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Abstract

A useful tool for some specific studies in cardiac disease diagnosis is vessel plaque assessment by
analysis of IVUS sequences. Manual detection of luminal (inner) and media-adventitia (external) vessel
borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification.
Difficult definition of vessel border descriptors, as well as, shades, artifacts and blurred signal response
due to ultrasound physical properties troubles automated adventitia segmentation. In order to efficiently
approach such a complex problem, we propose blending advanced anisotropic filtering operators and
statistical classification techniques into a vessel border modelling strategy. Our systematic statistical
analysis shows that the reported adventitia detection achieves an accuracy in the range of inter-observer
variability regardless of plaque nature, vessel geometry and incomplete vessel borders.
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1 Introduction

IVUS imaging is a unique imaging clinical tool [1] that provides cardiologists with a cross sectional
inside view of the vessel (fig.1(a)) and, thus, allows a complete study of its morphology, such as arterial
wall, lumen or plaque. The technique helps diagnosis and treatment of cardiac diseases, as far as a
precise characterization and segmentation of arterial structures are available. A manual processing of
images, apart from being a tedious time consuming task, might suffer from intra- and inter- observer
variability. This fact motivates the development of image processing techniques addressing detection of
arterial structures.

Since the early years, many algorithms for a reliable intima detection have been proposed ([2]-[7]). By
its inherent difficulty (its distance from the ultrasound transducer reduces sharpness in the border visual
appearance), adventitia modelling has been only approached in recent works ([8]-[17]). However, an
accurate border detection requires either elaborated strategies in the case of contour based segmentations
([13]-[17]), or a previous plaque and tissue characterization in the case of classification strategies ([10],
[11]). We argue that vessel borders detection should serve to characterize and quantify vessel plaque
rather than following as a side result of a laborious plaque classification. In the present work, we
describe an adventitia detection method based on a supervised learning of the boundary followed by a
segmentation determined by its geometry.

Usual techniques addressing segmentation of vessel borders (intima and adventitia) rely on a single
local image descriptor (usually edges) to guide a snake towards the target structures ([11],[14],[15],[17],
or to minimize a cost function with dynamic programming ([3],[4],[13],[16]). Regardless of low quality
in IVUS images, adventitia detection adds the difficulty of a large variety of descriptors, a weak visual
appearance by a decrease in the ultrasonic pulse energy [19] and incomplete contours due to echo opaque
plaques (e.g. calcium) shadowing. It follows that standard segmentation approaches do not suffice by
their own and need ad-hoc strategies to yield proper results. Some authors [2]-[4], [16], [17] combine
transversal and longitudinal contours to endow the model with spatial continuity along the sequence. In
this case, the use of ECG-gated sequences [4], [10] significantly helps to achieve a reliable segmentation
of longitudinal cuts. Other approaches ([5], [6], [10]) manually restrict a region of interest that serves to
initialize a snake, although such initialization might need to be updated along the sequence.

A common inconvenience of segmentation based on contour detection is that it requires some kind of
image filtering to avoid fake responses. The poor image quality as well as large variety of IVUS artifacts
(calcium, shadows, catheter guide and blood back scatter) make standard anisotropic smoothing [30] fail
to achieve optimal results. In order to overcome these drawbacks, several approaches have been proposed.
The most simple strategy is to discard those images containing too much artifacts [13]. Although this is
a practical way of filtering, it runs the risk of losing too much information for a reliable recovery of vessel
borders. Others ([7],[18]), directly handle raw data (the ultrasound signal before being digitalized) and
filter impulse responses of the transducer. Unfortunately, raw data acquisition needs a special device
not always available in standard clinical equipments.

Recent approaches ([8]-[12], [20]) use classification strategies to better characterize coronary struc-
tures (plaque and vessel borders). Although results are robust to noise and artifacts, some of them ([8],
[10], [20]) require a manual region of interest ([8], [10]) or an accurate segmentation of the first sequence
frame for each different case ([20]).

Boundary detection in complex images should hinge on more than one image descriptor ([20], [34],
[24]) and take into account level sets geometry ([27], [24]). The latest advances in the field ([20], [34], [24])
suggest the use of supervised classification techniques in order to learn the values that best characterize
the boundary of interest. The deterministic-statistical strategy for adventitia detection we propose is a
three-fold algorithm that combines supervised learning with geometric-based filtering and segmentation
techniques. In a first preprocessing step, a restricted anisotropic diffusion [28] sharpens vessel borders
appearance in the polar transform of each IVUS frame. In the second stage, supervised classification
techniques serve to compute two binary maps: one for vessel borders and another one for calcium sectors.
The latter in order to discard sectors of ambiguous information due to echo shadowing (calcium plaque in
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(a) (b)

Figure 1: IVUS images in cartesian (a) and polar (b) coordinates

fig.1(a)). In the last step, the fragmented vessel segments of the vessel mask are modelled by computing
an implicit closed representation using an anisotropic contour closing [27] and, then, an explicit B-spline
compact parameterization.

The topics are presented as follows. In Section 2 we outline the 3 main steps of the algorithm. Image
preprocessing is detailed in Section 3, the selection stage is given in Section 4 and computation of a
closed model in Section 5. Sections 6 and 7 are devoted to validation of the method (validation protocol
and statistical results, respectively) and Section 9 to conclusions and further research.

2 General Strategy

The strategy for media-adventitia (simply adventitia from now on) segmentation we suggest summarizes
in the following three main steps:
I. Image Preprocessing.

A. Polar Transformation of IVUS images — Advanced techniques for medical imaging segmentation
[24] use a priori knowledge of the target structure shape. In the case of the adventitia border, its
circular appearance can be imposed by simply transforming images to polar coordinates with the
origin at the geometric center of the vessel border. In this coordinate system, the adventitia is
nearly a horizontal curve, which significantly simplifies border feature extraction and parameteri-
zation.

B. Restricted Anisotropic Diffusion (RAD) — In order to enhance significant structures while remov-
ing noise and textured tissue, we use a Restricted Anisotropic Diffusion [28]. This filtering scheme
modifies classic anisotropic diffusions [30] by suppressing any diffusion across image level curves.
The associated image operator homogenizes image structures gray values according to their geo-
metric continuity and, thus, results in a more uniform response to image local descriptors (edges,
valleys, ridges).

II. Statistical Selection of Border Points.
The goal of the selection stage is to compute a mask of vessel borders segments and calcium sectors.
Extracting vessel borders and calcium points requires defining the functions that best characterize each
set, as well as, their most discriminating values. We learn, both, feature space and parametric threshold
values by applying supervised classification techniques to a training set of manually segmented images.

A. Feature Space Design — Our feature space is designed to discriminate among the set adventi-
tia/intima, calcium and fibrous tissue. Calcium discrimination is needed to discard angular sectors
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of ambiguous information and fibrous tissue to avoid miss detections of vessel borders. By the
polar coordinates chosen, horizontal edges are the main descriptors of the set adventitia/intima.
Image simple statistics serve to formulate the functions characterizing calcium and fibrous plaque.

B. Extraction Parameters — In a segmentation procedure there are two kind of parameters, those
that best discriminate among different structures in the feature space and those acting as a filter
of fake responses. Discriminating parameters are thresholding values on the feature space, while
length filtering removes spurious detections from the extracted segments. Both parameters are
tuned to yield an optimal segmentation for a training set of manually traced borders.

III. Segmentation Stage.
The selection stage produces two binary images: adventitia/intima points and calcium sectors. Vessel
border segments are modelled by computing an implicit closed representation and, then, an explicit
snake representation using B-splines.

A. Implicit Anisotropic Contour Closing (ACC) — For the implicit closing we suggest using an
Anisotropic Contour Closing [27] based on functional extension principles to complete curve seg-
ments in the image mask domain. The use of restricted diffusion operators enables to take into
account image geometry, restore curved shapes and discard calcium and side branches sectors.
We endow 3D continuity to such implicit reconstruction by simple morphological (reference) area
considerations.

B. Explicit B-Snakes Representation — We define vessel contours at branching and calcified segments
by approaching ACC with a B-spline snake. B-snakes yield a smooth representation encoded with
N control points and conforming to the completion mechanisms of human vision [37].

3 Preprocessing

3.1 Polar Coordinates

In an IVUS plane, the adventitia border is an elliptic-like shape with a relatively small eccentricity (fig.
1(a)). By transforming images to polar coordinates (see fig. 1(b)), we have the following simplifications.
Firstly, by its convexity, whatever the origin we take, the adventitia can be parameterized by the radius.
This simplifies computation of the final snake model. Furthermore, if we take as origin its geometric
center, the border transforms to nearly an horizontal line continuously varying along the sequence. The
former simple shape allows the use of horizontally oriented image descriptors. Any deviation in the
position of the geometric center introduces an undulation in the polar transform of the vessel structure
(fig. 2(a)). Such eccentricity forces the use of a bank of filters and might trouble endowing 3D continuity
to the final model in the case of a dynamic shape evolution along the sequence.

In non ECG-gated sequences there are two main sources of adventitia border eccentricity. A sys-
tematic spatial evolution (also observed in in-vitro pullbacks) of the lumen center induced by the vessel
morpho-geometric characteristics. And a dynamical spatio-temporal vessel evolution caused by heart
beating. Cardiac dynamics introduce four main artifacts: a longitudinal displacement of the catheter
along the vessel (up to 2 mm), a dynamic tilting of the IVUS plane and a translation of the vessel
followed by a rotation centered at the vessel center. By the smooth changes in vessel geometry and the
low percentage of eccentricity introduced by catheter tilting, only the last two phenomena affect the
proposed segmentation strategy. To be precise, in a polar domain with a fixed origin (e.g. the image
center), any rigid transformation results in a dynamic radial wave (due to translation) followed by a
horizontal (angular) translation. The first one is a main artifact and it is suppressed by processing the
original image as follows.
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(a) (b)

(c) (d)

Figure 2: Adventitia Straighten Procedure: polar image with origin at the image mass center (a), edges
in a sequence block (b), central percentile of edges positions (c) and final polar image (d).

Heart dynamics eccentricity is removed by taking as origin the image mass center. Since its coordi-
nates are given by the weighted average of the image in cartesian coordinates,

1
NcNr

(
∑

i,j

iI(i, j),
∑

i,j

jI(i, j))

it follows that its spatio-temporal evolution captures cardiac motion. Still, in such polar system (fig.
2(a)) the adventitia might present a static curved pattern if the iis not at the vessel center. This
geometric eccentricity is reduced by computing the geometric mass center of a set of points roughly
lying on the adventitia. Such points are extracted by means of negative horizontal edges (see Section
4 for the definition) of the polar image, namely ey. The impact of noise and artifacts is minimized by
splitting the sequence in blocks of N consecutive images and averaging ey for each block. We note that
because of heart motion we might not be averaging the same part of the tissue which produces a blurring
of the energy average at curved angular sectors. The number of frames achieving the best compromise
between small artifacts removing and tissue blurring is approximately a third of the heart cycle (10
frames in pull-backs at 30 frames per second). We select for each angle (column) those points with the
former average below the 5% radial percentile (see Section 4.2 for details on its choice). Spurious edges
due to noise and other sparse artifacts (such as blood scatter at branches) are removed by applying a
morphological opening on the edge image that leaves only those connected components of a length above
a given value. We adopt the same discriminant criterion as in Section 4.2 and, for each image, take the
3rd quartile of the statistical distribution of its edges length. In order to endow further continuity to
the selected segments, we use the statistical distribution of their radial position along a block of images.
Percentiles computed in the sequence blocks of 100 frames serve to discard outliers by only considering
points within the central percentile range. In order to capture the adventitia curvature, percentiles are
computed on angular sectors of 5 degrees (5 column wide). The final radial values serve to compute the
new origin of our polar transform.

Figure 2 illustrates the main steps of the geometric eccentricity suppression. Fig.2(a) shows the
polar transform with the origin at the image mass center with the usual undulation produced by an
origin different from the vessel geometric center. Fig.2(b), the selected edges in a sequence block before
percentile filtering and fig.2(c) shows the plot for their central percentile. The straightened adventitia
image (fig.2(d)) has the catheter appearing at the center of the lumen in the second quartile of the image
by its deviation from the vessel geometric center.

From now on, we will work with images in polar coordinates, namely AdvPol(i, j). Rows, i =
1, . . . , min(Nc,Nr) (for Nc, Nr the columns and rows of the IVUS image), represent the radius and
columns, j = 1, . . . , 360, the angle.
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3.2 Restricted Anisotropic Diffusion

Most filtering techniques based on image gray level modification [30] use the heat diffusion equation:

It(x, y, t) = div(J∇I) I(x, y, 0) = I0(x, y) (1)

to de-noise an image I0(x, y). The time dependant function I is the family of smoothed images and J
is a 2-dimensional metric (i.e. an ellipse) that locally describes the way gray levels re distribute. The
diffusion tensor J is thoroughly described by means of its eigenvectors (ξ, η = ξ⊥) and eigenvalues (λ1,
λ2). If the latter are strictly positive, like in existing anisotropic filtering techniques ([29], [30]), gray
values spread on the whole image plane and the family I converges to a constant image. But if we
degenerate J and admit null eigenvalues (λ2 = 0), then diffusion only takes place in the integral curves
of the eigenvector (ξ) of positive eigenvalue [27]. Smoothing effects depend on the suitable choice of the
eigenvector of positive eigenvalue. In the case that ξ is a smooth vector representing the tangent space
to a closed model of the image level sets, then the final image is a collection of curves of uniform gray
level [28].

The Structure Tensor [33] is a quick way of computing the guiding vector ξ that has already proven
its efficiency [27]. The Structure Tensor, namely STρ, is a gaussian mean of the projection matrices onto
a regularized image gradient. That is, given a gaussian, Gρ, of variance ρ and zero mean, the structure
tensor is the following convolution:

STρ = Gρ ∗
[(

Ix

Iy

)
(Ix, Iy)

]
=

(
Gρ ∗ I2

x Gρ ∗ IxIy

Gρ ∗ IxIy Gρ ∗ I2
y

)

for (Ix, Iy) = Gσ ∗∇I the components of a regularized image gradient. The eigenvectors of the Structure
Tensor represent a smooth extension of the image level sets tangent space ([27]). The scale σ controls
the degree of gaussian image smoothing used to compute the initial tangent space and ρ the scope of
the extension of such space. In order to preserve the detail in the continuous curves of the image, we
recommend keeping σ as low as possible. As for the extension scale ρ, the range ρ ∈ [1, 2] achieves a
good compromise between restoring closed models of continuous curves and keeping the random nature
of texture and noise. The standard smoothing setting we recommend is (σ, ρ) = (0.5, 2).

We use STρ eigenvectors to design our diffusion tensor as follows. Let us consider a metric J̃ with
eigenvalues λ1 = 1 and λ2 = 0, and ξ the eigenvector of minimum eigenvalue of STρ. The Restricted
Heat Diffusion we suggest is given by:

Vector Field Original RAD

(a) (b) (c)

(d) (e) (f)

Figure 3: RAD smoothing for calcium (1st row) and adventitia (2nd row)
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It = div(QΛ̃Qt∇I), I(x, y, 0) = I0(x, y)

with Q the eigenvectors of STρ = Gρ ∗
(∇Iσ∇IT

σ

)
,

Λ̃ =
(

1 0
0 0

)
and ∇Iσ = Gσ ∗ ∇I

(2)

Since the guiding vector, ξ, is oriented along image structures and randomly at textured and noisy
areas, RAD smoothes image gray values along its regular structures and acts like a gaussian filter
otherwise. The result is that solutions to (2) converge to a smooth image that has a uniform continuous
response to standard detectors based on the image local descriptors. Figure 3 illustrates the mechanisms
and effects of equation (2) in a calcified region (1st row) and near the intima and a fibrous tissue (2nd
row). We applied a standard ridge detector to the calcium image and a horizontal edge operator to the
intima/fibrous tissue one. The vector ξ depicted in fig.3(a) and (d) is well defined near the structures and
randomly distributed in textured tissue (fig.3(d)) and the echo opaque shadow below calcium (fig.3(a)).
The original response (fig.3(b), (e)) yields fragmented curves for the target structures and fake detections
due to noise. In RAD images (fig.3(c),(f)), background spurious edges (fig.3(f)) have been removed, while
the intima, the fibrous structure and calcium are regular closed curves.

4 Statistical Selection of Border Points

The inner and outer vessel borders appearance is so similar that they are assumed to constitute a single
class in the training process. Their distinct radial position suffices to discriminate them [17] in the
absence of echo opaque structures, such as calcium. In such cases, the adventitia does not appear and
the detection is misled towards the intima. Hence the best solution is to discard echo opaque sectors,
the training stage also addresses their characterization. We also include fibrous tissue discrimination
because it is a main artifact confusing with the adventitia [17].

4.1 Feature Space Design

The feature space we propose is a three dimensional space tuned to describe the adventitia/intima set
and echo opaque structures.

1. Horizontal Edges

Since in the coordinate system chosen, the adventitia layer is a horizontal dark line, horizontal edges
constitute our main descriptor. Edges are computed by convolving the image with the y-partial
derivative of a 2 dimensional gaussian kernel of variance σ:

ey(i, j) = gy ∗AdvPol

for gy(i, j) = − j
2πσ4 e−(i2+j2)/(2∗σ2)

In order to keep the maximum accuracy in edges location, we set σ = 0.5.

The only image structures yielding large values for ey are intima, adventitia, calcium and fibrous
tissue. Intima and adventitia correspond to negative values, while calcium and fibrous structures
yield a negative and a positive response, one for each of their bordering sides.

The descriptors we have chosen to detect echo opaque plaques and fibrous tissue are their outstand-
ing brightness and, for calcium, the dark shadow underneath. We propose the following particular
functions to quantify such features.

8



2. Radial Standard Deviation

Striking brightness corresponds to an outlier of the pixel gray value in the radial distribution. We
measure it by means of the difference between the pixel gray value and the radial mean. For each
pixel (i, j), we define it as

σ(i, j) = (AdvPol(i, j)− µ(j))2

where µ(j)) is the radial (i.e. column-wise) mean of the polar image:

µ(j) =
1

Nr

i=Nr∑

i=1

AdvPol(i, j)

The magnitude of σ is maximum at bright structures (calcium and fibrous plaque) and close to
zero near the adventitia. In order to distinguish between calcium and fibrous plaque, we add the
following shadows detector:

3. Cumulative Radial Mean

For each column j consider the following cumulative mean:

ν̃j(i) =

∑n=i
n=Rmax

AdvPol(n, j)
Rmax − i

For angles with calcium, the function ν̃j(i) presents a step-wise profile in contrast to a more uniform
response in the presence of fibrous plaque. It follows that the total energy:

ε(j) =
i=Rmax∑

i=1

ν̃j(i)

achieves its minimum values only at sectors with calcium.

The feature space achieving a maximum separability for our training set is given by:

(X, Y, Z) = (ey, sign(ey)
√
|eyσ|, ε)

4.2 Statistical Parameter Setting

For the computation of the vessel borders and calcium binary images, the classification problem we must
face is discriminating among 4 different sets: adventitia/intima (Adv), calcium (Cal), fibrous structures
(Fbr) and the rest of pixels (RP). Instead of addressing the 4-class problem as a whole, we will solve
several 2-class problems in 2 dimensions.

For its simplicity and proven efficient performance, our main classifying tool will be Fisher linear
discriminant analysis [31]. Linear Discriminant Analysis searches for the linear subspace, W , that
achieves a maximum separability among the projected classes. In the case of Fisher, separability is
measured in terms of maximum separation between class means and minimum within-class scatter.
Mathematically, this criterion is formulated in terms of the ratio between the between-class, SB , and
the within-class, SW , scatter matrices:

SB =
∑c

i=1(µi − µ)(µi − µ)t

SW =
∑c

i=1

∑Ni

j=1(Yj − µi)(Yj − µi)t

for c the number of classes, Ni the samples per class, µi the mean vector of each of them and µ the mean
of all samples (Yj). Fisher discriminant criterion reduces to finding the subspace, W , maximizing:

J(W) =
|WtSBW|
|WtSW W|
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Because SB encodes the projection onto the linear subspace given by µ1, . . . , µc, it has, at most, rank
c − 1, which bounds W dimension by dim W ≤ c − 1. In the particular case of a 2-class problem in 2
dimensions, Fisher space is a straight line (solid line in fig.4) and discrimination between the two classes
is achieved by a threshold on the projection space.

We will use a Bayesian approach [31] to select thresholding values in terms of miss classification
errors. In the two class problem, the classic Bayesian strategy searches for the value that achieves a
suitable compromise between the percentage of false positives and false negatives. The approach selects
a threshold in terms of how many true positives are detected without considering the amount of noise
introduced in the positive detections. Although the criterion is widely used in classification problems, in
the case of severe unbalanced classes or object segmentation [34] it is more efficient to select thresholds
in terms of the trade-off between precision and recall.

Figure 4: Feature Space for Adventitia (C2) vs Brilliant Structures (C1) Discrimination

This is the strategy we propose for the computation of the Adv and Cal mask images.
A. Vessel Borders Mask.
Borders extraction is achieved by addressing 2 classification issues: discriminate C1=(Adv,RP) and

C2=(Cal, Fbr) in the (X,Y ) plane and, then, separate Adv from RP using X values.
We discriminate C1 (positives) and C2 (negatives) by projecting onto the Fisher space, PF1, (see

fig.4) and tuning the standard Bayesian threshold. Since our discriminating problem is detecting as much
adventitia points as possible, we select the value, τPF1, that, among all thresholds ensuring at least 90%
of C1 detections yields optimal segmentation results. Discrimination between Adv and RP is achieved in
the X coordinate domain, as Adv corresponds to large negative values. Large range of Adv values among
different patients, suggests the use of an image sensitive threshold rather than a common value for all
cases. We adopt a strategy in the fashion of discriminant snakes [20], [22] and select a different value for
each column. Radial (column-wise) percentiles (ρX) are used to compute such threshold. Finally, small
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structures in the vessel borders image are removed by applying a length filtering, so that only segments
of length above a given percentile (ρL) are kept (see subsection 7.1 for a detailed explanation).

If we note by PF1 the projection of the (X, Y ) space onto the Fisher line, then, for every frame,
points are labelled as Adv if they fulfill:

PF1 < τPF1, X < ρX

and their segment length is above ρL. Figure 5 (b), (c) illustrates the extraction of adventitia/intima
points. In fig.5(b) we have the output of the discrimination step and in fig.5(c) the result after applying
a length filtering.

B. Calcium Mask.
The feature space chosen to discriminate calcium from fibrous tissue is given by the projection PF1

and the Z coordinate. A threshold on the Fisher space, PF2, for the 2D space (PF1, Z) separates
Cal and Fbr. Instead of following a Bayesian approach we will follow a precision-recall criterion and
among all thresholds admitting, at most, a 10% of noise select the value, τPF2, that ensures a better
segmentation of our training set.

It follows that, calcium points are those pixels that satisfy:

PF1 ≥ τPF1 and PF2 > τPF2

The thresholding parameters (τPF1, ρX , ρL and τPF2) hinge on the ultrasonic acquisition device charac-
teristics. The specific values for the device used in our experiments are given in the experimental Section
7.

(a) (b)

(c) (d)

Figure 5: Vessel Borders Point Extraction: calcium mask (a), adventitia mask resulting from the classi-
fication (b), adventitia mask after length filtering (c) and ACC closing (d)

5 Closing Stage

The selection stage produces two mask (binary) images: one for calcium (fig.5(a)) and another one for
vessel borders (fig.5(c)). In the case of non circular patterns (caused by either catheter tilting or vascular
modelling in eccentric plaques), the adventitia mask might result in a sparse collection of fragmented
curve segments which omits the most curved sectors of the border. In order to correctly restore the
vessel geometry, while recovering a smooth representation, we close the adventitia layer in two steps.

5.1 Implicit Anisotropic Contour Closing

Heat diffusion has the property of smoothly extending a function defined on a curve in the plane, provided
that boundary conditions are changed to Dirichlet [32]. By using restricted heat operators this property
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can be used to complete unconnected contours [27] as follows. Let γ be the set of points to connect, χγ

its characteristic function (a mask) and define J̃ as in RAD (2), then the extension process:

ut = div(J̃∇u) with u|γ = u0 (3)

converges to a close model of γ. Intuitively, we are integrating the vector field ξ, that is, we are
interpolating the unconnected curve segments along it. This fact not only ensures convergence to a
closed model, but also yields closures more accurate than other interpolating techniques (such as geodesic
snakes) which, at most, yield piece-wise linear models.

For adventitia completion the vector ξ is the eigenvector of minimum eigenvalue of the Structure
Tensor computed over the edge map ey. In order to avoid wrong continuations at side branches, sensor
shadows and calcium sectors, the vector ξ is weighted by a function wξ:

wξ(i, j) =

{
0, if (i, j) ∈ Calcium
coh = (λ1−λ2)

2

(λ1+λ2)2
, otherwise

for λ1, λ2, STρ eigenvalues with λ1 ≥ λ2. At regions where ξ is a continuous vector, λ2 is close to zero,
so coh is maximum. Meanwhile, at noisy areas, since ξ is randomly oriented, λ1 compares to λ2 and
coh ∼ 0. This avoids miss interpolations at side branches and underneath the guide wire, provided we
use the fast algorithm sketched in [17].

In order to endow 3D continuity to the final model, we apply a morphological opening (area filtering)
of the surface given by blocks of N consecutive ACC closings.

5.2 B-snake Representation

Although ACC closure already contains all available information, by the discrete implementation used,
the implicit model is an irregular step-wise model that still presents gaps at side branches and calcium
sectors. Besides, the amount of images involved in the sequence suggests searching for a contour rep-
resentation as compact as possible. This motivates guiding a parametric B-snake towards ACC closure
to obtain a compact smooth explicit representation. A parametric snake is a curve γ(u) = (x(u), y(u))
which, under the influence of an external force, Eext, and internal constraints, Eint, minimizes the energy
functional:

E(γ) =
∫

γ

(Eint(γ) + Eext(γ, γτ ))du =
∫

γ

(α‖γ̇‖2 + β‖γ̈‖2 + Eext(γ, γτ ))du (4)

where γτ is the curve to model and α, β ∈ [0, 1] weight the trade off between the elasticity and stiffness
of the snake. The external energy is a functional achieving a minimum on γτ .

In polar coordinates, as the adventitia is convex, we have that γ = (θ(u), R(u)) can be represented
as a function of the angle, R = R(θ), so that the functional simplifies to:

E(R(θ)) =
∫ 360

1

(α‖Rθ‖2 + β‖Rθθ‖2 + (R−Rτ )2)dθ

for Rτ the radius of the target curve and Rθ, Rθθ the first and second derivatives of the radius. If we
parameterize with a B-Spline given by N control points:

R(θ(s)) = R(s) =
∑

i

ci(s)Ri, for s ∈ [0, N − 1] (5)

the functional (5) converts to a function of the N control points, with the minimum defined by:

∂E

∂Rj
= 0, ∀j ∈ {1, . . . , N} (6)
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Since the jth equation is:
(

2α

λ2

) ∑

i

(∫
ċj ċi

)
Ri +

(
2β

λ4

) ∑

i

(∫
c̈j c̈i

)
Ri +

∑

i

(∫
cjci

)
Ri =

∫
cjRτ (7)

the system (5) admits a matrix formulation given by:

(B1 + B2 + B0)R = BR = Fτ (8)

The entries of Bj are sums of the jth derivatives of the spline coefficients ci. The term (B1 + B2)
corresponds to the stiffness matrix for B-splines snakes and B0 is the extra term coming from our
particular external energy. The forces Fτ induced by the target curve are computed via the parameter
change Rτ (θ(s)), for θ(s) =

∑
i ci(s)θi.

Equation (8) can be either solved iteratively (gradient descent of the energy (5)) or, since Fτ does
not depend on R, given by the matrix inversion, R = B−1Fτ . In the first case, the initial snake should
be the maximum radius of all points of the ACC mask. In case of using the explicit solution, the target
radius is defined, for each angle, as the maximum radius along the i-essim column corresponding to such
angle. The cartesian transform of the polar spline given by the above radial control points is our final
adventitia model.

6 Validation Protocol

6.1 Study Group

We have validated our strategy in sequences captured with a Boston Scientific Clear View Ultra scanner
at 40 MHz with constant pull-back at 0.5 mm/sec and acquisition rate of 25 frames/sec. The digitalized
sequences are 384 × 288 images with a spatial resolution of 0.0435 mm per pixel. The study group
has been designed to assess the ability of the reported algorithm to detect the adventitia border in the
presence of different plaques, artifacts and vessel geometries. A total number of 5400 images extracted
from 11 different cases have been tested. The sequences analyzed are clinical cases of the Hospital
Universitari Germans Trias i Pujol in Badalona (Spain). We have segmented 22 vessel segments of a
length ranging from 4 to 6 mm (200-300 frames) and including:

• segments with uncomplete vessel borders due to side-branches and sensor guide shadows,

• calcified segments,

• segments with non calcified plaque,

• normal segments.

All segments analyzed were catheterized before any interventional procedure which excludes stented
segments. The method proposed was designed to fit the needs of the clinical team we work with, which
major concern is to use the adventitia border to assess the vessel diameter and decide the viability and
adequacy of an angioplasty. In addition, some stent designs may obscure the EEM border and render
measurements unreliable [36].

For each segment, the adventitia has been manually traced every 10 frames by 4 experts in IVUS
image interpretation, which yields a total number of 540 validated frames with 4 different manual models
each. Our database for adventitia modelling validation might be obtained contacting aura@cvc.uab.es.
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CALCIFIED SEGMENTS

(A)

NON CALCIFIED SEGMENTS

(B)

UNCOMPLETED SEGMENTS

(C)

Figure 6: Automated Adventitia Detections: Calcified segments (A), non-calcified plaques (B) and
uncompleted vessels (C)
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6.2 Accuracy Measures

To assess the segmentation accuracy, the automatically detected borders have been compared to the
manual models. Accuracy is quantified with the following standard measures:

1. Absolute and Signed Distances.

Distance maps to manual contours serve to compute the difference in position between automatic
and manually traced curves. Such maps encode for each pixel, p = (xp, yp), its distance to the
closest point on the manual contour:

D(p) = minq∈γ(d(p, q)) = minq∈γ

(√
(xp − xq)2 + (yp − yq)2

)
(9)

where q are points on the manually identified contour. Signed distances (SgnD) [26] weight the
value D(p) depending on wether the pixel p lyes inside or outside the target curve γ. Its mean
value detects any bias in curve position, that is, wether detections are systematically bigger or
smaller than manual segmentations.

We will consider absolute (in mm) and relative (in %) distance errors. Absolute errors are given
by formula (9), while relative ones are the ratio:

RelD(p) = 100 · D(p)
d(q,O)

where the origin, O, is the mass center of the manual contour and q is the point achieving the
minimum in (9). Since relative errors take into account the true dimensions of the vessel, they
reflect positioning errors better.

For each distance error, its maximum and mean values on the automated contour are the error
measures used to asses position accuracy. If PixSze denotes the image spatial resolution and p is
any point on the automatically traced adventitia, then the set of functions measuring accuracy in
positions are:

• Maximum distance errors (in mm and %):

MaxD = maxp (D(p) · PixSze)
RMaxD = maxp (RelD(p))

• Mean distance errors (in mm and %):

MD = meanp (D(p) · PixSze)
RMD = meanp (RelD(p))

• Mean signed distance error (in mm):

MSD = meanp (SgnD(p) · PixSze)

2. Area Differences.

Binary images of manual, IM (i, j), and automatic, IA(i, j), borders serve to compute the following
measure for area accuracy:

• Percentage of Area Differences

AD = 100 ·
∑

i,j |IM (i, j)− IA(i, j)|∑
i,j IM (i, j)
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Table 1: Comparison of Segmenting Parameters

TH1 : 0.0578 TH1 : 0.0619 TH1 : 0.0567 TH1 : 0.0567 TH1 : 0.0567
TH2 : -0.1295 TH2 : -0.1295 TH2 : -0.1241 TH2 : -0.01468 TH2 : -0.1295

Area 100 0.201 ± 0.046 0.201 ± 0.045 0.234 ± 0.093 0.234 ± 0.088 0.231 ± 0.089
Area 150 0.200 ± 0.045 0.200 ± 0.045 0.227 ± 0.082 0.230 ± 0.082 0.227 ± 0.081
Area 200 0.203 ± 0.045 0.220 ± 0.056 0.219 ± 0.069 0.230 ± 0.083 0.219 ± 0.069
Length 80 (%) 0.227 ± 0.060 0.199 ± 0.041 0.203 ± 0.043 0.204 ± 0.048 0.203 ± 0.043
Length 85 (%) 0.240 ± 0.070 0.237 ± 0.064 0.202 ± 0.044 0.203 ± 0.044 0.206 ± 0.048

The interval given by the mean ± standard deviation computed over the 4 experts contours indicate
the statistical range of values for each of the automated errors (MaxD, RMaxD, MD, RMD and AD).
However, accuracy in models strongly depends on the pixel resolution as well as on the (manual) visual
identification of the adventitia layer. These dependencies have two main consequences. The first one
hinders any comparison to other segmentation algorithms as the minimum error (in mm) depends on pixel
precision. The second one, implies that an analysis of automated errors might not reflect, by its own, the
true accuracy of segmentations, since a large variation range might be caused by a significant difference
among experts models. A standard way [35] of overcoming the above phenomena is by comparing
automated errors to the variability among different manual segmentations (inter-observer variability).
Student T-tests are used to determine if there is any statistical significant difference between inter-
observer and automated distance errors.

7 Results

Experiments also focus on determining the best set of discriminant and filtering parameters in a training
stage and assessment of the whole strategy on a test set.

7.1 Parameters Study

Filtering parameters remove spurious fake detections from the discrimination stage. There are two main
candidates to act as filtering parameters of the vessel borders masks, length filtering and area filtering.
An exhaustive study determine which is the best set of parameters achieving an optimal segmentation
of manually segmentation traced borders. Parameter learning is performed by analyzing mean and
maximum absolute segmentation errors for a training set of 13 vessel segments which are representative
of all kinds of plaques and vessel morphologies. The parameters to contrast are, on one hand, filtering
parameters and, on the other hand, discriminating parameters. Table 1 summarizes the statistics for
the best mixtures of thresholds (TH1, TH2). It follows that the set of optimal parameters for a Boston
Clear View is given by the projections:

PF1 = 0.1906X + 0.9817Y and PF2 = −0.1498PF1 + 0.9887Z

with the thresholds for computation of vessel borders and calcium masks set to:

Vessel borders: TH1 = 0.0619; PRCTX = 6%; PRCTL = 80%

Calcium: TH2 = −0.1295

The adventitia detection parameters ensure a 99.95% of true C1 detections. We note that, by the
feature space definition, we only have a 15% of false positives, which just represent 6% of the total
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number of points classified in C1. This fact favors the use of an area filtering on adventitia detections as
fake response remover. In the case of calcium extraction, the threshold achieves less than a 1% of noise
and ensures 99.9678% of calcium detections. For the computation of the final B-snake model we have
used 30 control points uniformly placed every 12 angles.

Table 2: Performance Evaluation of the Adventitia Segmentation Strategy. Automatic Errors versus
Inter-Observer Variability for non-calcified and calcified segments

NON-CALCIFIED CALCIFIED
INT-OBS AUT INT-OBS AUT

MaxD (mm) 0.4208 ± 0.1794 0.4238 ± 0.1026 0.6627 ± 0.3610 0.7161 ± 0.2532
RelMaxD (%) 0.3963 ± 0.1788 0.3868 ± 0.1075 0.5469 ± 0.3171 0.6116 ± 0.2665
MeanD (mm) 0.1783 ± 0.0698 0.1864 ± 0.0364 0.2650 ± 0.1306 0.2885 ± 0.0947
RelMeanD (%) 0.1647 ± 0.0668 0.1684 ± 0.0387 0.2142 ± 0.1113 0.2388 ± 0.0931
Area Dif. (%) 6.6799 ± 3.1579 7.2571 ± 1.9842 9.3511 ± 5.7529 10.0428 ± 4.0390
SgnMeanD (mm) 0.0004 ± 0.0769 0.0283 ± 0.0540 0.0163 ± 0.1213 -0.0381 ± 0.0912

Table 3: Performance Evaluation of the Adventitia Segmentation Strategy. Automatic Errors versus
Inter-Observer Variability for all segments

TOTAL
INT-OBS AUT

MaxD (mm) 0.5386 ± 0.3075 0.5715 ± 0.2296
RelMaxD (%) 0.4697 ± 0.2664 0.5122 ± 0.2344
MeanD (mm) 0.2206 ± 0.1126 0.2265 ± 0.0688
RelMeanD (%) 0.1888 ± 0.0945 0.1972 ± 0.0662
Area Dif. (%) 7.9813 ± 4.7962 8.6032 ± 3.3436
SgnMeanD (mm) 0.0081 ± 0.1013 0.0041 ± 0.0801

Some of the adventitia segmentations achieved with the presented strategy are shown in figure 6.
The first row (fig.6(A)) corresponds to images with calcified plaque. Images in the second row (fig.6(B))
have been extracted from non-calcified vessel segments, non-fibrous plaques in the first four images and
a normal segment in the last one. Finally, images with missing information are shown in the third row,
sensor guide shadows in the first three and side branches in the last two. We note that since B-snakes
yield a curve that smoothly interpolates (up to the second derivative) vessel contours at the branch, in
some cases the model resembles a circular-elliptical shape. This is the case (such as in fig.6 (C), #4-5)
if the extreme points at the branch gap have equal radius and horizontal tangent vector in the polar
domain.

7.2 Statistics

Figure 7 shows whisker boxes for mean distance absolute errors (fig.7(a)) and mean inter-observer vari-
ations (fig.7(b)) for a representative sample of soft plaque and calcium segments. Each box contains the
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(a) (b)

Figure 7: Whisker Boxes for Automated Error,(a), and Inter-Observer Variability, (b).

mean distance errors obtained from the 4 experts segmentations (80 to 120 samples per box) for a single
vessel segment. Boxes labelled with NC correspond to non-calcified segments and those labelled with C
to calcified ones. An analysis of the whisker boxes reflects robustness of segmentations: the smaller the
boxes are, the more reliable the method is. Whisker boxes serve to visually detect any anomaly in the
models. In general terms, the means of automated errors are slightly higher than inter-observer vari-
ability means. However, since automatic segmentations present a significantly smaller variation range
than inter-observer variability, our segmentations are within the experts discrepancy rate (see T-tests
comparing means summarized in table 4). Lack of reliable information at large angular sectors, signif-
icantly increases errors variability in calcified segments,both for manual segmentations and automatic
detections. The large range of the whisker box of the case C2 detects it as a vessel segment of difficult
manual identification that should be excluded from any statistical analysis. Larger boxes for automated
detections (fig.7(a)) in cases NC5 and C3 comparing to their counterparts in fig.7(b) indicate that there
are specially difficult cases for our segmenting strategy. We devote the next section to a detailed analysis
of such miss detections.

Statistical ranges (mean ± standard deviation, computed for the 4 experts contours) for automatic
errors (AUT) and inter-observer variability (INT-OBS) are summarized in tables 2 and 3. Patients
presenting an unusual large inter-observer variability have been excluded, since we consider they are
anomalous cases with difficult and non robust manual identification. We present statistics for non-
calcified segments in the first column and calcified ones in the second column of table 2. A total
population of 20 vessel segments is presented in table 3. A summary of the results of the T-tests
comparing the inter-observer variability and automatic errors averages is given in table 4. We report
the p-value and the confidence interval for the difference in means. Statistics exclude outliers (15% of
the images, approximately) and T-tests are computed over the total errors in table 3.

According to a two tailed T-test, there is no significant difference between inter-observer and auto-
mated mean absolute distance errors and difference in areas. For mean distance errors the p-value equals
p = 0.177721 and the confidence interval for the true difference in means at a significance level of 95% is
CI = (−0.002684, 0.014491). In the case of percentage in area difference, p = 0.153404 and the interval
(also at a significance level of 95%) is CI = (−0.017985, 0.114350). Maximum errors for automated
detections are slightly above the range of maximum inter-observer variability. In order to robustly de-
termine the fraction of increase, we use a single tailed T-test to check if the null hypothesis statement
”the mean of automated maximum errors is above λ times the mean of maximum inter-observer vari-
abilities” is true. The true proportion between maximum automated error and inter-observer variability
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Table 4: Statistics Summary on T-tests comparing the means of Inter-Observer Variability and Auto-
matic Errors.

Confidence Interval (CI) p-value
MeanD (-0.002684,0.014491) 0.177721
Area Dif. (-0.017985,0.114350) 0.153404
SgnMeanD (-0.002401,0.010787) 0.212219

is between the minimum λ rejecting the null hypothesis and the maximum accepting it. For λ = 1.102,
the null hypothesis was accepted with a p-value, p = 0.053901 and for λ = 1.103, it was rejected with
p = 0.049846. We conclude that the increase in maximum automated errors is under a 10.3%. Finally a
T-test on the mean of the automated signed distance error shows that in average it is zero as the p-value
equals p = 0.212219 and the confidence interval for the true mean is a tiny interval containing the zero
value CI = (−0.002401, 0.010787).

8 Discussion

The combination of a priori knowledge (classification techniques) with filtering techniques based on
continuity of image geometry is the key point for a robust characterization of vessel (the adventitia layer,
in our case) borders. By designing an accurate point selection strategy, we avoid human interaction and
the use of longitudinal cuts and ECG-gated acquisitions. The reliability of the proposed strategy is
reflected in the global statistics extracted from in vivo sequences segmentation. The fact that, both,
mean distances and vessel areas compare to inter-observer variation validates our method for extraction
of clinical measurements. Since there is no bias in automated segmentations (the mean signed distance
is statistically zero) we can ensure that our method achieves an optimal compromise among experts
criteria as automatically traced curves lie between the curves traced by different observers. The number
of outlier bad segmentations requiring manual correction represent less than a 15% of the studied valid
cases.

Still, the striking increase in the error range for the anomalous cases NC5 and C3 needs to be analyzed.
Such miss detections correspond to vessel segments that either the adventitia is hardly identified or there
is severe lack of valid information.

Weak visual appearance of the adventitia border is a technical limitation of the UltraSound acquisition
technique and it is cause of disagreement among experts (case C2 in fig.7(b)) in 9% of the cases. Our
strategy suffers this kind of error in 18% of the segments under study (boxes C5, NC2 and NC3 in
fig.7(a)). We argue that the only way to minimize the impact of border blurring is taking into account
tissue motion periodicity along the sequence. Even for physicians it is difficult to identify vessel borders
by an analysis of still images. Often, they use cardiac periodicity in the movement of vessel structures to
distinguish between tissue and other structures. We are currently assessing if adding Fourier analysis of
image grey level statistics to the set of adventitia descriptors reduces the number of this type of wrong
detections.

Lack of information at calcium and side branches sectors, distorts measurements [36] and is a main
source of error in automated models if the sparse valid information is not uniformly distributed. Images
in fig.8 are representative of such source of variability in manual models and show the error introduced
in automated segmentations. In the first column, we show the IVUS plane (fig.8(a), (f)), in the second
one, the manual borders traced by two different experts (fig.8(b), (g)), in the third one, ACC closure
(fig.8(c), (h)) and, in the last two, the B-snake model (fig.8(d), (i)) and its comparison to manual
borders fig.8(e), (j)). The manual models significantly differ at those sectors were either echo shadowing
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Figure 8: Adventitia models in images with sparse information. IVUS images (a), (f), manual models
(b), (g), ACC (c), (h), final snake (d), (i) and comparison to manual models (e), (j).

(2nd and 3rd quartiles in fig.8(b) and (g), respectively) or blood (4th quartile in fig.8(g)) hide the
adventitia border, which invalidates them for any reliable measurements. In the case of automated
detections, models extracted from frames with uniformly distributed information (fig.8(d)) adjust to
reference contours (fig.8(e)) although their error is prone to increase due to the higher disagreement
among experts. Meanwhile, in the case of having all available information gathered in one of the image
quadrants, the automated model (fig.8(j)) accuracy drastically drops (fig.8(j)).

We note that it is reported in the literature [36] that measurements should not be reported if lack
of information is more extensive than 90 of arc. Still our error analysis prompts that lack of strong
3D continuity in the B-snake closing of candidate points on the vessel borders is the main source of
the above error. The use of 2D NURBS (spline surfaces) instead of 1D splines could reduce the impact
of missing information. However, in our case, they might not succeed in correcting this kind of miss
interpolations. On one hand, NURBS can only take into account local deformations and continuity of
the surface. On the other hand, the previously described pathology is prone to happen at large vessel
segments. It follows that NURBS interpolation might imply handling the segmentation of the whole
image sequence block (over 1200 frames), which is computationally unfeasible. One possible way of
overcoming lack of information for large vessel segments would be mimicking the experts strategy used
for manually tracing the adventitia borders. Our application [21] to manually segment vessel borders
shows the previous border on the current image to be segmented and allows the physician to modify it.
An informal survey on the key points and frames used by the expert for border tracing at images with
severe lack of information prompts that they usually keep the model traced on the last valid frame. This
suggests using the information available at the last frame with adventitia points detected in more than
70% of the vessel angular sectors to complete vessel borders at images with sparse detections.

9 Conclusions

Vessel border detection is of especial interest for plaque assessment and quantification of lumen narrowing
in IVUS sequences. By its weak appearance, there are few algorithms addressing segmentation of the
external adventitial border. In this paper we propose a general strategy for vessel border detection in
IVUS images with an explicit application to the segmentation of the medial-adventitial border.
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The reported methodology combines classification techniques with advance smoothing operators
based on image level sets continuity. The strategy for media-adventitia detection is a three-step al-
gorithm. We show that using geometric knowledge of image structures suffices to detect the adventitia
without precise and exhaustive classification of vessel tissue. Besides our segmenting strategy is robust
against a large variety of vessel cases, such as presence of different plaques, side-branches, IVUS artifacts
(echo shadowing, sensor guide) and lost of information.

The strategy has been tested on 5400 images including calcified and non calcified vessel segments,
side-branches and the most representative shadowing artifacts of intravascular ultrasound sequences.
The comparison to borders manually traced by 4 experts shows that in 84% of the cases we are within
the range of inter-observer variability, which demonstrates the optimality of the automated model. An
exhaustive analysis of those cases increasing the error rate determines that the main source of error are
bad image acquisition and more than 75% of missing information due to calcium shadowing. Two lines of
research (currently in progress) are suggested to minimize the scope of erroneous detections. Taking into
account periodicity in tissue movement in the point selection stage and mimicking the experts strategy
for border interpolation at segments of significant lack of reliable information.
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