toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate; Daniel Kondermann edit   pdf
url  doi
isbn  openurl
  Title When Is A Confidence Measure Good Enough? Type Conference Article
  Year 2013 Publication 9th International Conference on Computer Vision Systems Abbreviated Journal  
  Volume 7963 Issue Pages 344-353  
  Keywords Optical flow, confidence measure, performance evaluation  
  Abstract Confidence estimation has recently become a hot topic in image processing and computer vision.Yet, several definitions exist of the term “confidence” which are sometimes used interchangeably. This is a position paper, in which we aim to give an overview on existing definitions,
thereby clarifying the meaning of the used terms to facilitate further research in this field. Based on these clarifications, we develop a theory to compare confidence measures with respect to their quality.
 
  Address St Petersburg; Russia; July 2013  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (down) 978-3-642-39401-0 Medium  
  Area Expedition Conference ICVS  
  Notes IAM;ADAS; 600.044; 600.057; 600.060; 601.145 Approved no  
  Call Number IAM @ iam @ MGH2013a Serial 2218  
Permanent link to this record
 

 
Author Patricia Marquez;Debora Gil;Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title A Complete Confidence Framework for Optical Flow Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue 2 Pages 124-133  
  Keywords Optical flow, confidence measures, sparsification plots, error prediction plots  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Florence, Italy, October 7-13, 2012 Editor Andrea Fusiello, Vittorio Murino ,Rita Cucchiara  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGH2012b Serial 1991  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil ; Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title Error Analysis for Lucas-Kanade Based Schemes Type Conference Article
  Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 7324 Issue I Pages 184-191  
  Keywords Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance  
  Abstract Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.  
  Address Aveiro, Portugal  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor  
  Language english Summary Language Original Title  
  Series Editor Campilho, Aurélio and Kamel, Mohamed Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (down) 978-3-642-31294-6 Medium  
  Area Expedition Conference ICIAR  
  Notes IAM Approved no  
  Call Number IAM @ iam @ MGH2012a Serial 1899  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Mireia Burnat; Steven Jansen; Jordi Martinez-Vilalta edit   pdf
doi  isbn
openurl 
  Title Structure-Preserving Smoothing of Biomedical Images Type Conference Article
  Year 2009 Publication 13th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 5702 Issue Pages 427-434  
  Keywords non-linear smoothing; differential geometry; anatomical structures segmentation; cardiac magnetic resonance; computerized tomography.  
  Abstract Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.  
  Address Münster, Germany  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (down) 978-3-642-03766-5 Medium  
  Area Expedition Conference CAIP  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GHB2009 Serial 1527  
Permanent link to this record
 

 
Author Patricia Marquez; H. Kause; A. Fuster; Aura Hernandez-Sabate; L. Florack; Debora Gil; Hans van Assen edit   pdf
doi  isbn
openurl 
  Title Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging Type Conference Article
  Year 2014 Publication 17th International Conference on Medical Image Computing and Computer Assisted Intervention Abbreviated Journal  
  Volume 8896 Issue Pages 231-238  
  Keywords Optical flow; Performance Evaluation; Synthetic Database; ANOVA; Tagging Magnetic Resonance Imaging  
  Abstract Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across di erent clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest in uence on OF accuracy drop.
In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three di erent OF methods, including HARP.
 
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN (down) 978-3-319-14677-5 Medium  
  Area Expedition Conference STACOM  
  Notes IAM; ADAS; 600.060; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MKF2014 Serial 2495  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Monica Mitiko; Sergio Shiguemi; Debora Gil edit   pdf
url  isbn
openurl 
  Title A validation protocol for assessing cardiac phase retrieval in IntraVascular UltraSound Type Conference Article
  Year 2010 Publication Computing in Cardiology Abbreviated Journal  
  Volume 37 Issue Pages 899-902  
  Keywords  
  Abstract A good reliable approach to cardiac triggering is of utmost importance in obtaining accurate quantitative results of atherosclerotic plaque burden from the analysis of IntraVascular UltraSound. Although, in the last years, there has been an increase in research of methods for retrospective gating, there is no general consensus in a validation protocol. Many methods are based on quality assessment of longitudinal cuts appearance and those reporting quantitative numbers do not follow a standard protocol. Such heterogeneity in validation protocols makes faithful comparison across methods a difficult task. We propose a validation protocol based on the variability of the retrieved cardiac phase and explore the capability of several quality measures for quantifying such variability. An ideal detector, suitable for its application in clinical practice, should produce stable phases. That is, it should always sample the same cardiac cycle fraction. In this context, one should measure the variability (variance) of a candidate sampling with respect a ground truth (reference) sampling, since the variance would indicate how spread we are aiming a target. In order to quantify the deviation between the sampling and the ground truth, we have considered two quality scores reported in the literature: signed distance to the closest reference sample and distance to the right of each reference sample. We have also considered the residuals of the regression line of reference against candidate sampling. The performance of the measures has been explored on a set of synthetic samplings covering different cardiac cycle fractions and variabilities. From our simulations, we conclude that the metrics related to distances are sensitive to the shift considered while the residuals are robust against fraction and variabilities as far as one can establish a pair-wise correspondence between candidate and reference. We will further investigate the impact of false positive and negative detections in experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0276-6547 ISBN (down) 978-1-4244-7318-2 Medium  
  Area Expedition Conference CINC  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ HSM2010 Serial 1551  
Permanent link to this record
 

 
Author Paula Fritzsche; C.Roig; Ana Ripoll; Emilio Luque; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title A Performance Prediction Methodology for Data-dependent Parallel Applications Type Conference Article
  Year 2006 Publication Proceedings of the IEEE International Conference on Cluster Computing Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract The increase in the use of parallel distributed architectures in order to solve large-scale scientific problems has generated the need for performance prediction for both deterministic applications and non-deterministic applications. In particular, the performance prediction of data dependent programs is an extremely challenging problem because for a specific issue the input datasets may cause different execution times. Generally, a parallel application is characterized as a collection of tasks and their interrelations. If the application is time-critical it is not enough to work with only one value per task, and consequently knowledge of the distribution of task execution times is crucial. The development of a new prediction methodology to estimate the performance of data-dependent parallel applications is the primary target of this study. This approach makes it possible to evaluate the parallel performance of an application without the need of implementation. A real data-dependent arterial structure detection application model is used to apply the methodology proposed. The predicted times obtained using the new methodology for genuine datasets are compared with predicted times that arise from using only one execution value per task. Finally, the experimental study shows that the new methodology generates more precise predictions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ FRR2006 Serial 1497  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Aura Hernandez-Sabate; Enric Marti edit   pdf
url  doi
openurl 
  Title Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy Type Conference Article
  Year 2010 Publication 8th Medical Imaging Abbreviated Journal  
  Volume 7623 Issue 762304 Pages 304  
  Keywords  
  Abstract Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference SPIE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010a Serial 1522  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Antoni Carol; Oriol Rodriguez; Petia Radeva edit   pdf
openurl 
  Title A Deterministic-Statistic Adventitia Detection in IVUS Images Type Conference Article
  Year 2005 Publication ESC Congress Abbreviated Journal  
  Volume Issue Pages  
  Keywords Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation  
  Abstract Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.  
  Address Stockholm; Sweden; September 2005  
  Corporate Author Thesis  
  Publisher Place of Publication ,Sweden (EU) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference ESC  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ RMF2005a Serial 1523  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Antoni Carol; Oriol Rodriguez; Petia Radeva edit   pdf
doi  openurl
  Title A Deterministic-Statistic Adventitia Detection in IVUS Images Type Conference Article
  Year 2005 Publication 3rd International workshop on International Workshop on Functional Imaging and Modeling of the Heart Abbreviated Journal  
  Volume Issue Pages 65-74  
  Keywords Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation  
  Abstract Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.  
  Address Barcelona; June 2005  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference FIMH  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ RMF2005 Serial 1524  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: