Aubry; P.Villar;Jaume Garcia ; Debora Gil; Francesc Carreras |
|
|
Title |
A massively parallel computational electrophysiology model of the heart |
Type |
Journal Article |
|
Year |
2011 |
Publication |
International Journal for Numerical Methods in Biomedical Engineering |
Abbreviated Journal |
IJNMBE |
|
|
Volume |
27 |
Issue |
|
Pages |
1911-1929 |
|
|
Keywords |
computational electrophysiology; parallelization; finite element methods |
|
|
Abstract |
This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale. |
|
|
Address |
Swansea (UK) |
|
|
Corporate Author |
John Wiley & Sons, Ltd. |
Thesis |
|
|
|
Publisher |
John Wiley & Sons, Ltd. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VAH2011 |
Serial |
1198 |
|
Permanent link to this record |