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Abstract

Despite recent advances in 3D pose estimation of human
hands, especially thanks to the advent of CNNs and depth
cameras, this task is still far from being solved. This is
mainly due to the highly non-linear dynamics of fingers,
which make hand model training a challenging task. In
this paper, we exploit a novel hierarchical tree-like struc-
tured CNN, in which branches are trained to become spe-
cialized in predefined subsets of hand joints, called lo-
cal poses. We further fuse local pose features, extracted
from hierarchical CNN branches, to learn higher order
dependencies among joints in the final pose by end-to-
end training. Lastly, the loss function used is also defined
to incorporate appearance and physical constraints about
doable hand motion and deformation. Finally, we intro-
duce a non-rigid data augmentation approach to increase
the amount of training depth data. Experimental results
suggest that feeding a tree-shaped CNN, specialized in lo-
cal poses, into a fusion network for modeling joints corre-
lations and dependencies, helps to increase the precision
of final estimations, outperforming state-of-the-art results
on NYU and SyntheticHand datasets.

*This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version
may no longer be accessible.

1 Introduction

Recently, hand pose recovery attracted special attention
thanks to the availability of low cost depth cameras, like
Microsoft Kinect [4} (11} |15, 23} 21} 29, 27, 112} {30, 28]].
Unsurprisingly, 3D hand pose estimation plays an impor-
tant role in most HCI application scenarios, like social
robotics and virtual immersive environments [24].

Despite impressive pose estimation improvements
thanks to the use of CNNs and depth cameras, 3D hand
pose recovery still faces some challenges before becom-
ing fully operational in uncontrolled environments with
fast hand/fingers motion, self occlusions, noise, and low
resolution [35)]. Although the use of CNNs and depth
cameras has allowed to model highly non-linear hand
pose motion and finger deformation under extreme vari-
ations in appearance and viewpoints, accurate 3D-based
hand pose recovery is still an open problem.

Two main strategies have been proposed in the lit-
erature for addressing the aforementioned challenges:
Model-based and data-driven approaches. Model-based
generative approaches fit a predefined 3D hand model to
the depth image [29} 23} 25| [17, 22, |5]. However, as a
many-to-one problem, accurate initialization is critical;
besides, the use of global objective functions might not
convey accurate results in case of self-occlusions of fin-
gers.

Alternatively, the so-called data-driven approaches
consider the available training data to directly learn hand
pose from appearance. Data-driven approaches for hand
pose estimation have been benefited from recent advances
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Figure 1: Qualitative comparison of our proposed ap-
proach vs state-of-the-art methods.
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on Convolutional neural networks (CNNs) [39, 111} 12830,
12, [13]]. CNNs, as in many other computer vision tasks,
have been successfully applied in data-driven hand-pose
recovery approaches either for heat-map regression of dis-
crete outputs (corresponding to joint estimation probabil-
ities), or direct regression of continuous outputs (corre-
sponding to joint locations) [20, 21, 33, [15, 26]. Heat-
map regression models require additional optimization
time for computing the likelihood of a joint being lo-
cated at a particular spatial region. Unfortunately, heat-
map based methods are subject to propagate errors when
mapping images to final joint space. A main issue with
CNNss as direct regression models, on the other hand, is
how to deal with high nonlinear output spaces, since too
complex models jeopardize generalization. Indeed for
CNNEs, learning suitable features (i.e. with good general-
ization and discrimination properties) in highly nonlinear
spaces while taking into account structure and dependen-
cies among parameters, is still a challenging task.

In this paper, direct regression of the 3D hand pose
is implemented as a specific tree-shaped CNN architec-
ture designed to avoid training a coarse, global hand mo-
tion model, but allowing instead local finer specializations
for different fingers and hand regions. So we break the
hand pose estimation problem into hierarchical optimiza-
tion subtasks, each one focused on a specific finger and
hand region. Combined together in a tree-like structure,
the final CNN shows fast convergence rates due to com-
putations applied at a local level. In addition, we model
correlated motion among fingers by fusing the features,

learned in the hierarchy, through fully connected layers
and training the whole network in an end-to-end fashion.
The main advantage of this strategy is that the 3D hand
pose prediction problem is attained as a global learning
task based on local estimations.

Moreover, it has been proved that L2 loss, in regres-
sion problems, is sensitive against outliers and ground-
truth noise [2]]. Therefore, in order to further improve the
final estimation in high non-linear spaces of hand configu-
rations, we incorporate appearance and physical penalties
in the loss function, based on the physical constraints typ-
ically applied in 3D reconstruction of human poses [1]].
By including such penalties during the network learning
stage, unrealistic pose configurations are avoided.

Lastly, as it is common in deep learning problems, vari-
ability and amount of data defines the success of a model
and it has been proved that CNN models can not gen-
eralize well to unseen data. In this paper we introduce
a non-rigid augmentation approach to generate realistic
data from training data. To the best of our knowledge
this is the first time such augmentation is applied in depth
images. We use ground truth joints to compute hand kine-
matic parameters and deform hand joints. We then ap-
ply interpolation techniques to deform point cloud based
joints. Results demonstrate that our proposed framework
trained on augmented data outperforms state-of-the-art
data-driven approaches in NYU and MSRA datasets.

We qualitatively compare pose estimation state-of-the-
art approaches w.r.t. ours in Fig.[T} The work of Tomp-
son et al.[33] estimates 2D pose using joints heat-map
only, thus providing poor pose estimation results in the
case of noisy input images (second column). Oberweger
et al.[20] results (DeepPrior) show that PCA is not able
to properly model hand pose configurations. Oberweger
et al.[21] improved previous results by applying an er-
ror feedback loop approach. However, error feedbacks do
not provide accurate pose recovery for all the variability
of hand poses. In essence, in our proposed local-based
pose estimation framework, a separate network is trained
for each finger. Subsequently, we fuse such learned lo-
cal features to include higher order dependencies among
joints, thus obtaining better pose estimation results than
previous approaches.



2 Related Work

Hand pose estimation has been extensively studied in lit-
erature [7], we refer the reader to [25] for a complete
classification of state-of-the-art works in the field. Here
we focus mostly on recent works using CNNs and depth
cameras.

Most CNN-based architectures in data-driven hand
pose estimation approaches are specifically designed to be
discriminative and generalizable. Although the success of
such approaches depends on the availability and variabil-
ity of training data, CNN models cope reasonably well
with this problem, and two main families of approaches
can be distinguished in the literature, namely heat-map
and direct regression methods.

Heat-map approaches estimate likelihoods of joints for
each pixel as a pre-processing step. In [33], a CNN is
fed with multi resolution input images and one heat-map
per joint is generated. Subsequently, an inverse kinematic
model is applied on such heat-maps to recover the hand
pose. Nevertheless, this approach is prone to propagate
errors when mapping to the original image, and estimated
joints may not correlate with the hand physics constraints.
The work of [[15] extends this strategy by applying multi-
view fusion of extracted heat-maps, where 3D joints are
recovered from only three different viewpoints. In this ap-
proach, erroneous heat-maps are expected to be improved
in the fusion step using complementary viewpoints. The
key idea in this work is to reduce the complexity of in-
put data by aligning all data with respect to the hand point
cloud eigenvectors. For most heat-map based approaches,
however, an end-to-end solution can be only achieved by
considerably increasing the complexity of the model, e.g.
introducing a cascading approach [38]. Although such
approaches used to work well for 2D pose estimation in
RGB images, they are not necessarily able to model oc-
cluded joints from complex hand poses in depth data.

As an alternative, a number of works propose direct re-
gression for estimating the joint positions of the 3D hand
pose based on image features [21} 20} 28]. As mentioned
in [32], contrary to heat-map based methods, hand pose
regression can better handle the increase in complexity
of modeling highly nonlinear spaces. Although some ap-
proaches propose Principle Component Analysis (PCA)
to reduce the pose space 15} 20], in general such linear
methods typically fail when dealing with large pose and

appearance variabilities produced by different viewpoints
(as shown in Fig.[I).

Recently, error feedback [21] and cascading [28] ap-
proaches have proven to avoid local minima by iterative
error reduction. Authors in [21]] propose to train a genera-
tive network of depth images by iteratively improving an
initial guess. In this sense, Neverova et al.[18]] use hand
segmentation as an intermediate representation to enrich
pose estimation with iterative multi-task learning. Also,
the method proposed in [28]] divides the global hand pose
problem into local estimations of palm pose and finger
poses. Thus, finger locations can be updated at each iter-
ation relative to the hand palm. Contrary to our method,
the authors use a cascade of classifiers to combine such
local estimations.

Authors in [26] apply a CNN to make use of the re-
sulting feature maps as the descriptors for computing k-
nearest shapes. Similarly to our approach, in their method
the CNN separates palm and fingers and computes the fi-
nal descriptor by dimensionality reduction. Differently
to our approach, they factorize the feature vectors and
nearest neighbors hyper-parameters to estimate the hand
pose. In a different way, we propose training the network
by fusing local features to avoid non-accurate local solu-
tions, without the need of introducing cascading strategies
nor multi-view set-ups. Contrary to the methods trying to
simplify the problem by dividing the output space into
subspaces, Guo et al.[10] divided input image to smaller
overlapping regions and fused CNN feature maps as a re-
gion ensemble network.

In CNN-based methods, data augmentation is a com-
mon approach to boost network to generalize better. Re-
cently, Ge et al.[9] applied data augmentation in the prob-
lem of hand pose recovery and showed a meaningful im-
provement in the results. Even Oberweger et al.[19] ex-
tended DeepPrior model in [20]] and showed effectiveness
of a simple model trained with data augmentation. How-
ever, aforementioned approaches use simple and rigid
data augmentation like scaling, rotation and translation,
which may not represent the visual variability in terms of
3D articulated joints. Here, we propose a non-rigid data
augmentation by deforming hand parameters and interpo-
lating point cloud.



3 Global hand pose recovery from
local estimations

Given an input depth image Z, we refer the 3D locations
of n hand joints as the set J = {j € R3}7. We de-
note 7*¥* and j“"# as a given joint in the world coordi-
nate system and after projecting it to the image plane, re-
spectively. We define n = 20 for the wrist, finger joints
and finger tips, following the hand model defined in [28].
We assume a hand is initially visible in the depth image,
i.e. not occluded by other objects in the scene, although
may present self-occlusions, and properly been detected
beforehand (i.e. pixels belonging to the hand are already
segmented [33]]). We also assume intrinsic camera param-
eters are available. We refer to global pose as the whole
set J, while, a local pose is a subset of J (e.g. index finger
joints).

Considering hand pose recovery as a regression prob-
lem with the estimated pose as output, we propose a CNN-
based tree-shaped architecture, starting from the whole
hand depth image and subsequently branching the CNN
blocks until each local pose. We show the main com-
ponents of the proposed approach in Fig. In such a
design, each network branch is specialized in each local
pose, and related local poses share features in the ear-
lier network layers. Indeed, we break global pose into
a number of overlapping local poses and solve such sim-
pler problems by reducing the nonlinearity of global pose.
However, since local solutions can be easily trapped into
local minima, we incorporate higher order dependencies
among all joints by fusing the last convolutional layer fea-
tures of each branch and train the network for global and
local poses jointly. We cover this idea in Sec. We
also apply constraints based on appearance and dynamics
of hand as a new effective loss function which is more ro-
bust against overfitting than simple L2 loss while provid-
ing a better generalization. This is explained in Sec.[3.2]

3.1 Hand pose estimation architecture

In CNNs, generally, each filter extracts a feature from a
previous layer, and by increasing the number of layers, a
network is able to encode different inputs by growing the
Field of View (FoV). During training, features are learned
to be activated through a nonlinear function, for instance
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Figure 2: Proposed network architecture. Branching
strategy connects CNN blocks into a tree-shape structure
while regressing local pose at each branch. Each local
pose is a 24 dimensional vector. We also include a view-
point regressor in th network as a rotation matrix in terms
of quaternions @ at the output. We then fuse all the fea-
tures of the last convolutional layers to estimate output
global pose. We use () features in the fusion to extract
palm joints more accurate.
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using Rectified Linear units (ReLU). The complexity and
number of training data has a direct relation to the num-
ber of filters, layers or complexity of the architecture: an
enormous number of filters or layers might cause over-
fitting, while a low number might lead to slow conver-
gence and poor recognition rates. Interestingly, different
architectures have been proposed to cope with these issues
[38 21}, 32]]. For example, in multi-task learning, differ-
ent branching strategies are typically applied to solve sub-
problems [6} 8], and the different subproblems are solved
jointly by sharing features. Similarly, we divide global
hand pose into simpler local poses (i.e. palm and fingers)
and solve each local pose separately in a branch by means
of a tree-shaped network. We show this architecture in
Fig.

The proposed architecture has several advantages.
Firstly, most correlated fingers share features in earlier
layers. By doing this, we allow the network to hierarchi-
cally learn more specific features for each finger with re-
spect to its most correlated fingers. Secondly, the number
of filters per finger can be adaptively determined. Thirdly,
the estimation of the global pose is reduced to the estima-
tions of simpler local poses, resulting the network to train
at fast convergence rates.



We define the amount of locality by the number of
joints contributing to a local pose. Keeping such locality
high (i.e. lower number of joints), in one hand, causes fin-
gers to be easily confused among each other, or detected
in a physically impossible location. A low locality value
(i.e. higher number of joints), on the other hand, increases
the complexity. Besides, local joints should share a sim-
ilar motion pattern to keep lower complexity. So in the
particular implementation in this paper, we assign to each
local pose one finger plus palm joints, thus leading to a 24
dimensional vector.

Training the network only based on local poses omits
information about inter-fingers relations. Tompson et
al. [34] included a graphical model within the training
process to formulate joints relationships. Li et al. [[14]
used a dot product to compute similarities for embedded
spaces of a given pose and an estimated one in a struc-
tural learning strategy. Instead, we apply late fusion based
on local features, thus, let the network learn the joint de-
pendencies through fully connected layers for estimating
the final global pose. The whole network is trained end-
to-end jointly for all global and local poses given a con-
strained loss function.

Network details. Input images are pre-processed with
a fix-sized cube centered on the hand point cloud and pro-
jected into the image plane. Subsequently, the resulting
window is cropped and resized to a 192 x 192 fixed size
image using nearest neighbor interpolation, with zero-
mean depth.

As intermediate layers, the network is composed of six
branches, where each branch is associated to specific fin-
gers as follows: two branches for index and middle fin-
gers, two branches for ring and pinky fingers, one branch
for thumb, and one branch for palm. For the palm branch,
instead of performing direct regression on palm joints, we
make regression on the palm viewpoint, defined as the ro-
tation (in terms of quaternions) between the global refer-
ence view and the palm view. As shown in the experi-
mental results, more accurate and reliable optimization is
then achieved, since the network is able to model interpo-
lations among different views.

As shown in Fig. 2] each convolutional block consists
of a convolution layer with 3 x 3 filter kernels and a ReLU
followed by a max-pooling, except for the last block. All
pooling layers contain a 2 x 2 window. The last block
contains a convolutional layer with 6 x 6 filter kernels,

providing a feature vector. Fully connected layers are
added to the end of each branch for both local and global
pose learning. For local pose at each branch there are two
hidden layers with 1024 neurons with a dropout layer in
between. Similarly, for global pose at each branch, the
feature vector is followed by two hidden layers with 1024
neurons with a dropout layer in between. Then, the last
hidden layers are concatenated and followed by a dropout
and a hidden layer with 1024 neurons. Finally, the global
and local output layers provide the estimation of joints
with one neuron per joint and dimension.

3.2 Constraints as loss function

In regression problems, the goal is to optimize parame-
ters such that a loss function between the estimated val-
ues of the network and the ground-truth value is getting
minimized. Usually, in the training procedure, an L2 loss
function plus a regularization term is optimized. How-
ever, it is generally known that, in an unbalanced dataset
with availability of outliers, L2 norm minimization can
result in poor generalization and sensitivity to outliers
where equal weights are given to the training data [2].
Weight regularization is commonly used in deep learn-
ing as a way to avoid overfitting. However, it does not
guarantee the weight updating to bypass the local min-
ima. Besides, a high weight decay causes low conver-
gence rates. Belagiannis et al. [2] proposed Tukeys bi-
weight loss function in the regression problems as an al-
ternative to L2 loss robust against outliers. We formulate
the loss function as L2 loss along with constraints applied
to hand joints regarding the hand dynamics and appear-
ance, leading to more accurate results and less sensitivity
to ground-truth noise.We define the loss function for one
frame in the form of:

L= XL+ )\ZLglo + )\SLapp + )\4Ldyna (D
where \; i € {1..4} are factors to balance loss functions.
Liocs Lgios Lapp and Lgy, denote the loss for the esti-
mated local and global pose, appearance, and hand dy-
namics, respectively. Next, each component is explained
in detail.

Let F!' € R3*™ be the concatenation of the m esti-
mated joints in each branch of the proposed network and
G' € R3*™ be the ground-truth matrix. Note that m



is not necessarily equal to n = 20. F9 € R**™ and
G9 € R**™ are the outputs of the embedded network for
estimated joints and ground-truth, respectively. Then, we
define local and global losses as:

3m

Lioe = Y _(F} = G})?, )
=1
3n

Lgo = Y _(F! — GY)%. 3)
i=1

A common problem in CNN-based methods for pose
estimation is that in some situations estimated pose does
not properly fit with appearance. For instance, joints are
placed in locations where there is no evidence of presence
of hand points, or being physically incorrect [21} [20, [15]].
In this paper, during training we penalize those joint es-
timations that do not fit with the appearance or are phys-
ically not possible, and include such penalties in the loss
function.

We first assume that, rationally, joints must locate in-
side the hand area and have a depth value higher than the
hand surface, besides, joints must present physically pos-
sible angles in the kinematic tree. Therefore, for a given
joint 7¥¥* the inequality Z (5%, ) — j* < 0 must hold,
where Z(j*,7¥) is the pixel value at location (j“,j").
To avoid violating the first condition (i.e. when a joint
is located outside hand area after projection to the image
plane), we set the background with a cone function as:

5/ (u — 0.5w)2 + (v — 0.5h)2 + ¢,

where w and h are width and height of the image, and ¢ is
a fixed value set to 100. The reason to use a cone function
instead of a fixed large value is to avoid zero derivatives
on the background. We use hinge formulation to convert
inequality to a loss through:

Lapp = »_max(0,Z(j", i) — j;)- (4)

i=1

We subsequently incorporate hand dynamics by means
of the top-down strategy described in Algorithm 1. We
assume all joints belonging to each finger (except thumb)
should be collinear or coplanar. Thumb has an extra non-
coplanar form and we do not consider it in the hand dy-
namics loss. A groundtruth finger state s¢ € {1..4} is

assigned to each finger computed by the conditions de-
fined in Algorithm 1. Each finger has a groundtruth nor-
mal vector e which is finger direction for the case 1 and
finger plane normal vector for the other cases. Therefore,
we define four different losses, one of them triggered for
each finger (as shown in Algorithm 1). Let A, B, C' and
D be four joints belonging to a finger starting in A as the
root joint and ending in D as fingertip. Then the dynamics
loss is defined as:

4
ZAi(AvacaDa SGaeG)v

i=1

(&)

Ldyn =

where ¢ denotes a finger index. Now we consider each
case in Algorithm 1 in the following.

We consider a collinear finger in case 1. A finger is
collinear if:

1B = Al +[C =Bl +|D = C| <D= All + &,

where « is a threshold defining the amount of collinear-
ity and set to 0.01||D — A||. To compute the loss for a
collinear groundtruth finger, the following condition has
to be hold: p < cos(£(AD,eg)) < 1, where p is a
threshold. This condition has to be met for ﬁ and A

as well. The cosine function can be extracted through dot

product. Therefore, using hinge formulation, the loss is
defined as:

Ai(A,B,C,D,1,eq) =

X(O,p ﬁ 9G>+
|1AC]|
X(O,p E 9G>+
|AD)|
pmax(0, |AB| + | BC| + |CD| - 1.01| AD)),

(6)
where p is a factor to balance different components of the
loss function.

We consider a coplanar finger for cases 1, 2 and 3. We
define a finger to be coplanar if cross products of all sub-
sets of the finger joints with three members to be paral-
lel. Note that a collinear finger is necessarily coplanar.



Algorithm 1 Top-down strategy for finger dynamics.
input: groundtruth normal vector e defining either finger direc-
tion or finger plane normal
input: groundtruth finger state sg
input: finger joints A,B,C and D (A as finger root)
output: A(A,B,C, D, sq,eq)
1: switch s¢ do

2: case 1 Q C
IAB] + || BC|| + |CD| < 1.01| AD)| \K
AB || AC | AD || ec N A

3

4

5 case 2 \B

6 AB x BC | AC x CD || ec b A
7: case 3 243
8: EXB?HQXC@HEG DD‘ oA
9

0

case 4

AB x BC || AB x BD || e

However, we exclude collinear fingers from this defini-
tion due to cross product, as shown in Algorithm 1. For a
groundtruth coplanar finger, such cross products must be
parallel to the plane normal vector. Therefore, for given
joints A, B and C, the following condition must hold:

p < cos(é(ﬁ X ﬁ,eg) <1.

Given the groundtruth finger is coplanar of case 2, we
compute the loss function as:

A; (A,B,C,D,2,eg) = max (O,p —

(@ X B?) -ec>
|AB x BC|

+max | 0 _(A‘(,)*xcc’ﬁyeg
P ac<en) )
@)

The loss functions for the other coplanar finger cases are
computed in the same way.

3.3 Loss function derivatives

All components in Eq. |l| are differentiable, thus we are
able to use gradient-based optimization methods. In this
section we explain derivatives of the constraint loss func-
tion in Eq. [ Derivatives of the rest of loss functions
are computed through matrix calculations. We first de-
fine derivative of L,,, with respect to t € {j¥,j7,j7}
through:

OLapp

0 i Z(j3,57) =i <0
ot | 9T/ot — 57 /ot

otherwise.

(®)
In the following we just consider positive condition of Eq.
B} Besides, we omit index ¢ (which denotes i-th joint)
from the notations for the easiness of reading. Depth im-
age 7 is a discrete multi-variable function of j“ and 3",
where 7 is a multi-variable function of j* and 5%, and 5"
is a multi-variable function of j¥ and j*. Consequently,
the total derivative of a depth image can be computed by
the chain rule through:

AT _ Oz d4j* | OT 4" o
dt 95+ dt ~ 09jv dt
dj* _ 8j“ dj* 6]'.“ dj* (10)
dt a5 dt aj% dt
dj* _ 9jv dj¥  0j" dj* (11
dt ajy dt  0j% dt

Next, we present components of 7“ derivative in de-
tai Depth image 7 is a function of hand surface. How-
ever, hand surface given by the depth camera may have
noise and not be differentiable at some points. To cope
with this problem, we estimate depth image derivatives
by applying hand surface normal vectors. Let s to be the
surface normal vector for a given joint. Then, derivative
of Z with respect to u axis is given by the tangent vectors

through:
xT
o s (12)
ajv  s?

As mentioned, 7“Y# is the projection of the estimated
joint j7¥* from world coordinate to the image plane. Note
that joints have zero mean and j“¥# is extracted after the
image has been cropped and resized. Let f,, p,, M*Y*
and M""# to be the camera focal length and image cen-
ter for x axis, world coordinate hand point cloud center,
and its projection to image plane, respectively. Then j* is
computed as:

5T = (W +pe - M“) scale, +
wM?
scale, = ,
cfa

13)

Derivatives belonging to ;¥ are computed in the same way as j%




where c is the cube size used around hand point cloud to
crop the hand image. Using this formulation, derivative
of j“ can be easily computed and replaced in Eq.

4 Experiments

In this section we evaluate our approach on two real-world
datasets NYU [33] and MSRA [28], and one synthetic
dataset SyntheticHand [16]]. NYU dataset has around 73K
annotated frames as training data (single subject) and 8K
frames as test data (two subjects). Each frame has been
captured from 3 different viewpoints and ground truth is
almost accurate. MSRA dataset has 76K frames captured
from 9 subjects each in 17 pose categories. This dataset
does not provide an explicit training/test set and a sub-
ject exclusive 9-fold cross validation is used to train and
evaluate on this dataset. MSRA dataset has smaller im-
age resolution and less pose diversity and accurate ground
truth comparing to NYU dataset. SyntheticHand dataset
has over 700K training data and 8K test data consisting of
a single synthetic subject performing random poses from
all viewpoints, thus being useful to analyze our method-
ology under occlusions. All three datasets provide at least
20 hand joints in common. However, NYU dataset has 16
extra joints. We evaluate our approach using two metrics:
average distance error in mm and success rate error [31].
Next, we detail the method parameters and evaluate our
approach both quantitatively and qualitatively in compar-
ison to state-of-the-art alternatives.

4.1 Training

We utilize MatConvNet library [36]] on a server with GPU
device GeForce GTX Titan X with 12 GB memory. We
optimize the network using stochastic gradient descent
(SGD) algorithm. We report hyper-parameters used in
NYU dataset. We set the batch size, learning rate, weight
decay and momentum to 50, 0.5e-6, 0.0005 and 0.9, re-
spectively. Our approach converges in almost 6 epochs
while reducing the learning rate by a factor of 10 for two
more epochs. Overall, training takes two days on original
NYU dataset while testing takes 50 fps.

Loss function parameters tuning We set a low value
for parameter 1 in Eq. [6] since it behaves like a regular-
ization and it is not connected to ground-truth. Ly, is

Derivatives Estimated

14999
4444

—— Appearance derivative ——— Dynamics derivative

Figure 3: Constraints derivatives during training pro-
cess (original NYU dataset). Estimated joints along with
derivatives of appearance and hand dynamics are illus-
trated for the first five epochs in the training process. We
qualitatively show how proposed network converges very
fast in few epochs.

mainly a summation of cosine functions while Ly, is in
millimeters. Therefore we set A4 higher than A3 to bal-
ance cosine space with millimeter. Finally, we set param-
eters A1, A2, Az, A4 and p experimentally to 4, 4, 3, 20 and
0.0005, respectively. We show derivatives of appearance
and dynamics loss functions for a number of joints in the
first five epochs in Fig. 3, as well as qualitative images of
estimated joints.

4.2 Ablation study

In this section we study different components of the pro-
posed architecture trained on NYU dataset. We denote
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Figure 4: Baseline architectures. a) A single channel net-
work with the same convolutional capacity as branching
network. We train this network with the same loss as in
Eq. [T]omitting L;,. b) A single channel network with the
same capacity as one branch in hierarchical model and
branching local pose on FC layers. We train this network
with the same loss as in Eq. [T|omitting L.

each component by a number.

Locality. Locality is referred to the number of joints
in the network output. In the first case, we analyze the
hierarchical network trained just with one finger in each
branch and without constraints and fusion network (so
called I:local). This network shows a high locality value.
As one can expect, this network can easily overfit on the
training data and exchange estimations for similar fin-
gers. We show a significant improvement by decreasing
locality by including palm joints in each branch (so called
2:1+palm). Palm joints are located in a near planar space
and thus do not add high non-linearity to the output of
each branch while help for better finger localization. We
compare these methods in Fig. (red vs. green lines).

Constraints. We train method 2:7+palm by including
constraints in the loss function L (Eq. |1)) without L, in

this stage (so called 3:2+constraint). We still do not ex-
plicitly model any relationship among fingers in the out-
put space, but let the network learn each finger joints with
respect to the hand surface and finger dynamics. In Fig.
we show the effectiveness of this strategy (magnet
line) against method 2:1+palm. We also analyze the ef-
fect of constraints in the training process in Fig. [5(a)}
As it can be seen, by applying the proposed constraints,
method 3:2+constraint is more robust against overfitting
than method 1. Validation error in method 3 does not sig-
nificantly change from epoch 7 to 15. Comparing both
methods in epoch 20, method 1 has a lower error in train-
ing while its validation error is almost 1.5 times the vali-
dation error of method 3.

Branching strategy vs. single channel architecture.
As baselines, we created two single channel networks
with 6 convolutional layers, as shown in Fig. ] The out-
put of the first network (so called single-channel network)
is 3D locations of the full set of joints. In this architec-
ture, the capacity of convolutional layers are kept similar
to the whole branching network. This network is trained
with loss function L without L;,.. The outputs of the sec-
ond network (so called FC-branching network) is similar
to the method 3:2+constraint. The capacity of convolu-
tional layers in this architecture is similar to one branch
in tree-structure network. The branching in this network
is applied on FC layers. We train this network with the
same loss as method 3:2+constraint. We train both net-
works with the same hyper-parameters introduced in Sec.
As one can see in Fig. single-channel net-
work (dashed magnet line) performs worse than method
3:2+constraint, showing the effectiveness of the tree-
structure network. This means regardless of the capacity
of the network, in a single channel network, backpropaga-
tion of the gradients of the loss is not able to train network
filters to map input image to a highly non-linear space in
an optimal and generalizable solution. This is even worse
for FC-branching network (dashed dark brown line).

Palm viewpoint vs. palm joints regression. We eval-
uate our palm joints vs. palm viewpoint regression in
terms of success rate error in Fig. Palm viewpoint
regressor gives a rotation matrix in terms of quaternions.
We convert quaternions to rotation matrix and use it to
transform a predefined reference palm example. As it can
be seen in the figure, palm viewpoint regression signifi-
cantly reduces palm joints error.
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Figure 5: Quantitative results comparing baselines on NYU dataset. a) Training process in terms of average error per
epoch. b) Comparing palm: joints regression vs. viewpoint regression. ¢) Maximum error success rate comparing

baselines. d) Per joint average error comparing baselines.

Global vs. local pose. We add fusion network to
method 3:2+constraint to model correlations among dif-
ferent local poses in an explicit way (so called 4:3+view-
point+fusion). We include viewpoint regression features
in the fusion as well. We illustrate the results in Fig.
(dashed blue line). Comparing to method 3:2+constraint,
method 4:3+viewpoint+fusion improves performance for
error thresholds below 30mm.

Per joint mean error. We also illustrate per joint
mean error in Fig. [5(d)] From the figure, as expected,
a very local solution (method 1) performed the worst
among the baselines. Comparing method 2 and 3:2+con-
straint in average error shows the benefits of applying

constraints as loss, as well. By including viewpoint fea-
tures in the fusion network, palm joints mean error was
considerably reduced by method 4:3+viewpoint+fusion.
Although method 4:3+viewpoint+fusion performed bet-
ter for the pinky and ring fingertips, it did not achieve the
best results for index and thumb fingertips.

Data augmentation. data augmentation is a common
approach to boost CNN models with small deformations
in the images. Mainly used data augmentation approaches
are rotation, scaling, stretching and adding random noise
to pixels. Such approaches are mainly rigid (rotation and
scaling) or unrealistic (stretching). Here, we propose a re-
alistic non-rigid data augmentation. As the first step, we

10
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Figure 6: Data augmentation. We generate new data by applying non-rigid hand shape deformation along with rigid
transformations like in-plane rotation. Hand kinematic parameters are slightly deformed and new hand joints are used

to interpolate hand point cloud. We also change palm and fingers size. Therefore, given a pose, different hand shapes
can be generated which helps to generalize better to unseen subjects. First column shows the original images and

others are generated samples.

remove redundant data by checking ground truth joints. In
this sense a redundant data is an image which has a high
similarity to at least one image in the training set. Such
similarity is defined by maximum Euclidean distance ¥
among corresponding joints. Therefore, two images are
similar if U is below a threshold. We used threshold
10 mm for this task.

Our data augmentation is consisting of in-plane rota-
tion, changing palm and fingers size and deforming fin-
gers pose. We show some generated images in Fig. [6 In
the following we explain details of data augmentation.

The main idea in non-rigid hand deformation is to de-
form ground truth hand joints and interpolate point cloud
based on new joints. We use thin plate spline (TPS) [3]] as
a standard interpolation technique to deform point cloud.
However, to avoid extrapolation problem and unrealistic
warping, we add some auxiliary points to the set of joints.
We show some possible auxiliary points in Fig. [/} we
mainly add points around wrist and thumb. We observed
unrealistic deformation around thumb and by adding three
fixed points we avoided extrapolation problems. For the

11

*

*

*

Figure 7: Auxiliary points **’ are added to the set of joints
to avoid unrealistic warping in non-rigid hand augmenta-
tion.

wrist case we do not want to deform points of lower arm.
Fixed auxiliary points around wrist add constraint to space
avoiding unrealistic warping.

A first possible shape deformation is the changing of
hand scale. However, a simple scaling does not guaran-
tee generalization to unseen subjects. Instead, we change



the size of fingers and palm. This can be seen in the Fig.
[6] 4th row. As the first step we compute hand kinematic
parameters based on hand coordinate. Hand coordinate
is defined by palm joints such that, in a quite open hand,
thumb defines  coordinate direction, other fingers define
y coordinate direction and z coordinate is perpendicular
to palm plane. Then, palm can be stretched in the direc-
tion of z or y. We stretch each direction by a random
factor. Having kinematic parameters fixed, we are able
to randomly modify fingers length and reconstruct new
joints for each finger. It is also likely to slightly modify
kinematic parameters and reconstruct joints in a new pose.
However, we keep kinematic parameters near to original
values to avoid unrealistic point cloud deformations and
possible big holes in the depth image. Finally we apply
morphological operations to fill small gaps.

In NYU dataset, around 60K images were remained af-
ter removing redundant images from all 218K samples in
the training set (including all cameras). We then gen-
erated two sets of augmented images including around
780K and 1500K. We use random scaling factors in the
range [0.85,1.05] for palm and fingers. Kinematic pa-
rameters are changed by summation to random degrees in
the range [—7.5,7.5]. The only difference in generated
sets is the in-plane rotation degrees. The first and sec-
ond sets have in-plane rotation in the range [—30, 30] and
[—90, 90] degrees, respectively.

We compare the results on both generated sets in
Fig. (brown and dark green lines). We train
method 4:3+viewpoint+fusion on these new 2 sets, so
called method 5:4+augl and method 6:4+aug2, respec-
tively. One can see the model trained on the set with
more samples and wide in-plane rotation degrees (method
6:4+aug?) generalizes better to the test set. Also, a sig-
nificant improvement is achieved comparing to the orig-
inal data (method 4:3+viewpoint+fusion). We observed
that wrist joint has the maximum error in 20% of the
cases in method 6:4+aug2. Therefore we replaced es-
timated palm joints in method 6:4+aug2 with estimated
palm joints from viewpoint regressor and slightly im-
proved performance (final method 7:6+palm). We also
illustrate method 7:6+palm per joint mean error in Fig.
Fingertips have the highest error among the joints.
Data augmentation helps to significantly improve the fin-

2Code will be publicly available after publication.
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Method Average 3D
error (mm)
Oberweger et al. [20] (DeepPrior) 19.8
Oberweger et al. [21] (Feedback) 16.2
Neverova et al. [|18]] 14.9
Guo et al. [10]] (Ren) 13.4
Oberweger et al. [19] (DeepPrior++) 12.3
Ours (4:3+viewpoint+fusion) 15.6
Ours (final) 11.0

Table 1: Average 3D error on NYU dataset.

gertip estimation, as we can see in Fig. [0(a)] comparing
different baselines qualitatively.

4.3 Comparison with state of the art

We report method the performance of our final model
comparing to state-of-the-art data-driven approaches like
[33[, (210, 18], [26], [9], [10], [40] and [19] on NYU
dataset. On MSRA dataset we compare to [28]], [15], [37],
[9] and [19]]. Finally, we compare to [20]] and [[16] on Syn-
theticHand dataset.

NYU dataset. Mentioned works in the comparison
use 14 joints (as proposed in [33]) to compare on NYU
dataset. For a fair comparison on this dataset we take
11 joints most similar to [33]] out of our 20 used joints.
We show maximum error success rate results in Fig. [8(b)]
As one can see, we outperform state-of-the-art results.
However, [10] and [19] performs slightly better for error
thresholds lower than 13mm. We also illustrate the aver-
age error success rate in Fig. This shows our method
is performing well in average for a majority of frames, i.e.
less than 10mm error for 60% of the test set. We com-
pare to state-of-the-art regarding overall mean error in ta-
ble |1} All these results show a significant improvement
using data augmentation.

MSRA dataset. We applied introduced non-rigid hand
augmentation same as NYU dataset. However, we ob-
served a divergence during training. A possible rea-
son could be the accuracy of ground truth annotations
in MSRA dataset. Therefore, we applied standard aug-
mentation techniques such as random scaling (in range
[0.9,1.05]) and rotation (in range [—90, 90] degrees). We
show the maximum error success rate results in Fig.
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Figure 8: State-of-the-art comparison. a) and b) Mean and maximum error success rate on NYU dataset. ¢) Maximum
error success rate on MSRA dataset. d) Mean error success rate on SyntheticHand dataset.

Method Average 3D
error (mm)
Sun et al. [28] 15.2
Wan et al. [37] (CrossingNet) 12.2
Oberweger et al. [19] (DeepPrior++) 9.5
Ours (4:3+viewpoint+fusion) 12.9
Ours (final) 9.7
Table 2: Average 3D error on MSRA dataset.
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As it can be seen, our method slightly outperform meth-
ods in the comparison for the error threshold between
13mm and 40mm. Although Sun et al.[28] has a higher
number of good frames for errors lower than 11mm, it
performs the worst for higher error rates. Without us-
ing data augmentation, our method (dashed blue line) per-
forms slightly worse than [I5]. Note that [15] uses a pre-
alignment over samples given hand point cloud eigenvec-
tors which can be assumed as a kind of augmentation. We
also show average error in table[2] In average, our method
with standard augmentation performs slightly similar to
[19] in this dataset. Note that [[19] uses random transla-
tion in the augmentation as well. We show some quali-
tative results in Fig. As one can see, ground truth



annotations are not accurate in some cases, more specifi-
cally for thumb.

SyntheticHand dataset. We use original training set
without augmentation to train our model on this dataset.
Our model converges in 7 epochs. Mean error success
rate is shown in Fig. [B(d)] As it can be seen, our method
performs quite well on this dataset even for complex poses
and viewpoints. Some qualitative results are shown in Fig.
The overall average error on this dataset is 3.94mm.

5 Conclusions

We proposed a novel hierarchical tree-like structured
CNN for recovering hand poses in depth maps. In this
structure, branches are trained to become specialized in
predefined subsets of the hand joints. We fused a network
based on learned local features to model higher order de-
pendencies among joints. The network is trained end-to-
end. By including a new loss function incorporating ap-
pearance and physical constraints about doable hand mo-
tion and deformation, we found our network helps to in-
crease the precision of the final hand pose estimations for
quite challenging datasets. In particular, we found fusion
network can help to better localize joints for easier hand
configurations while it behaves similar to a local solution
for more complex cases. We improved palm joints by ap-
plying a viewpoint regressor, and by fusing its learned
features into the global pose. Finally, we introduced a
non-rigid hand augmentation technique to deform origi-
nal hands in terms of shape and pose helping to gener-
alize better to unseen data. As a result we significantly
improved estimations on original NYU dataset by 4.6mm
in average. As future work, we will consider more com-
plex data augmentation techniques to cope with noise in
the depth image. Realistic data can be combined with syn-
thetic data as well. In this sense, we will work on filling
gaps realistically when more complex pose deformations
are applied in the augmentation.
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