toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla edit   pdf
url  openurl
  Title Thermal Image Super-Resolution: A Novel Unsupervised Approach Type Conference Article
  Year 2022 Publication (down) International Joint Conference on Computer Vision, Imaging and Computer Graphics Abbreviated Journal  
  Volume 1474 Issue Pages 495–506  
  Keywords  
  Abstract This paper proposes the use of a CycleGAN architecture for thermal image super-resolution under a transfer domain strategy, where middle-resolution images from one camera are transferred to a higher resolution domain of another camera. The proposed approach is trained with a large dataset acquired using three thermal cameras at different resolutions. An unsupervised learning process is followed to train the architecture. Additional loss function is proposed trying to improve results from the state of the art approaches. Following the first thermal image super-resolution challenge (PBVS-CVPR2020) evaluations are performed. A comparison with previous works is presented showing the proposed approach reaches the best results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISIGRAPP  
  Notes MSIAU; 600.130 Approved no  
  Call Number Admin @ si @ RSV2022d Serial 3776  
Permanent link to this record
 

 
Author Giacomo Magnifico; Beata Megyesi; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes edit   pdf
url  openurl
  Title Lost in Transcription of Graphic Signs in Ciphers Type Conference Article
  Year 2022 Publication (down) International Conference on Historical Cryptology (HistoCrypt 2022) Abbreviated Journal  
  Volume Issue Pages 153-158  
  Keywords transcription of ciphers; hand-written text recognition of symbols; graphic signs  
  Abstract Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings.  
  Address Amsterdam, Netherlands, June 20-22, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HystoCrypt  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ MBS2022 Serial 3731  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Xavier Baro; Jordi Gonzalez edit   pdf
doi  openurl
  Title End-to-end Global to Local CNN Learning for Hand Pose Recovery in Depth data Type Journal Article
  Year 2022 Publication (down) IET Computer Vision Abbreviated Journal IETCV  
  Volume 16 Issue 1 Pages 50-66  
  Keywords Computer vision; data acquisition; human computer interaction; learning (artificial intelligence); pose estimation  
  Abstract Despite recent advances in 3D pose estimation of human hands, especially thanks to the advent of CNNs and depth cameras, this task is still far from being solved. This is mainly due to the highly non-linear dynamics of fingers, which make hand model training a challenging task. In this paper, we exploit a novel hierarchical tree-like structured CNN, in which branches are trained to become specialized in predefined subsets of hand joints, called local poses. We further fuse local pose features, extracted from hierarchical CNN branches, to learn higher order dependencies among joints in the final pose by end-to-end training. Lastly, the loss function used is also defined to incorporate appearance and physical constraints about doable hand motion and deformation. Finally, we introduce a non-rigid data augmentation approach to increase the amount of training depth data. Experimental results suggest that feeding a tree-shaped CNN, specialized in local poses, into a fusion network for modeling joints correlations and dependencies, helps to increase the precision of final estimations, outperforming state-of-the-art results on NYU and SyntheticHand datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; ISE; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ MEB2022 Serial 3652  
Permanent link to this record
 

 
Author Spencer Low; Oliver Nina; Angel Sappa; Erik Blasch; Nathan Inkawhich edit   pdf
url  doi
openurl 
  Title Multi-Modal Aerial View Object Classification Challenge Results – PBVS 2022 Type Conference Article
  Year 2022 Publication (down) IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages 350-358  
  Keywords  
  Abstract This paper details the results and main findings of the second iteration of the Multi-modal Aerial View Object Classification (MAVOC) challenge. The primary goal of both MAVOC challenges is to inspire research into methods for building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) imagery. Teams are encouraged to develop multi-modal approaches that incorporate complementary information from both domains. While the 2021 challenge showed a proof of concept that both modalities could be used together, the 2022 challenge focuses on the detailed multi-modal methods. The 2022 challenge uses the same UNIfied Coincident Optical and Radar for recognitioN (UNICORN) dataset and competition format that was used in 2021. Specifically, the challenge focuses on two tasks, (1) SAR classification and (2) SAR + EO classification. The bulk of this document is dedicated to discussing the top performing methods and describing their performance on our blind test set. Notably, all of the top ten teams outperform a Resnet-18 baseline. For SAR classification, the top team showed a 129% improvement over baseline and an 8% average improvement from the 2021 winner. The top team for SAR + EO classification shows a 165% improvement with a 32% average improvement over 2021.  
  Address New Orleans; USA; June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ LNS2022 Serial 3768  
Permanent link to this record
 

 
Author Aneesh Rangnekar; Zachary Mulhollan; Anthony Vodacek; Matthew Hoffman; Angel Sappa; Erik Blasch; Jun Yu; Liwen Zhang; Shenshen Du; Hao Chang; Keda Lu; Zhong Zhang; Fang Gao; Ye Yu; Feng Shuang; Lei Wang; Qiang Ling; Pranjay Shyam; Kuk-Jin Yoon; Kyung-Soo Kim edit   pdf
url  doi
openurl 
  Title Semi-Supervised Hyperspectral Object Detection Challenge Results – PBVS 2022 Type Conference Article
  Year 2022 Publication (down) IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages 390-398  
  Keywords Training; Computer visio; Conferences; Training data; Object detection; Semisupervised learning; Transformers  
  Abstract This paper summarizes the top contributions to the first semi-supervised hyperspectral object detection (SSHOD) challenge, which was organized as a part of the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop at the Computer Vision and Pattern Recognition (CVPR) conference. The SSHODC challenge is a first-of-its-kind hyperspectral dataset with temporally contiguous frames collected from a university rooftop observing a 4-way vehicle intersection over a period of three days. The dataset contains a total of 2890 frames, captured at an average resolution of 1600 × 192 pixels, with 51 hyperspectral bands from 400nm to 900nm. SSHOD challenge uses 989 images as the training set, 605 images as validation set and 1296 images as the evaluation (test) set. Each set was acquired on a different day to maximize the variance in weather conditions. Labels are provided for 10% of the annotated data, hence formulating a semi-supervised learning task for the participants which is evaluated in terms of average precision over the entire set of classes, as well as individual moving object classes: namely vehicle, bus and bike. The challenge received participation registration from 38 individuals, with 8 participating in the validation phase and 3 participating in the test phase. This paper describes the dataset acquisition, with challenge formulation, proposed methods and qualitative and quantitative results.  
  Address New Orleans; USA; June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU; no menciona Approved no  
  Call Number Admin @ si @ RMV2022 Serial 3774  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Jin Kim; Dogun Kim; Zhihao Li; Yingchun Jian; Bo Yan; Leilei Cao; Fengliang Qi; Hongbin Wang Rongyuan Wu; Lingchen Sun; Yongqiang Zhao; Lin Li; Kai Wang; Yicheng Wang; Xuanming Zhang; Huiyuan Wei; Chonghua Lv; Qigong Sun; Xiaolin Tian; Zhuang Jia; Jiakui Hu; Chenyang Wang; Zhiwei Zhong; Xianming Liu; Junjun Jiang edit   pdf
url  doi
openurl 
  Title Thermal Image Super-Resolution Challenge Results – PBVS 2022 Type Conference Article
  Year 2022 Publication (down) IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages 418-426  
  Keywords  
  Abstract This paper presents results from the third Thermal Image Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop. The challenge uses the same thermal image dataset as the first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was kept aside for testing. The evaluation tasks were to measure the PSNR and SSIM between the SR image and the ground truth (HR thermal noisy image downsampled by four), and also to measure the PSNR and SSIM between the SR image and the semi-registered HR image (acquired with another camera). The results outperformed those from last year’s challenge, improving both evaluation metrics. This year, almost 100 teams participants registered for the challenge, showing the community’s interest in this hot topic.  
  Address New Orleans; USA; June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU; no menciona Approved no  
  Call Number Admin @ si @ RSV2022c Serial 3775  
Permanent link to this record
 

 
Author Francesco Pelosin; Saurav Jha; Andrea Torsello; Bogdan Raducanu; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Towards exemplar-free continual learning in vision transformers: an account of attention, functional and weight regularization Type Conference Article
  Year 2022 Publication (down) IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Learning systems; Weight measurement; Image recognition; Surgery; Benchmark testing; Transformers; Stability analysis  
  Abstract In this paper, we investigate the continual learning of Vision Transformers (ViT) for the challenging exemplar-free scenario, with special focus on how to efficiently distill the knowledge of its crucial self-attention mechanism (SAM). Our work takes an initial step towards a surgical investigation of SAM for designing coherent continual learning methods in ViTs. We first carry out an evaluation of established continual learning regularization techniques. We then examine the effect of regularization when applied to two key enablers of SAM: (a) the contextualized embedding layers, for their ability to capture well-scaled representations with respect to the values, and (b) the prescaled attention maps, for carrying value-independent global contextual information. We depict the perks of each distilling strategy on two image recognition benchmarks (CIFAR100 and ImageNet-32) – while (a) leads to a better overall accuracy, (b) helps enhance the rigidity by maintaining competitive performances. Furthermore, we identify the limitation imposed by the symmetric nature of regularization losses. To alleviate this, we propose an asymmetric variant and apply it to the pooled output distillation (POD) loss adapted for ViTs. Our experiments confirm that introducing asymmetry to POD boosts its plasticity while retaining stability across (a) and (b). Moreover, we acknowledge low forgetting measures for all the compared methods, indicating that ViTs might be naturally inclined continual learners. 1  
  Address New Orleans; USA; June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.147 Approved no  
  Call Number Admin @ si @ PJT2022 Serial 3784  
Permanent link to this record
 

 
Author Hector Laria Mantecon; Yaxing Wang; Joost Van de Weijer; Bogdan Raducanu edit  openurl
  Title Transferring Unconditional to Conditional GANs With Hyper-Modulation Type Conference Article
  Year 2022 Publication (down) IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract GANs have matured in recent years and are able to generate high-resolution, realistic images. However, the computational resources and the data required for the training of high-quality GANs are enormous, and the study of transfer learning of these models is therefore an urgent topic. Many of the available high-quality pretrained GANs are unconditional (like StyleGAN). For many applications, however, conditional GANs are preferable, because they provide more control over the generation process, despite often suffering more training difficulties. Therefore, in this paper, we focus on transferring from high-quality pretrained unconditional GANs to conditional GANs. This requires architectural adaptation of the pretrained GAN to perform the conditioning. To this end, we propose hyper-modulated generative networks that allow for shared and complementary supervision. To prevent the additional weights of the hypernetwork to overfit, with subsequent mode collapse on small target domains, we introduce a self-initialization procedure that does not require any real data to initialize the hypernetwork parameters. To further improve the sample efficiency of the transfer, we apply contrastive learning in the discriminator, which effectively works on very limited batch sizes. In extensive experiments, we validate the efficiency of the hypernetworks, self-initialization and contrastive loss for knowledge transfer on standard benchmarks.  
  Address New Orleans; USA; June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.147; 602.200 Approved no  
  Call Number LWW2022a Serial 3785  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Y.Kessentini edit   pdf
url  doi
openurl 
  Title DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement Type Journal Article
  Year 2022 Publication (down) IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 44 Issue 3 Pages 1180-1191  
  Keywords  
  Abstract Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems.  
  Address 1 March 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.230; 600.121; 600.140 Approved no  
  Call Number Admin @ si @ SoK2022 Serial 3454  
Permanent link to this record
 

 
Author Marc Masana; Xialei Liu; Bartlomiej Twardowski; Mikel Menta; Andrew Bagdanov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Class-incremental learning: survey and performance evaluation Type Journal Article
  Year 2022 Publication (down) IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume Issue Pages  
  Keywords  
  Abstract For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MLT2022 Serial 3538  
Permanent link to this record
 

 
Author Lu Yu; Xialei Liu; Joost Van de Weijer edit   pdf
doi  openurl
  Title Self-Training for Class-Incremental Semantic Segmentation Type Journal Article
  Year 2022 Publication (down) IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume Issue Pages  
  Keywords Class-incremental learning; Self-training; Semantic segmentation.  
  Abstract In class-incremental semantic segmentation, we have no access to the labeled data of previous tasks. Therefore, when incrementally learning new classes, deep neural networks suffer from catastrophic forgetting of previously learned knowledge. To address this problem, we propose to apply a self-training approach that leverages unlabeled data, which is used for rehearsal of previous knowledge. Specifically, we first learn a temporary model for the current task, and then, pseudo labels for the unlabeled data are computed by fusing information from the old model of the previous task and the current temporary model. In addition, conflict reduction is proposed to resolve the conflicts of pseudo labels generated from both the old and temporary models. We show that maximizing self-entropy can further improve results by smoothing the overconfident predictions. Interestingly, in the experiments, we show that the auxiliary data can be different from the training data and that even general-purpose, but diverse auxiliary data can lead to large performance gains. The experiments demonstrate the state-of-the-art results: obtaining a relative gain of up to 114% on Pascal-VOC 2012 and 8.5% on the more challenging ADE20K compared to previous state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147; 611.008; Approved no  
  Call Number Admin @ si @ YLW2022 Serial 3745  
Permanent link to this record
 

 
Author Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Klaus McDonald Maier edit  doi
openurl 
  Title Effects of Non-Driving Related Tasks during Self-Driving mode Type Journal Article
  Year 2022 Publication (down) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 23 Issue 2 Pages 1391-1399  
  Keywords  
  Abstract Perception reaction time and mental workload have proven to be crucial in manual driving. Moreover, in highly automated cars, where most of the research is focusing on Level 4 Autonomous driving, take-over performance is also a key factor when taking road safety into account. This study aims to investigate how the immersion in non-driving related tasks affects the take-over performance of drivers in given scenarios. The paper also highlights the use of virtual simulators to gather efficient data that can be crucial in easing the transition between manual and autonomous driving scenarios. The use of Computer Aided Simulations is of absolute importance in this day and age since the automotive industry is rapidly moving towards Autonomous technology. An experiment comprising of 40 subjects was performed to examine the reaction times of driver and the influence of other variables in the success of take-over performance in highly automated driving under different circumstances within a highway virtual environment. The results reflect the relationship between reaction times under different scenarios that the drivers might face under the circumstances stated above as well as the importance of variables such as velocity in the success on regaining car control after automated driving. The implications of the results acquired are important for understanding the criteria needed for designing Human Machine Interfaces specifically aimed towards automated driving conditions. Understanding the need to keep drivers in the loop during automation, whilst allowing drivers to safely engage in other non-driving related tasks is an important research area which can be aided by the proposed study.  
  Address Feb. 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ MHE2022 Serial 3468  
Permanent link to this record
 

 
Author Ajian Liu; Chenxu Zhao; Zitong Yu; Jun Wan; Anyang Su; Xing Liu; Zichang Tan; Sergio Escalera; Junliang Xing; Yanyan Liang; Guodong Guo; Zhen Lei; Stan Z. Li; Shenshen Du edit  doi
openurl 
  Title Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face Presentation Attack Detection Type Journal Article
  Year 2022 Publication (down) IEEE Transactions on Information Forensics and Security Abbreviated Journal TIForensicSEC  
  Volume 17 Issue Pages 2497 - 2507  
  Keywords  
  Abstract Face presentation attack detection (PAD) is essential to secure face recognition systems primarily from high-fidelity mask attacks. Most existing 3D mask PAD benchmarks suffer from several drawbacks: 1) a limited number of mask identities, types of sensors, and a total number of videos; 2) low-fidelity quality of facial masks. Basic deep models and remote photoplethysmography (rPPG) methods achieved acceptable performance on these benchmarks but still far from the needs of practical scenarios. To bridge the gap to real-world applications, we introduce a large-scale Hi gh- Fi delity Mask dataset, namely HiFiMask . Specifically, a total amount of 54,600 videos are recorded from 75 subjects with 225 realistic masks by 7 new kinds of sensors. Along with the dataset, we propose a novel C ontrastive C ontext-aware L earning (CCL) framework. CCL is a new training methodology for supervised PAD tasks, which is able to learn by leveraging rich contexts accurately (e.g., subjects, mask material and lighting) among pairs of live faces and high-fidelity mask attacks. Extensive experimental evaluations on HiFiMask and three additional 3D mask datasets demonstrate the effectiveness of our method. The codes and dataset will be released soon.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Admin @ si @ LZY2022 Serial 3778  
Permanent link to this record
 

 
Author Yasuko Sugito; Javier Vazquez; Trevor Canham; Marcelo Bertalmio edit  doi
openurl 
  Title Image quality evaluation in professional HDR/WCG production questions the need for HDR metrics Type Journal Article
  Year 2022 Publication (down) IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 31 Issue Pages 5163 - 5177  
  Keywords Measurement; Image color analysis; Image coding; Production; Dynamic range; Brightness; Extraterrestrial measurements  
  Abstract In the quality evaluation of high dynamic range and wide color gamut (HDR/WCG) images, a number of works have concluded that native HDR metrics, such as HDR visual difference predictor (HDR-VDP), HDR video quality metric (HDR-VQM), or convolutional neural network (CNN)-based visibility metrics for HDR content, provide the best results. These metrics consider only the luminance component, but several color difference metrics have been specifically developed for, and validated with, HDR/WCG images. In this paper, we perform subjective evaluation experiments in a professional HDR/WCG production setting, under a real use case scenario. The results are quite relevant in that they show, firstly, that the performance of HDR metrics is worse than that of a classic, simple standard dynamic range (SDR) metric applied directly to the HDR content; and secondly, that the chrominance metrics specifically developed for HDR/WCG imaging have poor correlation with observer scores and are also outperformed by an SDR metric. Based on these findings, we show how a very simple framework for creating color HDR metrics, that uses only luminance SDR metrics, transfer functions, and classic color spaces, is able to consistently outperform, by a considerable margin, state-of-the-art HDR metrics on a varied set of HDR content, for both perceptual quantization (PQ) and Hybrid Log-Gamma (HLG) encoding, luminance and chroma distortions, and on different color spaces of common use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 600.161; 611.007 Approved no  
  Call Number Admin @ si @ SVG2022 Serial 3683  
Permanent link to this record
 

 
Author Jun Wan; Chi Lin; Longyin Wen; Yunan Li; Qiguang Miao; Sergio Escalera; Gholamreza Anbarjafari; Isabelle Guyon; Guodong Guo; Stan Z. Li edit   pdf
url  doi
openurl 
  Title ChaLearn Looking at People: IsoGD and ConGD Large-scale RGB-D Gesture Recognition Type Journal Article
  Year 2022 Publication (down) IEEE Transactions on Cybernetics Abbreviated Journal TCIBERN  
  Volume 52 Issue 5 Pages 3422-3433  
  Keywords  
  Abstract The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on Pattern Recognition (ICPR) 2016 and International Conference on Computer Vision (ICCV) 2017, attracting more than 200 teams round the world. This challenge has two tracks, focusing on isolated and continuous gesture recognition, respectively. This paper describes the creation of both benchmark datasets and analyzes the advances in large-scale gesture recognition based on these two datasets. We discuss the challenges of collecting large-scale ground-truth annotations of gesture recognition, and provide a detailed analysis of the current state-of-the-art methods for large-scale isolated and continuous gesture recognition based on RGB-D video sequences. In addition to recognition rate and mean jaccard index (MJI) as evaluation metrics used in our previous challenges, we also introduce the corrected segmentation rate (CSR) metric to evaluate the performance of temporal segmentation for continuous gesture recognition. Furthermore, we propose a bidirectional long short-term memory (Bi-LSTM) baseline method, determining the video division points based on the skeleton points extracted by convolutional pose machine (CPM). Experiments demonstrate that the proposed Bi-LSTM outperforms the state-of-the-art methods with an absolute improvement of 8.1% (from 0.8917 to 0.9639) of CSR.  
  Address May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ WLW2022 Serial 3522  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: