toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Ruth Aris; Agnes Borras; Esmitt Ramirez; Rafael Sebastian; Mariano Vazquez edit   pdf
doi  openurl
  Title Influence of fiber connectivity in simulations of cardiac biomechanics Type Journal Article
  Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR  
  Volume 14 Issue 1 Pages 63–72  
  Keywords Cardiac electromechanical simulations; Diffusion tensor imaging; Fiber connectivity  
  Abstract PURPOSE:
Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.

METHODS:
We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).

RESULTS:
The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.

CONCLUSIONS:
Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 601.323; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GAB2019a Serial 3133  
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Arturo Morales; Rosa Lopez Lisbona; Noelia Cubero; Cristian Tebe; Susana Padrones; Samantha Aso; Jordi Dorca; Debora Gil; Antoni Rosell edit  url
openurl 
  Title Ultrathin Bronchoscopy with and without Virtual Bronchoscopic Navigation: Influence of Segmentation on Diagnostic Yield Type Journal Article
  Year 2019 Publication Respiration Abbreviated Journal RES  
  Volume 97 Issue 3 Pages 252-258  
  Keywords Lung cancer; Peripheral lung lesion; Diagnosis; Bronchoscopy; Ultrathin bronchoscopy; Virtual bronchoscopic navigation  
  Abstract Background: Bronchoscopy is a safe technique for diagnosing peripheral pulmonary lesions (PPLs), and virtual bronchoscopic navigation (VBN) helps guide the bronchoscope to PPLs. Objectives: We aimed to compare the diagnostic yield of VBN-guided and unguided ultrathin bronchoscopy (UTB) and explore clinical and technical factors associated with better results. We developed a diagnostic algorithm for deciding whether to use VBN to reach PPLs or choose an alternative diagnostic approach. Methods: We compared diagnostic yield between VBN-UTB (prospective cases) and unguided UTB (historical controls) and analyzed the VBN-UTB subgroup to identify clinical and technical variables that could predict the success of VBN-UTB. Results: Fifty-five cases and 110 controls were included. The overall diagnostic yield did not differ between the VBN-guided and unguided arms (47 and 40%, respectively; p = 0.354). Although the yield was slightly higher for PPLs ≤20 mm in the VBN-UTB arm, the difference was not significant (p = 0.069). No other clinical characteristics were associated with a higher yield in a subgroup analysis, but an 85% diagnostic yield was observed when segmentation was optimal and the PPL was endobronchial (vs. 30% when segmentation was suboptimal and 20% when segmentation was optimal but the PPL was extrabronchial). Conclusions: VBN-guided UTB is not superior to unguided UTB. A greater impact of VBN-guided over unguided UTB is highly dependent on both segmentation quality and an endobronchial location of the PPL. Segmentation quality should be considered before starting a procedure, when an alternative technique that may improve yield can be chosen, saving time and resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.145; 600.139 Approved no  
  Call Number Admin @ si @ DML2019 Serial 3134  
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Cristian Tebe; Carles Sanchez edit   pdf
doi  openurl
  Title Positive Airway Pressure to Enhance Computed Tomography Imaging for Airway Segmentation for Virtual Bronchoscopic Navigation Type Journal Article
  Year 2018 Publication Respiration Abbreviated Journal RES  
  Volume 96 Issue 6 Pages 525-534  
  Keywords Multidetector computed tomography; Bronchoscopy; Continuous positive airway pressure; Image enhancement; Virtual bronchoscopic navigation  
  Abstract Abstract
RATIONALE:
Virtual bronchoscopic navigation (VBN) guidance to peripheral pulmonary lesions is often limited by insufficient segmentation of the peripheral airways.

OBJECTIVES:
To test the effect of applying positive airway pressure (PAP) during CT acquisition to improve segmentation, particularly at end-expiration.

METHODS:
CT acquisitions in inspiration and expiration with 4 PAP protocols were recorded prospectively and compared to baseline inspiratory acquisitions in 20 patients. The 4 protocols explored differences between devices (flow vs. turbine), exposures (within seconds vs. 15-min) and pressure levels (10 vs. 14 cmH2O). Segmentation quality was evaluated with the number of airways and number of endpoints reached. A generalized mixed-effects model explored the estimated effect of each protocol.

MEASUREMENTS AND MAIN RESULTS:
Patient characteristics and lung function did not significantly differ between protocols. Compared to baseline inspiratory acquisitions, expiratory acquisitions after 15 min of 14 cmH2O PAP segmented 1.63-fold more airways (95% CI 1.07-2.48; p = 0.018) and reached 1.34-fold more endpoints (95% CI 1.08-1.66; p = 0.004). Inspiratory acquisitions performed immediately under 10 cmH2O PAP reached 1.20-fold (95% CI 1.09-1.33; p < 0.001) more endpoints; after 15 min the increase was 1.14-fold (95% CI 1.05-1.24; p < 0.001).

CONCLUSIONS:
CT acquisitions with PAP segment more airways and reach more endpoints than baseline inspiratory acquisitions. The improvement is particularly evident at end-expiration after 15 min of 14 cmH2O PAP. Further studies must confirm that the improvement increases diagnostic yield when using VBN to evaluate peripheral pulmonary lesions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.145 Approved no  
  Call Number Admin @ si @ DGT2018 Serial 3135  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
url  openurl
  Title Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy Type Conference Article
  Year 2018 Publication OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis Abbreviated Journal  
  Volume 11041 Issue Pages  
  Keywords Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification  
  Abstract Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.  
  Address Granada; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; 600.096; 600.075; 601.323; 600.145 Approved no  
  Call Number Admin @ si @ RSB2018b Serial 3137  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title Feature Extraction by Using Dual-Generalized Discriminative Common Vectors Type Journal Article
  Year 2019 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 61 Issue 3 Pages 331-351  
  Keywords Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning  
  Abstract In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.084; 600.118; 600.121; 600.129;IAM Approved no  
  Call Number Admin @ si @ DRR2019 Serial 3172  
Permanent link to this record
 

 
Author Santi Puch; Irina Sanchez; Aura Hernandez-Sabate; Gemma Piella; Vesna Prckovska edit   pdf
url  openurl
  Title Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation Type Conference Article
  Year 2018 Publication International MICCAI Brainlesion Workshop Abbreviated Journal  
  Volume 11384 Issue Pages 393-405  
  Keywords Brain tumors; 3D fully-convolutional CNN; Magnetic resonance imaging; Global planar convolution  
  Abstract In this work, we introduce the Global Planar Convolution module as a building-block for fully-convolutional networks that aggregates global information and, therefore, enhances the context perception capabilities of segmentation networks in the context of brain tumor segmentation. We implement two baseline architectures (3D UNet and a residual version of 3D UNet, ResUNet) and present a novel architecture based on these two architectures, ContextNet, that includes the proposed Global Planar Convolution module. We show that the addition of such module eliminates the need of building networks with several representation levels, which tend to be over-parametrized and to showcase slow rates of convergence. Furthermore, we provide a visual demonstration of the behavior of GPC modules via visualization of intermediate representations. We finally participate in the 2018 edition of the BraTS challenge with our best performing models, that are based on ContextNet, and report the evaluation scores on the validation and the test sets of the challenge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes ADAS; 600.118;IAM Approved no  
  Call Number Admin @ si @ PSH2018 Serial 3251  
Permanent link to this record
 

 
Author Spyridon Bakas; Mauricio Reyes; Andras Jakab; Stefan Bauer; Markus Rempfler; Alessandro Crimi; Russell Takeshi Shinohara; Christoph Berger; Sung Min Ha; Martin Rozycki; Marcel Prastawa; Esther Alberts; Jana Lipkova; John Freymann; Justin Kirby; Michel Bilello; Hassan Fathallah-Shaykh; Roland Wiest; Jan Kirschke; Benedikt Wiestler; Rivka Colen; Aikaterini Kotrotsou; Pamela Lamontagne; Daniel Marcus; Mikhail Milchenko; Arash Nazeri; Marc-Andre Weber; Abhishek Mahajan; Ujjwal Baid; Dongjin Kwon; Manu Agarwal; Mahbubul Alam; Alberto Albiol; Antonio Albiol; Varghese Alex; Tuan Anh Tran; Tal Arbel; Aaron Avery; Subhashis Banerjee; Thomas Batchelder; Kayhan Batmanghelich; Enzo Battistella; Martin Bendszus; Eze Benson; Jose Bernal; George Biros; Mariano Cabezas; Siddhartha Chandra; Yi-Ju Chang; Joseph Chazalon; Shengcong Chen; Wei Chen; Jefferson Chen; Kun Cheng; Meinel Christoph; Roger Chylla; Albert Clérigues; Anthony Costa; Xiaomeng Cui; Zhenzhen Dai; Lutao Dai; Eric Deutsch; Changxing Ding; Chao Dong; Wojciech Dudzik; Theo Estienne; Hyung Eun Shin; Richard Everson; Jonathan Fabrizio; Longwei Fang; Xue Feng; Lucas Fidon; Naomi Fridman; Huan Fu; David Fuentes; David G Gering; Yaozong Gao; Evan Gates; Amir Gholami; Mingming Gong; Sandra Gonzalez-Villa; J Gregory Pauloski; Yuanfang Guan; Sheng Guo; Sudeep Gupta; Meenakshi H Thakur; Klaus H Maier-Hein; Woo-Sup Han; Huiguang He; Aura Hernandez-Sabate; Evelyn Herrmann; Naveen Himthani; Winston Hsu; Cheyu Hsu; Xiaojun Hu; Xiaobin Hu; Yan Hu; Yifan Hu; Rui Hua edit  openurl
  Title Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords BraTS; challenge; brain; tumor; segmentation; machine learning; glioma; glioblastoma; radiomics; survival; progression; RECIST  
  Abstract Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multiparametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in preoperative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118;MILAB;IAM Approved no  
  Call Number Admin @ si @ BRJ2018 Serial 3252  
Permanent link to this record
 

 
Author Debora Gil; Antonio Esteban Lansaque; Agnes Borras; Carles Sanchez edit   pdf
url  openurl
  Title Enhancing virtual bronchoscopy with intra-operative data using a multi-objective GAN Type Journal Article
  Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR  
  Volume 7 Issue 1 Pages  
  Keywords  
  Abstract This manuscript has been withdrawn by bioRxiv due to upload of an incorrect version of the manuscript by the authors. Therefore, this manuscript should not be cited as reference for this project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GEB2019 Serial 3307  
Permanent link to this record
 

 
Author Debora Gil; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell edit   pdf
url  doi
openurl 
  Title Segmentation of Distal Airways using Structural Analysis Type Journal Article
  Year 2019 Publication PloS one Abbreviated Journal Plos  
  Volume 14 Issue 12 Pages  
  Keywords  
  Abstract Segmentation of airways in Computed Tomography (CT) scans is a must for accurate support of diagnosis and intervention of many pulmonary disorders. In particular, lung cancer diagnosis would benefit from segmentations reaching most distal airways. We present a method that combines descriptors of bronchi local appearance and graph global structural analysis to fine-tune thresholds on the descriptors adapted for each bronchial level. We have compared our method to the top performers of the EXACT09 challenge and to a commercial software for biopsy planning evaluated in an own-collected data-base of high resolution CT scans acquired under different breathing conditions. Results on EXACT09 data show that our method provides a high leakage reduction with minimum loss in airway detection. Results on our data-base show the reliability across varying breathing conditions and a competitive performance for biopsy planning compared to a commercial solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GSB2019 Serial 3357  
Permanent link to this record
 

 
Author Marta Ligero; Guillermo Torres; Carles Sanchez; Katerine Diaz; Raquel Perez; Debora Gil edit   pdf
url  doi
openurl 
  Title Selection of Radiomics Features based on their Reproducibility Type Conference Article
  Year 2019 Publication 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal  
  Volume Issue Pages 403-408  
  Keywords  
  Abstract Dimensionality reduction is key to alleviate machine learning artifacts in clinical applications with Small Sample Size (SSS) unbalanced datasets. Existing methods rely on either the probabilistic distribution of training data or the discriminant power of the reduced space, disregarding the impact of repeatability and uncertainty in features.In the present study is proposed the use of reproducibility of radiomics features to select features with high inter-class correlation coefficient (ICC). The reproducibility includes the variability introduced in the image acquisition, like medical scans acquisition parameters and convolution kernels, that affects intensity-based features and tumor annotations made by physicians, that influences morphological descriptors of the lesion.For the reproducibility of radiomics features three studies were conducted on cases collected at Vall Hebron Oncology Institute (VHIO) on responders to oncology treatment. The studies focused on the variability due to the convolution kernel, image acquisition parameters, and the inter-observer lesion identification. The features selected were those features with a ICC higher than 0.7 in the three studies.The selected features based on reproducibility were evaluated for lesion malignancy classification using a different database. Results show better performance compared to several state-of-the-art methods including Principal Component Analysis (PCA), Kernel Discriminant Analysis via QR decomposition (KDAQR), LASSO, and an own built Convolutional Neural Network.  
  Address Berlin; Alemanya; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference EMBC  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ LTS2019 Serial 3358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: