toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Patricia Marquez; Debora Gil; Aura Hernandez-Sabate; Daniel Kondermann edit   pdf
url  doi
isbn  openurl
  Title When Is A Confidence Measure Good Enough? Type Conference Article
  Year 2013 Publication 9th International Conference on Computer Vision Systems Abbreviated Journal  
  Volume 7963 Issue Pages 344-353  
  Keywords Optical flow, confidence measure, performance evaluation  
  Abstract Confidence estimation has recently become a hot topic in image processing and computer vision.Yet, several definitions exist of the term “confidence” which are sometimes used interchangeably. This is a position paper, in which we aim to give an overview on existing definitions,
thereby clarifying the meaning of the used terms to facilitate further research in this field. Based on these clarifications, we develop a theory to compare confidence measures with respect to their quality.
 
  Address St Petersburg; Russia; July 2013  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-39401-0 Medium  
  Area Expedition Conference ICVS  
  Notes IAM;ADAS; 600.044; 600.057; 600.060; 601.145 Approved no  
  Call Number IAM @ iam @ MGH2013a Serial 2218  
Permanent link to this record
 

 
Author (up) Patricia Marquez; Debora Gil; R.Mester; Aura Hernandez-Sabate edit   pdf
openurl 
  Title Local Analysis of Confidence Measures for Optical Flow Quality Evaluation Type Conference Article
  Year 2014 Publication 9th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume 3 Issue Pages 450-457  
  Keywords Optical Flow; Confidence Measure; Performance Evaluation.  
  Abstract Optical Flow (OF) techniques facing the complexity of real sequences have been developed in the last years. Even using the most appropriate technique for our specific problem, at some points the output flow might fail to achieve the minimum error required for the system. Confidence measures computed from either input data or OF output should discard those points where OF is not accurate enough for its further use. It follows that evaluating the capabilities of a confidence measure for bounding OF error is as important as the definition
itself. In this paper we analyze different confidence measures and point out their advantages and limitations for their use in real world settings. We also explore the agreement with current tools for their evaluation of confidence measures performance.
 
  Address Lisboa; January 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes IAM; ADAS; 600.044; 600.060; 600.057; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MGM2014 Serial 2432  
Permanent link to this record
 

 
Author (up) Patricia Marquez; H. Kause; A. Fuster; Aura Hernandez-Sabate; L. Florack; Debora Gil; Hans van Assen edit   pdf
doi  isbn
openurl 
  Title Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging Type Conference Article
  Year 2014 Publication 17th International Conference on Medical Image Computing and Computer Assisted Intervention Abbreviated Journal  
  Volume 8896 Issue Pages 231-238  
  Keywords Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging  
  Abstract Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across di erent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three di erent OF methods, including HARP.
 
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-14677-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM; ADAS; 600.060; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MKF2014 Serial 2495  
Permanent link to this record
 

 
Author (up) Patricia Marquez;Debora Gil;Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title A Complete Confidence Framework for Optical Flow Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue 2 Pages 124-133  
  Keywords Optical flow, confidence measures, sparsification plots, error prediction plots  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Florence, Italy, October 7-13, 2012 Editor Andrea Fusiello, Vittorio Murino ,Rita Cucchiara  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGH2012b Serial 1991  
Permanent link to this record
 

 
Author (up) Paula Fritzsche; C.Roig; Ana Ripoll; Emilio Luque; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title A Performance Prediction Methodology for Data-dependent Parallel Applications Type Conference Article
  Year 2006 Publication Proceedings of the IEEE International Conference on Cluster Computing Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract The increase in the use of parallel distributed architectures in order to solve large-scale scientific problems has generated the need for performance prediction for both deterministic applications and non-deterministic applications. In particular, the performance prediction of data dependent programs is an extremely challenging problem because for a specific issue the input datasets may cause different execution times. Generally, a parallel application is characterized as a collection of tasks and their interrelations. If the application is time-critical it is not enough to work with only one value per task, and consequently knowledge of the distribution of task execution times is crucial. The development of a new prediction methodology to estimate the performance of data-dependent parallel applications is the primary target of this study. This approach makes it possible to evaluate the parallel performance of an application without the need of implementation. A real data-dependent arterial structure detection application model is used to apply the methodology proposed. The predicted times obtained using the new methodology for genuine datasets are compared with predicted times that arise from using only one execution value per task. Finally, the experimental study shows that the new methodology generates more precise predictions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ FRR2006 Serial 1497  
Permanent link to this record
 

 
Author (up) Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Katerine Diaz; Ales Leonardis; Antonio Lopez; Klaus McDonald Maier edit   pdf
openurl 
  Title LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 9915 Issue Pages 894-900  
  Keywords Simulation environment; Automated Driving; Driver-Vehicle interaction  
  Abstract Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.  
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes ADAS;IAM; 600.085; 600.076 Approved no  
  Call Number MHE2016 Serial 2865  
Permanent link to this record
 

 
Author (up) Santi Puch; Irina Sanchez; Aura Hernandez-Sabate; Gemma Piella; Vesna Prckovska edit   pdf
url  openurl
  Title Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation Type Conference Article
  Year 2018 Publication International MICCAI Brainlesion Workshop Abbreviated Journal  
  Volume 11384 Issue Pages 393-405  
  Keywords Brain tumors; 3D fully-convolutional CNN; Magnetic resonance imaging; Global planar convolution  
  Abstract In this work, we introduce the Global Planar Convolution module as a building-block for fully-convolutional networks that aggregates global information and, therefore, enhances the context perception capabilities of segmentation networks in the context of brain tumor segmentation. We implement two baseline architectures (3D UNet and a residual version of 3D UNet, ResUNet) and present a novel architecture based on these two architectures, ContextNet, that includes the proposed Global Planar Convolution module. We show that the addition of such module eliminates the need of building networks with several representation levels, which tend to be over-parametrized and to showcase slow rates of convergence. Furthermore, we provide a visual demonstration of the behavior of GPC modules via visualization of intermediate representations. We finally participate in the 2018 edition of the BraTS challenge with our best performing models, that are based on ContextNet, and report the evaluation scores on the validation and the test sets of the challenge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ PSH2018 Serial 3251  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: