|
Records |
Links |
|
Author |
Aura Hernandez-Sabate; Debora Gil; Petia Radeva |
|
|
Title |
A Deterministic-Statistical Strategy for Adventitia Segmentation in IVUS images |
Type |
Report |
|
Year |
2005 |
Publication |
CVC Technical Report |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
89 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
A useful tool for some specific studies in cardiac disease diagnosis is vessel plaque assessment by analysis of IVUS sequences. Manual detection of luminal (inner) and media-adventitia (external) vessel borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as well as, shades, artifacts and blurred signal response due to ultrasound physical properties troubles automated adventitia segmentation. In order to efficiently approach such a complex problem, we propose blending advanced anisotropic filtering operators and statistical classification techniques into a vessel border modelling strategy. Our systematic statistical analysis shows that the reported adventitia detection achieves an accuracy in the range of inter-observer variability regardless of plaque nature, vessel geometry and incomplete vessel borders. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2005a |
Serial |
1548 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Ramos Terrades; Albert Berenguel; Debora Gil |
|
|
Title |
A flexible outlier detector based on a topology given by graph communities |
Type |
Miscellaneous |
|
Year |
2020 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Outlier, or anomaly, detection is essential for optimal performance of machine learning methods and statistical predictive models. It is not just a technical step in a data cleaning process but a key topic in many fields such as fraudulent document detection, in medical applications and assisted diagnosis systems or detecting security threats. In contrast to population-based methods, neighborhood based local approaches are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. However, a main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters. This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world data sets show that our approach overall outperforms, both, local and global strategies in multi and single view settings. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; DAG; 600.139; 600.145; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBG2020 |
Serial |
3475 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Ramos Terrades; Albert Berenguel; Debora Gil |
|
|
Title |
A Flexible Outlier Detector Based on a Topology Given by Graph Communities |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Big Data Research |
Abbreviated Journal |
BDR |
|
|
Volume |
29 |
Issue |
|
Pages |
100332 |
|
|
Keywords |
Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors |
|
|
Abstract |
Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings. |
|
|
Address |
August 28, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBG2022a |
Serial |
3718 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Enric Marti |
|
|
Title |
A graph-edit algorithm for hand-drawn graphical document recognition and their automatic introduction into CAD systems |
Type |
Journal Article |
|
Year |
1999 |
Publication |
Machine Graphics & Vision |
Abbreviated Journal |
|
|
|
Volume |
8 |
Issue |
|
Pages |
195-211 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LIM1999 |
Serial |
1568 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Enric Marti; Jaime Lopez-Krahe |
|
|
Title |
A Hough-based method for hatched pattern detection in maps and diagrams |
Type |
Conference Article |
|
Year |
1999 |
Publication |
Proceeding of the Fifth Int. Conf. Document Analysis and Recognition ICDAR ’99 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
479-482 |
|
|
Keywords |
|
|
|
Abstract |
A hatched area is characterized by a set of parallel straight lines placed at regular intervals. In this paper, a Hough-based schema is introduced to recognize hatched areas in technical documents from attributed graph structures representing the document once it has been vectorized. Defining a Hough-based transform from a graph instead of the raster image allows to drastically reduce the processing time and, second, to obtain more reliable results because straight lines have already been detected in the vectorization step. A second advantage of the proposed method is that no assumptions must be made a priori about the slope and frequency of hatching patterns, but they are computed in run time for each hatched area. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LIM1999b |
Serial |
1580 |
|
Permanent link to this record |
|
|
|
|
Author |
Mariano Vazquez; Ruth Aris; Guillaume Hozeaux; R.Aubry; P.Villar;Jaume Garcia ; Debora Gil; Francesc Carreras |
|
|
Title |
A massively parallel computational electrophysiology model of the heart |
Type |
Journal Article |
|
Year |
2011 |
Publication |
International Journal for Numerical Methods in Biomedical Engineering |
Abbreviated Journal |
IJNMBE |
|
|
Volume |
27 |
Issue |
|
Pages |
1911-1929 |
|
|
Keywords |
computational electrophysiology; parallelization; finite element methods |
|
|
Abstract |
This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale. |
|
|
Address |
Swansea (UK) |
|
|
Corporate Author |
John Wiley & Sons, Ltd. |
Thesis |
|
|
|
Publisher |
John Wiley & Sons, Ltd. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VAH2011 |
Serial |
1198 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil |
|
|
Title |
A medial map capturing the essential geometry of organs |
Type |
Conference Article |
|
Year |
2012 |
Publication |
ISBI Workshop on Open Source Medical Image Analysis software |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1691 - 1694 |
|
|
Keywords |
Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction |
|
|
Abstract |
Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume |
|
|
Address |
Barcelona,Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1945-7928 |
ISBN |
978-1-4577-1857-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISBI |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VGG2012a |
Serial |
1989 |
|
Permanent link to this record |
|
|
|
|
Author |
Ernest Valveny; Enric Marti |
|
|
Title |
A model for image generation and symbol recognition through the deformation of lineal shapes |
Type |
Journal Article |
|
Year |
2003 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
24 |
Issue |
15 |
Pages |
2857-2867 |
|
|
Keywords |
|
|
|
Abstract |
We describe a general framework for the recognition of distorted images of lineal shapes, which relies on three items: a model to represent lineal shapes and their deformations, a model for the generation of distorted binary images and the combination of both models in a common probabilistic framework, where the generation of deformations is related to an internal energy, and the generation of binary images to an external energy. Then, recognition consists in the minimization of a global energy function, performed by using the EM algorithm. This general framework has been applied to the recognition of hand-drawn lineal symbols in graphic documents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Inc. |
Place of Publication |
New York, NY, USA |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0167-8655 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VAM2003 |
Serial |
1653 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Guillermo Torres |
|
|
Title |
A multi-shape loss function with adaptive class balancing for the segmentation of lung structures |
Type |
Conference Article |
|
Year |
2020 |
Publication |
34th International Congress and Exhibition on Computer Assisted Radiology & Surgery |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Virtual; June 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CARS |
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GiT2020 |
Serial |
3472 |
|
Permanent link to this record |
|
|
|
|
Author |
Guillermo Torres; Debora Gil |
|
|
Title |
A multi-shape loss function with adaptive class balancing for the segmentation of lung structures |
Type |
Journal Article |
|
Year |
2020 |
Publication |
International Journal of Computer Assisted Radiology and Surgery |
Abbreviated Journal |
IJCAR |
|
|
Volume |
15 |
Issue |
1 |
Pages |
S154-55 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ ToG2020 |
Serial |
3590 |
|
Permanent link to this record |