toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title Extending anisotropic operators to recover smooth shapes Type Journal Article
  Year 2005 Publication Computer Vision and Image Understanding Abbreviated Journal  
  Volume 99 Issue 1 Pages 110-125  
  Keywords Contour completion; Functional extension; Differential operators; Riemmanian manifolds; Snake segmentation  
  Abstract Anisotropic differential operators are widely used in image enhancement processes. Recently, their property of smoothly extending functions to the whole image domain has begun to be exploited. Strong ellipticity of differential operators is a requirement that ensures existence of a unique solution. This condition is too restrictive for operators designed to extend image level sets: their own functionality implies that they should restrict to some vector field. The diffusion tensor that defines the diffusion operator links anisotropic processes with Riemmanian manifolds. In this context, degeneracy implies restricting diffusion to the varieties generated by the vector fields of positive eigenvalues, provided that an integrability condition is satisfied. We will use that any smooth vector field fulfills this integrability requirement to design line connection algorithms for contour completion. As application we present a segmenting strategy that assures convergent snakes whatever the geometry of the object to be modelled is.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GIR2005 Serial 1530  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title Shape Restoration via a Regularized Curvature Flow Type Journal Article
  Year 2004 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal  
  Volume 21 Issue 3 Pages 205-223  
  Keywords  
  Abstract Any image filtering operator designed for automatic shape restoration should satisfy robustness (whatever the nature and degree of noise is) as well as non-trivial smooth asymptotic behavior. Moreover, a stopping criterion should be determined by characteristics of the evolved image rather than dependent on the number of iterations. Among the several PDE based techniques, curvature flows appear to be highly reliable for strongly noisy images compared to image diffusion processes.
In the present paper, we introduce a regularized curvature flow (RCF) that admits non-trivial steady states. It is based on a measure of the local curve smoothness that takes into account regularity of the curve curvature and serves as stopping term in the mean curvature flow. We prove that this measure decreases over the orbits of RCF, which endows the method with a natural stop criterion in terms of the magnitude of this measure. Further, in its discrete version it produces steady states consisting of piece-wise regular curves. Numerical experiments made on synthetic shapes corrupted with different kinds of noise show the abilities and limitations of each of the current geometric flows and the benefits of RCF. Finally, we present results on real images that illustrate the usefulness of the present approach in practical applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GiR2004c Serial 1532  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit  openurl
  Title Curvature based Distance Maps Type Report
  Year 2003 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 70 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Computer Vision Center Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GIR2003a Serial 1534  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva; Jordi Saludes; Josefina Mauri edit   pdf
url  openurl
  Title Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach Type Conference Article
  Year 2000 Publication International Conference on Pattern Recognition Abbreviated Journal  
  Volume 4 Issue Pages 352-355  
  Keywords  
  Abstract Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRS2000a Serial 1537  
Permanent link to this record
 

 
Author Debora Gil; Oriol Rodriguez-Leon; Petia Radeva; Josepa Mauri edit   pdf
doi  openurl
  Title Myocardial Perfusion Characterization From Contrast Angiography Spectral Distribution Type Journal Article
  Year 2008 Publication IEEE Transactions on Medical Imaging Abbreviated Journal  
  Volume 27 Issue 5 Pages 641-649  
  Keywords Contrast angiography; myocardial perfusion; spectral analysis.  
  Abstract Despite recovering a normal coronary flow after acute myocardial infarction, percutaneous coronary intervention does not guarantee a proper perfusion (irrigation) of the infarcted area. This damage in microcirculation integrity may detrimentally affect the patient survival. Visual assessment of the myocardium opacification in contrast angiography serves to define a subjective score of the microcirculation integrity myocardial blush analysis (MBA). Although MBA correlates with patient prognosis its visual assessment is a very difficult task that requires of a highly expertise training in order to achieve a good intraobserver and interobserver agreement. In this paper, we provide objective descriptors of the myocardium staining pattern by analyzing the spectrum of the image local statistics. The descriptors proposed discriminate among the different phenomena observed in the angiographic sequence and allow defining an objective score of the myocardial perfusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRR2008 Serial 1541  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title Approaching Artery Rigid Dynamics in IVUS Type Journal Article
  Year 2009 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 28 Issue 11 Pages 1670-1680  
  Keywords Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation.  
  Abstract Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGF2009 Serial 1545  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti edit   pdf
doi  openurl
  Title Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences Type Journal Article
  Year 2011 Publication IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Abbreviated Journal T-UFFC  
  Volume 58 Issue 1 Pages 60-72  
  Keywords 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging  
  Abstract Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-3010 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ HGG2011 Serial 1546  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Petia Radeva edit   pdf
openurl 
  Title A Deterministic-Statistical Strategy for Adventitia Segmentation in IVUS images Type Report
  Year 2005 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 89 Pages  
  Keywords  
  Abstract A useful tool for some specific studies in cardiac disease diagnosis is vessel plaque assessment by analysis of IVUS sequences. Manual detection of luminal (inner) and media-adventitia (external) vessel borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as well as, shades, artifacts and blurred signal response due to ultrasound physical properties troubles automated adventitia segmentation. In order to efficiently approach such a complex problem, we propose blending advanced anisotropic filtering operators and statistical classification techniques into a vessel border modelling strategy. Our systematic statistical analysis shows that the reported adventitia detection achieves an accuracy in the range of inter-observer variability regardless of plaque nature, vessel geometry and incomplete vessel borders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGR2005a Serial 1548  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Albert Teis edit   pdf
doi  openurl
  Title How Do Conservation Laws Define a Motion Suppression Score in In-Vivo Ivus Sequences? Type Conference Article
  Year 2007 Publication Proc. IEEE Ultrasonics Symp Abbreviated Journal  
  Volume Issue Pages 2231-2234  
  Keywords validation standards; IVUS motion compensation; conservation laws.  
  Abstract Evaluation of arterial tissue biomechanics for diagnosis and treatment of cardiovascular diseases is an active research field in the biomedical imaging processing area. IntraVascular UltraSound (IVUS) is a unique tool for such assessment since it reflects tissue morphology and deformation. A proper quantification and visualization of both properties is hindered by vessel structures misalignments introduced by cardiac dynamics. This has encouraged development of IVUS motion compensation techniques. However, there is a lack of an objective evaluation of motion reduction ensuring a reliable clinical application This work reports a novel score, the Conservation of Density Rate (CDR), for validation of motion compensation in in-vivo pullbacks. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; while results in in vivo pullbacks show its reliability in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ HTG2007 Serial 1550  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Monica Mitiko; Sergio Shiguemi; Debora Gil edit   pdf
url  isbn
openurl 
  Title A validation protocol for assessing cardiac phase retrieval in IntraVascular UltraSound Type Conference Article
  Year 2010 Publication Computing in Cardiology Abbreviated Journal  
  Volume 37 Issue Pages 899-902  
  Keywords  
  Abstract A good reliable approach to cardiac triggering is of utmost importance in obtaining accurate quantitative results of atherosclerotic plaque burden from the analysis of IntraVascular UltraSound. Although, in the last years, there has been an increase in research of methods for retrospective gating, there is no general consensus in a validation protocol. Many methods are based on quality assessment of longitudinal cuts appearance and those reporting quantitative numbers do not follow a standard protocol. Such heterogeneity in validation protocols makes faithful comparison across methods a difficult task. We propose a validation protocol based on the variability of the retrieved cardiac phase and explore the capability of several quality measures for quantifying such variability. An ideal detector, suitable for its application in clinical practice, should produce stable phases. That is, it should always sample the same cardiac cycle fraction. In this context, one should measure the variability (variance) of a candidate sampling with respect a ground truth (reference) sampling, since the variance would indicate how spread we are aiming a target. In order to quantify the deviation between the sampling and the ground truth, we have considered two quality scores reported in the literature: signed distance to the closest reference sample and distance to the right of each reference sample. We have also considered the residuals of the regression line of reference against candidate sampling. The performance of the measures has been explored on a set of synthetic samplings covering different cardiac cycle fractions and variabilities. From our simulations, we conclude that the metrics related to distances are sensitive to the shift considered while the residuals are robust against fraction and variabilities as far as one can establish a pair-wise correspondence between candidate and reference. We will further investigate the impact of false positive and negative detections in experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0276-6547 ISBN 978-1-4244-7318-2 Medium  
  Area Expedition Conference CINC  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ HSM2010 Serial 1551  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: