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Abstract

Segmentation of airways in Computed Tomography (CT) scans is a must for accurate
support of diagnosis and intervention of many pulmonary disorders. In particular, lung
cancer diagnosis would benefit from segmentations reaching most distal airways. We
present a method that combines descriptors of bronchi local appearance and graph
global structural analysis to fine-tune thresholds on the descriptors adapted for each
bronchial level. We have compared our method to the top performers of the EXACT09
challenge and to a commercial software for biopsy planning evaluated in an
own-collected data-base of high resolution CT scans acquired under different breathing
conditions. Results on EXACT09 data show that our method provides a high leakage
reduction with minimum loss in airway detection. Results on our data-base show the
reliability across varying breathing conditions and a competitive performance for biopsy
planning compared to a commercial solution.

Introduction 1

Bronchoscopy examinations are the diagnostic cornerstone for lung cancer since they 2

allow biopsy of nodules with minimum risk for the patient. A main limitation of flexible 3

bronchoscopy is the difficulty to determine the best pathway to peripherial lesions. 4

Physician’s accuracy at defining proper 3D routes is only around 40% for lesions located 5

near airways at generation 4 at most, with errors beginning as early as generation 2 [1,2]. 6

Despite recent advances, new endoscopy techniques only increase diagnostic yield to 70% 7

and still radiate the patient. Diagnostic yield could be improved reducing radiation and 8

costs if imaging technologies could better guide the bronchoscopist to the target lesion. 9

Virtual bronchoscopic navigation (VBN) systems [3] are used to reconstruct 10

computed tomography (CT) data into three-dimensional representations of the 11

tracheobronchial tree. VBN systems allow for coupling virtual and real-time 12

bronchoscopy, which is useful for guiding ultrathin bronchoscopes and other devices in 13

diagnostic interventions [4]. Due to limited extraction of the airways from the CT data, 14

the potential of VBN is often limited in the most peripheral regions of the lungs [5]. In 15

a recent communication [6], segmentations not reaching the peripheral pulmonary 16

lesions were observed in 44% of cases and in such cases, only 35% of them were 17

diagnosed. This diagnostic rate is comparable to that achieved without a navigation 18

software and, thus, a VBN system does not represent any advantage unless 19

segmentations reach the most distal airways. 20
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The segmentation of most distal bronchi is challenging because, even using high 21

resolution (0.6× 0.6× 0.5 mm) CT scans, their caliber in the scanned volumes just 22

covers a few voxels and their wall is reduced to 1-2 faint intensity voxels. This requires 23

running segmentation algorithms using extreme values for their parameters (usually 24

thresholds) that increase the presence of artifacts, such as leakage, in segmented airways. 25

Leakage causes segmentations to extend outside the airway and leak into the lung 26

parenchyma [7]. To avoid leakage and other artifacts while optimizing thresholds, 27

several strategies have been proposed. 28

For methods based on region growing [8–12] an option is to iteratively increase the 29

intensity threshold used to separate air from tissue while controlling the number of 30

voxels added between consecutive segmentations. In [7] trachea, right and left bronchi 31

are segmented independently using three different thresholds optimized to be efficient 32

across different CT scan acquisition parameters. Another option [13–15] is to use graph 33

structural analysis to reconstruct the bronchial tree from a set of branches obtained 34

after thresholding of a map of bronchi local appearance. A graph is used to represent 35

the connectivity of candidate branches and best connections are selected from a global 36

graph-partitioning algorithm based on a cost and benefit scoring of connections [13]. 37

Finally, a very recent work [16] uses convolutional neural networks to remove leakage 38

from a given segmentation using local appearance. Segmentations are partitioned into 39

segments that are classified as leakage or bronchi using a convolutional network. This 40

classification allows the combination of segmentations computed using different 41

thresholds. 42

Contribution 43

All methods reviewed above base segmentations on functions (given, for instance, by 44

convolution with filters or the probability of a classifier) that have high values at voxels 45

belonging to airways. It follows that segmentations are defined as voxels achieving 46

values above a given threshold. Such threshold can be set either heuristically or learned 47

from a training set using a classifier. In any case, threshold values are global values 48

equal for all voxels and scans and set according to local appearance, regardless of the 49

global geometric structure of the resulting segmentation. 50

In this paper we present a novel method able to set patient-specific thresholds locally 51

adapted for each airway level according to, both, bronchi local appearance and 52

segmentation global structure. Under the ground that airways anatomy follows a tree 53

structure, we encode segmentations using a directed graph and compute a measure of 54

how much the graph deviates from a tree. This measure is used to locally adapt 55

thresholds and prune segmentations artifacts. 56

To show the potential of our graph structural analysis, we also present a strategy for 57

the segmentation of most distal airways. Our strategy is based on a thresholding of a 58

map of airways local appearance computed by convolution with an own-designed 59

tubular filter in a multiresolution scheme to account for differences in airways caliber. 60

We call this method PICASSO: PerIpheral bronChiAl Segmentation with Structural 61

Optimization. We present results on the EXACT09 database [17] and on an own series 62

of high resolution CT scans acquired at Hospital de Bellvitge under different breathing 63

conditions [18]. 64

Materials and methods 65

Our method is based on energy maps (describing airways appearance) binarized using a 66

threshold adapted for each case. Thresholds are computed to ensure that segmentations 67

have a shape with optimal match to airways anatomical structure and minimum leakage. 68

November 28, 2019 2/16



The matching criterion uses a measure of anatomical consistency based on the 69

complexity of a graph representation of the segmented airways. Zero complexity is 70

associated to segmentations without leakage, while leakage volume increases along with 71

complexity positive values. In case the graph is computed for the whole segmentation, 72

we obtain a global threshold able to provide a leakage free initial segmentation. In case 73

the graph is computed for a subvolume only containing a distal branch, the threshold 74

based on graph complexity is adapted according to the branch local structure. Further, 75

if thresholding is restricted to each branch surroundings, any initial segmentation can be 76

independently refined for each distal branch. Finally, the same structural analysis based 77

on graph complexity provides an algorithm for the suppression of leakage which might 78

be applied as a post-processing filtering step in case that thresholds are computed for a 79

positive complexity. 80

In the next Sections we explain our measure of anatomical consistency (Section 81

Structural Analysis for Anatomically Consistent Segmentations) and the main steps of 82

the proposed segmentation strategy (Section Strategy for Segmentation of Distal 83

Airways). 84

Structural Analysis for Anatomically Consistent Segmentations 85

For any map, E = E(i, j, k), such that airway voxels have higher values than background
voxels, a segmentation of airways, SegTh, can be obtained by thresholding as:

SegTh(i, j, k) =

{
1 if E(i, j, k) > Th
0 otherwise

(1)

In our case the map E is obtained (see Section Airways Local Appearance Maps) from 86

the convolution with a bank of filters describing bronchi local appearance in CT-scans. 87

Thus, from now one, these maps will be called appearance maps. 88

We set an optimal Th according to the following measure of the consistency of 89

SegTh geometry with airways anatomy. Airways are tubular structures with their 90

geometry determined by the centerline given by bronchi lumen center. These centerlines 91

have a tree structure given by bronchi branching levels. In order to quantify 92

segmentations anatomical consistency we analyze the geometry of their skeleton. To do 93

so, the segmentation skeleton is encoded in a graph that represents its branching 94

geometry by nodes and edges. The nodes of the graph correspond to skeleton branching 95

points and its edges represent branch connectivity. 96

The trachea entry point allows directing the graph using Depth First Search (DFS). 97

In the absence of artifacts, the directed graph should be a (binary) tree with levels 98

corresponding to bronchial levels and leafs corresponding to the most distal points 99

achieved by the segmentation. In practice, segmentations might include structures and 100

artifacts not belonging to bronchial anatomy which alter the graph tree structure. 101

A connected graph is a tree if and only if it is cycle-free. A directed graph is 102

cycle-free if and only if for all leafs, there is only one path to the root. This last 103

condition allows to measure how much a directed graph deviates from a tree, and 104

localize what distal branches have more artifacts in their segmentation. Let #PthLeafi 105

be the number of paths from the i-th Leaf node, Leafi to the graph root and NLeaf the 106

number of leafs, then our measure of complexity is defined as: 107

Complexity = 1− NLeaf∑NLeaf
i=1 #PthLeafi

∈ [0, 1] (2)

A tree has Complexity = 0, while Complexity approaches to 1 as the number of cycles 108

increases. 109
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The complexity (2) provides scan-sensitive thresholds ensuring segmentations 110

conforming with bronchial anatomy and either free of artifacts (Complexity = 0) or 111

with a controlled amount of them. Let MxComplexity be the maximum deviation from 112

a tree allowed for a segmentation, SegTh, and let us define a function of SegTh 113

complexity depending on Th as: 114

FComplex = FComplex(Th) := (3)

= Complexity(SegTh)−MxComplexity

then the threshold that achieves the maximum complexity MxComplexity is a zero of
FComplex. We note that, assuming that the map E is the likelihood that a voxel belongs
to an airway and SegTh given by (1), the zeros of FComplex are also given by:

ThOpt := minTh(FComplex(Th) <= 0) (4)

The computation of the optimal threshold requires finding a zero of the complexity 115

function FComplex defined in (3). Since it is continuous and bounded in the range 116

[1−MxComplexity,−MxComplexity], the equation can be solved using any iterative 117

numerical method for the resolution of non-linear equations. In particular, we could use 118

the bisection method, since Bolzano’s Theorem [19] ensures its convergence to one 119

solution provided that the function is continuous and achieves opposite signs in each 120

bound of the search interval. Bolzano’s method can be implemented using the iterative 121

algorithm described in Algorithm 1. Given that convergence to a solution of f(x) = 0 is 122

guaranteed, the algorithm can be stopped when a given accuracy for the solution, 123

tolerance tol in Algorithm 1, is achieved. In our case, f = FComplex, xa, xb are defined 124

by a minimum and maximum threshold values (see Section Experimental Design for a 125

rule to set them) of the map E and xc = ThOpt. 126

Algorithm 1 Pseudo Code of Bolzano’s bisection method for the resolution of non-linear
equations

xc = (xa+ xb)/2
yc = f(xc)
while abs(yc) > tol do
if ya ∗ yc < 0 then

xb = xc
end
else

xa = xc
end
xc = (xa+ xb)/2
yc = f(xc)

end

The solution to FComplex = 0 set a global threshold equal for all voxels in case (2) is 127

computed from the graph associated to the complete segmentation SegTh. In case the 128

graph is computed for a subvolume only containing a distal branch, its complexity 129

exclusively depends on the local structure of the segmented branch. Therefore the 130

solutions to (3) provide thresholds locally adapted to such bronchial branch (see Section 131

Distal Refinement of Initial Segmentation for further details). 132

In case MxComplexity is positive, some distal subtrees might contain artifacts in 133

their segmentation. Such artifacts are detected as cycles in the graph associated to the 134

segmentation and are pruned as follows. For each cycle, their nodes are sorted according 135

to increasing values of E to be iteratively removed until the complexity of the graph is 136

November 28, 2019 4/16



zero. The collection of all nodes removed together with their edges defines a subset of 137

the segmentation 3D skeleton. The inverse skeletonization of this subset provides a 138

volume that contains the artifacts attached to the segmented distal subtree. The 139

complementary of the volume of artifacts in SegThOpt is our final segmentation with 140

artifact reduction. 141

Fig 1. PICASSO Main Steps. 1. Initial segmentation using a multi-scale approach
with global adaptation of the threshold. The input data is the original CT scan (left
image) and the output are airway segmentations (most right meshes shown in purple) at
different scales, one for each down-scaled CT volume. 2. Distal refinement of initial
segmentation (upper left orange mesh) with a threshold locally adapted for each distal
branch (marked with dark circles). The output refined distal branches are shown in
purple in the lower left mesh. 3. Leakage removal by pruning the cycles of the graph
representing the segmentation skeleton. The input segmentation with leakage is shown
in orange (both in the upper left mesh and graph), while the output filtered leakage-free
segmentation is shown in purple.

Strategy for Segmentation of Distal Airways 142

Our strategy PICASSO is based on a thresholding of bronchi local appearance maps. 143

Appearance maps are computed by convolution with a bank of own-designed tubular 144

filters, while threshold values are adapted using the graph structural analysis of Section 145

Structural Analysis for Anatomically Consistent Segmentations.Fig 1 shows a flowchart 146

with the main steps of our segmentation method PICASSO. 147

First, we compute an initial segmentation of main bronchi using a multi-scale 148

approach with global adaptation of the threshold for each scale. Our tubular filtering is 149

applied at each down scaled volume, labelled CT l, obtained by repeated pooling of the 150

original gray-scale CT volume. The size of the kernel used in tubular filtering is the 151

same for all scales and it is set to the scale of distal bronchi at full resolution. By 152

performing a pooling, followed by a filtering at a fix small scale, we can detect airways 153

of different levels and sizes without increasing the kernel size [20]. For each pooled 154

volume at scale l, its appearance map, namely El, is binarized with the threshold that 155

solves (3) for FComplex computed using El. For each such a map at scale l, the optimal 156

threshold is computed by applying Algorithm1 to FComplex computed from El. 157

Second, we refine the initial segmentation at full resolution with local adaptation of 158

the threshold according to the consistency of each distal branch. To do so, we compute 159

a graph for subvolumes that only contain each distal branch, so that the threshold 160

based on graph complexity computed by applying Algorithm1 is exclusively obtained 161

according to the branch local structure. The subvolumes are computed using a binary 162

mask of the surroundings of each distal branch and the thresholding is also restricted to 163

such surroundings. This way the initial segmentation can be independently refined for 164

each distal branch. 165

Finally, leakage removal could be applied at any of the former steps in case we allow 166

for a drop in consistency in the computation of the thresholds. This is controlled by 167

setting a positive value for the tolerance parameter MxComplexity in equation (3). 168

Pre-Processing 169

CT scans are first pre-processed to in-paint [21] pulmonary vessels and body tissue 170

outside lungs in order to suppress responses at such interfaces prone to introduce 171

artifacts. In-painting requires the segmentation of the volume regions that have to be 172

in-painted. 173
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Body tissue is defined as the complementary of lungs in CT scans. To segment lungs 174

and pulmonary vessels we apply a threshold to CT scans Hounsfield units. Before 175

thresholding, scans are convolved with a bank of 3D anisotropic Gaussian kernels in 176

order to homogenize Hounsfield values. Let σ = (σx, σy, σz) be the scale of the filter 177

and Θ = (θ, φ) its orientation given by the unitary vector 178

η = (cos(φ)cos(θ), cos(φ)sin(θ), sin(φ)), then an oriented anisotropic 3D Gaussian 179

kernel, gΘ
σ , is given by: 180

gΘ
σ = gΘ

σ (x, y, z) =
1

(2π)3/2σxσyσz
e
−
(
x̃2

2σ2x
+ ỹ2

2σ2y
+ z̃2

2σ2z

)
(5)

for (x̃, ỹ, z̃) the change of coordinates given by the rotations of angles θ and φ that 181

transform the z-axis into the unitary vector η. The convolution of the CT scan with the 182

Gaussian kernel enhances areas of homogeneous intensity, like air in lungs, trachea and 183

main bronchi (negative responses) and blood in pulmonary vessels (positive responses). 184

Lungs and vessel are segmented applying Otsu thresholding to the negative response to 185

an isotropic Gaussian kernel for the lungs and the positive response to a bank of 186

anisotropic Gaussian kernels for pulmonary vessels. 187

The in-painting inside the segmented structures is based on a nearest neighbor 188

interpolation of CT intensity values. The in-painted volumes, denoted by 189

CT = CT (i, j, k), are the input for the computation of bronchi local appearance maps. 190

Airways Local Appearance Maps 191

The filter describing bronchi local appearance is given by a blob detector customized to 192

detect tubular structures. The blob detector is given by a Laplacian operator, ∆Θ
σ 193

computed using the 2nd derivatives of the Gaussian kernel (5) as: 194

∆Θ
σ = ∆Θ

σ (x, y, z) = ∂xxg
Θ
σ + ∂yyg

Θ
σ + ∂zzg

Θ
σ =

= (x̃2/σ4
x + ỹ2/σ4

y + z̃2/σ4
z)gΘ

σ − (1/σ2
x + 1/σ2

y + 1/σ2
z)gΘ

σ (6)

with the scales set to σz >> σy = σx in order to detect tubular-like anisotropic
structures. We crop the filter along its long axis (z-axis) to obtain a filter consistent
with a tubular shape. The cropping planes are set at z-levels including the most
negative values of (6), so that our tubular kernel, denoted by ψ = ψΘ

σ , is given by:

ψ = ψΘ
σ =

{
∆Θ
σ |z| ≤ z̃

0 otherwise
(7)

for z̃ the value such that the left tail of a 1D gaussian distribution given by gΘ
σ (0, 0, z̃) is 195

under 0.01. The kernel ψ is normalized to have unitary L2 norm and centered to have 196

zero integral. The convolution of the CT scan with ψ enhances airways tubular 197

structures (positive responses) and airways walls (negative responses). 198

The maximum positive response to a bank of oriented anisotropic tubular filters 199

defines the local appearance maps of, both, main and distal airways provided that filter 200

scales are adapted to the size of main and distal airways. 201

Initial Segmentation of Main Bronchi 202

Main bronchi up to 4-6 level have very different calibers. Instead of convolving CT 203

volumes with filters of varying scales, we adopt a multi-scale approach and repeatedly 204

down-sample the original volume. For each down-sampling scale, denoted by l, we 205

convolve the scaled volume with a bank of filters of fixed size. For each such convolution, 206
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the appearance map, noted El, is binarized using a global threshold, denoted by ThOptl, 207

adapted to the scale using Algorithm 1 for FComplex computed from El binarizations. 208

The volume CT is subsequently down-sampled by a factor of 2 using a max pooling 209

operator [22]. Max-pooling was preferred to smoothing operators (like average or 210

median) for the sake of the preservation of the highest contrast voxels and under the 211

assumption that partial volume attenuation of bronchial borders is over noise. A max 212

pooling of window size SzePool = H ×W ×D and stride (Sh, Sw, Sd) = (H,W,D) is 213

given by: 214

MxPoolSzePool(V )(i, j, k) = max
i′,j′,k′

V (i+ (i′ − 1)Sh, j + (j′ − 1)Sw, k + (k′ − 1)Sd)

1 ≤ i′ ≤ H, 1 ≤ j′ ≤W, 1 ≤ k′ ≤ D

for V = V (i, j, k) denoting any 3D volume. In our case, since H = W = D = 2, we will 215

note MxPoolSzePool by MxPool2. 216

Using the above notation, the down-scale volumes, denoted by CT l, are subsequently
computed from the original scans, CT = CT 0, as:

CT l = MxPool2(CT l−1) (8)

for l = 1, . . . , L, being L the maximum number of poolings. 217

For each level of down-sampling, CT l is convolved with a bank of oriented filters ψΘ
σ 218

with the scale σ fixed for all levels. The maximum response to such filter bank defines 219

the appearance map El that characterizes bronchi at the level of detail given by the 220

down-sampling. These maps El are computed as: 221

El = max
Θ

(CT l ∗ ψΘ
σ ) (9)

For each scale, l, we applied Algorithm 1 to FComplex computed from El in order to 222

obtain optimal thresholds, noted by ThOptl, globally adapted to each scale. Let Segl 223

denote the segmentation at the scale l obtained by thresholding El with ThOptl: 224

Segl = SeglThOpt(i, j, k) :=

{
1 if El(i, j, k) > ThOptl

0 otherwise

then, the multiresolution segmentation scheme we propose is given by: 225

Segl−1,l := max(Segl−1, SegUpl)) l = 1, . . . , L

SegL,L+1 := SegL

with SegI := Seg0,1 and SegUpl denoting the un-pooling of Segl given by:

UnPoolSzePool(V )(i′, j′, k′) = MxPool(V )(i, j, k)
Sh(i− 1) ≤ i′ ≤ Sh(i− 1) +H
Sw(j − 1) ≤ j′ ≤ Sw(j − 1) +W
Sd(k − 1) ≤ k′ ≤ Sd(k − 1) +D

(10)

In our case, H = W = D = 2, so that UnPoolSzePool = UnPool2. We observe that the 226

max/un-pooling operation on segmented volumes given by (10) can be understood as an 227

OR operation between two increasing pooling levels. If the coarser level l is above the 228

threshold, all the neighboring voxels of the finer level l − 1 are forced to belong to the 229

segmentation. Otherwise, only those above threshold in the finer scale l − 1 (if any) will 230

be included. 231
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Distal Refinement of Initial Segmentation 232

In order to refine the initial segmentation using thresholds locally adapted to each distal 233

branch, tubular filtering and its binarization required to optimize (4) are restricted to a 234

Region of Interest (ROI) containing each distal branch of the initial segmentation, SegI. 235

Such ROIs are defined as binary masks computed from SegUp1 and SegI as follows. 236

Let SegIc denote the complementary mask of SegUp1 in SegI given by 237

SegIc := SegI \ SegUp1. The connected components of this mask are a collection of 238

SegI most distal branches. For each such component, denoted by SegIBcc, consider its 239

complementary in SegI, SegIBccc := SegI \ SegIBcc. Then, the ROI mask, namely 240

ROIcc, containing exclusively the distal component SegIBcc is computed from SegIBcc 241

and SegIBccc distance maps as: 242

ROIcc :=

{
1 if d(SegIBcc) ≤ d((SegIBcc)

c)
0 otherwise

for d(·) denoting the 3D distance map to a volume mask. 243

The intersection between E0 and ROIcc defines an appearance map, 244

Ecc := E0
⋂
ROIcc which cancels outside ROIcc. This way the graph encoding Ecc 245

binarization only represents the local anatomy of the segmented distal branch and, thus, 246

the optimization of its complexity provides a threshold adapted to such branch. 247

Finally, we recall that in case that we set MxComplexity > 0 to optimize either 248

global or local thresholds, we apply the leakage removal strategy as a post-processing 249

filtering step. 250

Experimental Design 251

We carried out 2 experiments to validate our method. In Experiment1 we run our 252

method on the EXACT09 database for comparison to existing segmentation methods. 253

In Experiment2 we use our own CT data acquired under different breathing conditions 254

to compare to a commercial software (LungPoint®, Broncus, USA) for VBN [4]. 255

Computations were performed using a serial code implemented in MATLAB 256

(MathWorks®, Natick, MA, USA) run on a Fujitsu using a Intel(R) Xeon(R) CPU 257

E5-1620 v3 @ 3.50GHz with a Titan X Pascal to accelerate the computation of 258

convolutions. 259

In order to convert segmentations to a graph, the skeleton of the segmented CT 260

volume was obtained using [23] which is an automatic algorithm for computing subvoxel 261

precise skeletons of volumetric data based on subvoxel precise distance fields. The 262

skeletonization algorithm uses as input a subvoxel precise distance field and employs a 263

number of fast marching method propagations to extract the skeleton at subvoxel 264

precision. The skeleton is converted into a network (undirected) graph describing the 265

segmented bronchi anatomy by nodes and edges using [24]. The input of the 266

method [24] is a 3D binary image containing a one-dimensional voxel skeleton, 267

generated e.g. using [23], as well as, the output is the adjacency matrix of the graph, 268

and the nodes and links of the network as MATLAB structure. 269

Parameter Settings 270

Table 1 lists PICASSO’s parameters with a brief description, a criterion for their 271

selection and the values used in these experiments. PICASSO has to set parameters for 272

the optimization of segmentation’s complexity (MxComplexity, and Bolzano’s stop 273

tolerance, tol, and search interval limits, [xa, xb] = [ThMn, ThMx]), the computation of 274

appearance maps (filter bank parameters, σ, Θ) and the multi-scale approach maximum 275

pooling levels, L. 276

November 28, 2019 8/16



The parameter MxComplexity measures the deviation of the segmentations from 277

airways anatomy and, thus, high values increase detection of distal airways at the cost 278

of a higher computational cost required to remove leakage. In our first experiment, we 279

used two different complexity values and threshold selection approaches in order to 280

illustrate its impact in segmentations. Regarding Bolzano’s stopping parameter in 281

Algorithm 1, it is related to the accuracy of the optimal threshold and we heuristically 282

fixed it to achieve a compromise between segmentation improvement and algorithm 283

efficiency. Finally, the minimum, ThMn, and maximum, ThMx, thresholds defining 284

Algorithm 1 search interval, should satisfy that FComplex(ThMn) > 0 and 285

FComplex(ThMx) < 0. We learned this values from EXACT09 training set as the 286

minimum (ThMx) and maximum (ThMn) values such that FComplex > 0 and 287

FComplex < 0, for all cases in the training set. 288

The scale of appearance maps was the same for all resolutions and was set to detect 289

most distal bronchi to a size including bronchi and parenchyma. Orientations were 290

discretized so that the rotated kernels are included in the discrete support of an 291

unrotated kernel. This size is 33× 33× 33 voxels and is given by the volume containing 292

99% of the unrotated tubular filter. 293

Finally, the number of multiresolution levels, L, was set to 3 to ensure that main 294

bronchi have a similar size than distal ones and, thus, can be detected with tubular 295

filters of scale (1, 1, 4). 296

Table 1. PICASSO Parameters

Parameter Description Selection Values
MxComplexity deviation from high values PICASSOB ,0

airways anatomy increase detection PICASSOL,0
and computational cost PICASSO,0.15

(leakage removal)
tol Bolzano’s ThOpt accuracy 50 units

stopping criterion of appearance maps
[ThMn, ThMx] Bolzano’s opposite sign [750,975]

search interval of FComplex
σ tubular filter scale distal bronchi size (1,1,4)

and scan resolution
Θ tubular filter filters included Θn,m = (nπ/6,mπ/6)

orientations in σ kernel support
L multiresolution reduce main bronchi 3

pooling levels to distal size

Data Sets 297

Experiment1 (EXACT09 Challenge) 298

Our method was applied to the 20 testing CT scans of the MICCAI Challenge 299

EXACT09 [17] (http://image.diku.dk/exact/) acquired with different acquisition 300

conditions including variable slice thickness (0.5-1.0 mm), in-plane voxel sizes (0.55-0.78 301

mm) and radiation dose (120/140 kVp, 10.0-411.5 mAs). 302

For evaluation we considered the reference set and metrics presented in [17] and 303

offered by the EXACT09 site. For the reference segmentations, experienced observers 304

manually evaluated the results offered by the 15 algorithms compared in the original 305

competition to construct a common reference standard. Concerning quantitative metrics 306

we considered false positive rate (artifacts), leakage volume, branches detected (count, 307

percentage) and length (absolute and in percentage) of the detected bronchial tree. 308
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Experiment2 (CPAP Study) 309

This data set was acquired at Hospital de Bellvitge in a clinical study [18] to compare 310

the quality of airway segmentations from CT acquisitions performed both in 311

end-inspiration and end-expiration with different continuous positive airway pressure 312

(CPAP) protocols (available at 313

http : //iam.cvc.uab.es/portfolio/cpap− study − database/). Scans were obtained 314

from patients undergoing study of pulmonary lesions and referred for a diagnostic 315

thoracic CT scan. For each patient 4 CT acquisitions of the entire lung were obtained 316

including inspiration, expiration, inspiration with CPAP and expiration with CPAP. 317

Scans were acquired with a 320-detector row device with slice thickness and interval of 318

0, 5 and 0, 4 mm respectively performed with Aquilion ONE (Toshiba Medical Systems, 319

Otawara, Japan) with a 80 x 0.5 mm collimator, tube voltage of 100 kVp. Since this 320

data set has not any annotation nor ground truth for segmentations, we used the 321

number of segmented branches as validation metric. 322

Statistical Analysis 323

Experiment1 (EXACT09 Challenge) 324

PICASSO’s EXACT09 metrics were compared to the metrics EXACT09 top performers. 325

PICASSO’s EXACT09 metrics were compared to the metrics EXACT09 top performers. 326

Top performers were selected as those methods having tree length detected above 50%. 327

The teams selected were Team2 (automated), Team4 (automated), Team5 (automated), 328

Team7 (automated), Team13 (automated), Team14 (automated) and Team15 329

(interactive). For each metric, descriptive statistics as computed by EXACT09 challenge 330

were considered. 331

In order to illustrate the benefits of our adaptive thresholding and leakage removal 332

based on graphs, we applied our method using 3 different configurations. The first one 333

is a PICASSO base line (labelled PICASSOB) computed using a common global 334

threshold learned from EXACT training set to achieve zero complexity, 335

MxComplexity = 0. This configuration sets the maximum amount of branches that 336

can be detected without artifacts using a fixed threshold. The second configuration 337

(labelled PICASSOL) is a PICASSO with adaptive local threshold and 338

MxComplexity = 0.15 to include high number of distal branches. This configuration 339

sets the maximum number of branches that the tubular kernel of SectionAirways Local 340

Appearance Maps is able to detect. The last configuration (labelled PICASSO) is the 341

full methodology with adaptive local threshold and leakage removal. Like PICASSOL, 342

complexity was set to MxComplexity = 0.15 to assess the capability for leakage 343

reduction and distal branch preservation. 344

Experiment2 (CPAP Study) 345

For the CPAP-Study data was managed and analyzed using software R version 3.2.5. A 346

descriptive statistical analysis was carried out for number of airways, noted by NAir, 347

using the number of samples,mean and standard deviation (SD). Main analysis was 348

performed using generalized mixed models in logarithmic scale. In particular, we 349

followed the model that was used in the CPAP study [25] with an extra variable for the 350

segmentation method. The CPAP model was designed by the Statistical Service of 351

Hospital Universitari de Bellvitge. 352

The regression model included as factors the acquisition protocol (EXP, for
expiration and INS for inspiration) and the segmentation method (LungPt/PICASSO)
and a random subject effect to account for intra-individual variability among patients.
Inspiratory acquisitions segmented with the commercial software LungPoint were
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considered the reference baseline. Measured lung volume (in mm3 as estimated by the
CT scan software) was used as adjusting factor to correct for variations in respiratory
maneuvers [26]. The regression model was:

log(NAirij) = β0 + β1V olij + β2SegMth + β3I + Pati + εij (11)

for Pati ∼ N(0, σPat) denoting the random effect that models intra-patient variability, 353

V olij lung volume and SegMth, I two grouping factors for, respectively, the 354

segmentation method (SegMth = 0 for LungPt, SegMth = 1 for PICASSO) and the 355

acquisition protocol (I = 0 for expiration and I = 1 for inspiration). 356

Model assumptions were validated by means of residual analysis and influential 357

values. We computed model coefficients, p values and 95% confidence interval (CI) for 358

significance in main effects. The 95% CI for the difference LungPt-PICASSO was also 359

computed. CIs were back transformed to the original scale for their interpretation. In 360

original scale differences between segmentation methods are expressed as a ratio. A 361

ratio of 1 indicates an expectation that the outcome of the methods is not different. A 362

ratio greater than 1 indicates an expected improvement (a better performance) of 363

PICASSO relative to baseline LungPt. A ratio less than 1 indicates an expected worse 364

performance of PICASSO. A p value < 0.05 was considered statistically significant. 365

Results 366

Experiment1: EXACT09 Challenge Data Set 367

Fig 2 shows the 3 PICASSO configurations in different colors. The baseline 368

segmentation PICASSOB is shown in green, PICASSOL leakage is shown in red and 369

PICASSO with leakage removal is shown in blue. We note that PICASSO graph 370

structural analysis is able to remove large amounts of leakage while keeping the 371

majority of distal branches. 372

Fig 2. EXACT09: Performance of PICASSO in terms of leakage suppression (red
voxels) and branch detection with varying complexity (complexity 0, green voxels;
complexity 0.15, blue voxels). Case 24 in the left panel and case 34 in the right one.

Fig 3 shows the average tree length versus average false positive rate of all EXACT 373

algorithms including the 3 different configurations of our method: PICASSOB , 374

PICASSOL and the full method with leakage removal PICASSO. Table 2 shows 375

descriptive statistics (as reported by EXACT09) for the results obtained by the 3 376

PICASSO configurations and top teams mean results at the bottom rows. 377

Fig 3. EXACT09: False positive rate vs tree length detected. The 15 bullets are
results represented in [17] after the 15 algorithms originally tested, while the 3 asterisks
are relevant to the 3 versions of the proposed PICASSO algorithm, which are newly
inserted for a comparison

The baseline PICASSOB has TLD=43.8% and FPR=1.58% . This numbers are 378

comparable to the ones obtained by most newer methods (available at 379

http : //image.diku.dk/exact/newresults.php) evaluated after the challenge. In spite 380

of setting MxComplexity = 0, PICASSOB has FPR>0%. We think this is due to two 381

main factors: EXACT09 metrics and using a fixed threshold learned on EXACT 382

training set. On one hand, EXACT09 metrics base on a ground truth created from all 383

results submitted to the original challenge. This means that if a method detects a (part 384

of) a branch that was not detected by any of the submitted methods it will be counted 385
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Table 2. EXACT09: PICASSO experiments vs top teams.

Branch Branch Tree TLD Leak Leak FPR
count length count

(%) (cm) (%) (mm3) (%)

PICASSOB 103.5 43.8 74.5 36.8 7.5 179.3 1.58
PICASSOL 164.9 68.0 131.8 61.4 103.7 3804.9 27.34
PICASSO 151.6 62.3 118.9 55.4 73.2 987.3 6.52
Team2 158 62.8 122.4 56 12 563 2.0
Team4 187 76.5 158.7 73.3 35 5138 15
Team5 150 59.8 118.4 54.0 2 18 0.1
Team7 147 57.9 125.2 55.2 6 577 2.4
Team13 151 63.0 122.4 58.4 5 372 1.4
Team14 161 67.2 115.4 57.0 44 1873 7.2
Team15 149 63.1 119.2 58.9 10 159 1.2

as false positive [17]. These makes metrics of all methods evaluated after 2009 to be 386

overstated in FPR and understated in TLD. On the other hand, due to variability 387

across cases, a threshold having FPR=0% on the training set, might include some 388

leakage on (EXACT test set) new cases. 389

The configuration PICASSOL with adaptive threshold and positive complexity, 390

increments TLD 24.2% at the cost of a high increase (a 25.76%) in FPR. After leakage 391

suppression (PICASSO), FPR drops 20.82% (which represents 76% of leakage removal) 392

while 92% of branches are preserved with only 5.7% decrease in TLD. We observe that 393

compared to EXACT top performers PICASSO is competitive in terms of airway 394

detection (being the 3rd best in terms of % of detected branch and tree length in cm) 395

and fair in terms of leakage presence (even good in terms of mm3). 396

Experiment2: CPAP-Study Data Set 397

Descriptive statistics and model adjustment for the number of airways is given in Table 398

3. Both factors, segmentation method and inspiration, were significant (p-val < 0.001). 399

In particular, PICASSO significantly (p-val < 0.001) increased the number of airways 400

1.3-fold over LungPt with a 95% CI for rate ratio equal to (1.26, 1.32). As expected the 401

number of airways in inspiration was significantly higher than in expiration, with an 402

average 1.7-fold increase. 403

Table 3. CPAP-Study: Model for Number of Airways.

Explicative Descriptive Model
variables

n mean SD coeff p-val 95% CI
SegMth

LungPoint 64 190 117 1 - (134, 213)
PICASSO 64 239 172 0.17 <0.01 (159, 252)

Inspiration
INS 64 305 152 1 - (198, 327)

EXP 64 124 69 -0.65 <0.01 (103, 171)

Fig 4 shows segmentations obtained for LungPt and PICASSO for two cases in 404
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inspiration and expiration. For both methods, the number of branches in inspiration is 405

larger than in expiration. PICASSO segments more branches than LungPt for the 406

inspiration of the upper case and the expiration of the lower case, whereas is 407

comparable in the remaining cases. 408

Fig 4. CPAP-Study:PICASSO vs LungPoint

Discussion 409

Evaluation on EXACT09 cases shows that our method for leakage removal is able to 410

reduce leakage 76% in average while keeping 92% of the detected branches. Comparing 411

to top EXACT methods, PICASSO achieves a relatively high branch detection rate 412

TDL=62.3%, although still keeps FPR=6.2%. Although TDL is relatively far from top 413

performers evaluated on EXACT, like Team 4 (TDL=76.5%; FPR=15%) or the 414

newer [15] (TLD=71.6%; FPR=9.75%) and [27] (TDL=79.9%;FPR=11.92%), PICASSO 415

has a substantially lower FPR. We would like to note that metrics are bounded by the 416

underlying method for airway detection. In this case, the multi-resolution scheme based 417

on hand-craft filters has (PICASSOL) a top TDL=68% with FPR=27.34%. 418

Comparing to recent methods for threshold adaptation [7] evaluated on EXACT09 419

cases, PICASSO is superior in terms of detection but inferior in terms of leakage 420

presence. The increase in airway detection could be attributed to different approaches 421

for the detection of airways (multiresolution appearance maps in our case versus region 422

growing in the case of [7]) rather than to the threshold optimization process. Also, as 423

the same authors admit, to avoid leakage segmentation in some cases the algorithm may 424

stop too early, avoiding possible segmentation of peripheral branches. 425

Comparing to newest methods for leakage removal [16] also evaluated on EXACT09 426

cases, our graph strategy is fairly inferior in terms of leakage removal but superior in 427

terms of branch preservation. Experiment3 in [16] on EXACT Team14 (TDL=59%; 428

FPR=7.13%) report a drop of 6.12 % in FPR (20.82% for PICASSO) and a drop of 429

7.2% in TDL (5.7% for PICASSO). These numbers represent a 85% (76% for PICASSO) 430

of total leakage removal with a 87.8% (91.6% for PICASSO) of detections preserved. 431

Concerning the computational complexity, Table 4 reports the ranges (µ ± σ) for 432

the 2 databases (EXACT and CPAP), as well as, average scan resolution and number of 433

cases. We report the complexity for each of the main steps of our algorithm: 1. 434

Multi-scale initial segmentation with global threshold adaptation; 2. Distal refinement 435

with local threshold adaptation (PICASSOL); and, 3. Distal refinement leakage 436

removal (PICASSO). The highest computational cost is in the computation of the 437

segmentation skeleton required for threshold optimization. In the case of the global 438

adaptation (Step1), since the computation of the skeleton is based on fast marching, its 439

complexity increases with scan resolution. In the case of the local refinement (Step2), 440

given that distal branches are sequentially processed, complexity also depends on their 441

number and, thus, it also increases along with scan resolution. 442

Conclusion 443

Segmentation of most distal airways is a must for virtual bronchoscopy biopsy 444

guiding [28]. The variability in appearance of distal regions across patients suggests 445

using thresholds adapted for each patient and bronchial level. This paper presents an 446

original strategy based on graph structural analysis for selecting optimal thresholds of 447

maps codifying bronchi local appearance. 448
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Table 4. Computational complexity ranges for each of the main steps of the algorithm.

Database EXACT CPAP
Resolution 0.69× 0.69× 0.95 0.5× 0.5× 0.5
Step 1 (min) 5.32 ± 6.03 8.16 ± 2.97
Step 2 (min) 5.26 ± 6.98 12.60 ± 3.82
Step 3 (min) 0.29 ± 0.20 0.60 ± 0.38
Cases 40 40

Results show that graph structural analysis can provide interesting approaches to 449

anatomical modelling and pattern analysis without the need of exhaustive training. By 450

incorporating anatomical structure information to segmentation methods, it is possible 451

to achieve optimal specificity (leakage presence). Even if results are not superior in 452

terms of sensitivity to current state-of-art supervised techniques, structural methods do 453

not need annotated data for their design (training). Given the difficulty to produce high 454

quality annotated clinical data, this is a main advantage for the development of clinical 455

support systems. 456

The analysis of complexity in Table 4 shows that PICASSO has an average overall 457

cost of 10.87 minutes for high resolution scans and 21.36 minutes for very high 458

resolution scans using a MATLAB serial implementation. On one hand, such times 459

could drop using a parallel implementation. On the hand, we observe that this 460

complexity is not so critical for a clinical use, since airway segmentation is mainly used 461

off-line during intervention planning. 462

Still, PICASSO could be improved in three aspects: leakage characterization, 463

baseline method for airways detection and computational cost. First, the description of 464

leakage structure as a graph cycle excludes tubular leakage that might appear parallel 465

to airways. Although these are rare cases, they represent a portion of PICASSO 6.2% 466

FPR and, thus, they should be also characterized to complete our measure of 467

complexity. Second, PICASSO could improve its performance if the baseline method for 468

airway detection was more sensitive to airways, like EXACT Team4. In this context, we 469

think that the combination of our graph structural analysis with a baseline method 470

based on self-learned kernels (like CNNs) could provide an optimal approach to distal 471

branch segmentation. Although it is not a critical point for clinical use, the method 472

complexity would significantly improve if the local refinement was parallelized to 473

process several branches together. 474
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