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Abstract. This paper proposes the use of a CycleGAN architecture for
thermal image super-resolution under a transfer domain strategy, where
middle-resolution images from one camera are transferred to a higher
resolution domain of another camera. The proposed approach is trained
with a large dataset acquired using three thermal cameras at different
resolutions. An unsupervised learning process is followed to train the ar-
chitecture. Additional loss function is proposed trying to improve results
from the state of the art approaches. Following the first thermal im-
age super-resolution challenge (PBVS-CVPR2020) evaluations are per-
formed. A comparison with previous works is presented showing the pro-
posed approach reaches the best results.

Keywords: Thermal image Super-Resolution, Thermal images, Datasets,
Challenge, unpair thermal images.

1 Introduction

Single Image Super-Resolution (SISR) is a challenging ill-posed problem that
refers to the task of restoring high-resolution (HR) images from a low-resolution
(LR) image of the same scene, usually with the use of digital image processing
or Machine Learning (ML) techniques. Super-Resolution is wide used in several
applications, such as medical imaging (e.g., [Mudunuri and Biswas, 2015]), ob-
ject detection (e.g., [Girshick et al., 2015]), security (e.g., [Zhang et al., 2010],
[Shamsolmoali et al., 2019]), among others. In recent years deep learning tech-
niques have been applied to SISR problem achieving remarkable results with
respect to state-of-the-art approaches. Most of these techniques are focused on
the visible domain—i.e., RGB images. Long-wavelength infrared (LWIR) images,
also referred to in the literature as thermal images, have become very impor-
tant in several challenging fields (e.g., dark environments for military security,
medicine for mama cancer detection [Herrmann et al., 2018] or for car driving
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assistance [Ding et al., 2019] are just three examples where these images can be
used). Thermal cameras capture the information of LWIR spectra, which is the
radiation emitted by the object’s surface when their temperature is above zero
[Gade and Moeslund, 2014].

Unfortunately, most of the thermal cameras in the market have poor reso-
lution, due to the technology limitation and the high price of that technology.
Thermal cameras with a high-resolution are considerably expensive with respect
to low-resolution ones. Due to this limitation and a large number of applications
based on their use, single thermal image super-resolution (SThISR) has become
an attractive research topic in the computer vision community.

In the visible spectrum exists thousands of images captured with HD cam-
eras, which are very useful for training networks used in the SISR problem. On
the contrary to the visible spectrum domain, thermal images tend to have a poor
resolution and there are a few HD datasets. Due to the lack of thermal images,
a novel dataset was recently proposed in [Rivadeneira et al., 2020a] containing
images with three different resolutions (low, mid, and high) obtained with three
different thermal cameras. This dataset has been used in the first thermal image
super-resolution challenge on PBVS-CVPR2020 conference, where several teams
have participated and a baseline has been obtained. The current work is focused
on two topics; firstly, a novel CycleGAN architecture is proposed, which makes
use of a novel loss function (SOBEL cycle loss) to achieve better results than
the ones obtained in PBVS-CVPR2020 challenge [Rivadeneira et al., 2020b]; sec-
ondly, the dataset presented in PBVS-CVPR2020 is enlarged with new images
that help to generalize the training phase to ensure that the architecture is
enough to SR any thermal image characteristics.

The manuscript is organized as follows. Section 2 presents works related to
the topics tackled in the current work. The used datasets and the proposed
architecture are detailed in Section 3. Results are provided in Section 4. Finally,
conclusions are given in Section 5.

2 Related Work

Single Image Super-Resolution (SISR) is a classic problem in the computer vision
community, most often for images from the visible spectrum. In this section,
common thermal image datasets used as benchmarks by the community, together
with the state of the art SISR approaches in the thermal image domain, are
reviewed.

2.1 Benchmark Datasets

Visible spectrum HD images, for training SR networks and evaluating their per-
formance, is not a problem due it large variety of datasets available in the liter-
ature (e.g., [Timofte et al., 2017], [Bevilacqua et al., 2012], [Zeyde et al., 2010],
[Martin et al., 2001], [Arbel et al., 2011], [Huang et al., 2015], [Matsui et al., 2017],
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among others). These HR images have been acquired in different scenarios cover-
ing a large set of objects’ category (e.g., building, people, food, cars, among oth-
ers) at different resolutions. On the contrary to the visible spectrum, in the ther-
mal image domain, there are just a few datasets available in the literature, most
of them in low resolution (e.g., [Davis and Keck, 2005], [Olmeda et al., 2013],
[Hwang et al., 2015], among others); actually, thermal image datasets available
in the literature have been designed for other specific applications (e.g., biometric
domain, medical, security) but used to tackle the thermal image super-resolution
problem. Up to our knowledge, [Wu et al., 2014] is the largest HR thermal im-
age dataset available in the literature; this dataset consists of full-resolution
1024×1024 images, collected with a FLIR SC8000, containing 63782 frames; the
main drawback of this dataset is that all the images come from the same scenario.

Trying to overcome the lack of datasets intended for thermal images SR task,
in [Rivadeneira et al., 2019] a novel dataset is presented. It consists of 101 images
acquired with a HR TAU2 FLIR camera, with a native resolution of 640×512
pixels of different scenarios (e.g. indoor, outdoor, day, night). A very large dataset
(FLIR-ADAS) has been released by FLIR3, it provides an annotated thermal
images set for training and validation object detection neural networks. This
dataset was acquired also with a TAU2 thermal camera but mounted on a vehicle.
Provided images are with a resolution of 640×512. It contains a total of 14452
thermal images sampled from short videos taken on streets and highways. This
dataset was intended for driving assistance applications, although can be used
for the super-resolution problem.

Most of these datasets are not large enough to reach good results when
heavy SR learning-based approaches are considered; furthermore, the datasets
mentioned above contain images obtained from just one thermal camera. Having
in mind all these limitations, recently [Rivadeneira et al., 2020a] presents a novel
dataset that consists of a set of 1021 thermal images acquired with three differ-
ent thermal cameras, which acquire images at different resolutions. The dataset
contains images of outdoor scenarios with different daylight conditions (e.g.,
morning, afternoon, and night) and objects (e.g., buildings, cars, vegetation),
mounting the cameras in a rig trying to minimize the baseline distance between
the optical axis to get an almost registered image. This dataset has been used as
a benchmark in the first thermal image super-resolution challenge organized on
the workshop Perception Beyond the Visible Spectrum of CVPR2020 conference
[Rivadeneira et al., 2020b].

2.2 Super-Resolution

The image SR is a classical issue, and still a challenging problem in the computer
vision community and can be categorized as single-image SR (SISR) and multi-
image SR (MISR), where SISR task is more challenging than MISR due to the
lack of features that can be obtained in just one image rather than multiple

3 FREE FLIR Thermal Dataset for Algorithm Training
https://www.flir.in/oem/adas/adas-dataset-form/
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images of the same scene. SISR has been studied in the literature for years and
can be roughly classified as interpolation-based SR (conventional and traditional
methods) and deep learning-based SR.

SRCNN [Dong et al., 2015] for the first time introduced deep learning in
the SR field, showing the capability to improve the quality of SR results in
comparison to traditional methods. Inspired in SRCNN, [Kim et al., 2016] pro-
poses a VDSR network showing significant improvement. The authors propose
to use more convolutional layers, increasing the depth of the network from 3
to 20 layers, and adopt global residual learning to predict the difference be-
tween generated image from the ground-truth (GT) image instead pixel-wise.
FSRCNN [Dong et al., 2016] gets better computational performance by extract-
ing the feature maps on a low-resolution image and just in the last layer up-
sampled it reducing the computational cost. Inspired by these works, different
approaches to the image SR problem have been published using deeper networks
using more convolutional layers with residual learning (e.g., [Kim et al., 2016],
[Zhang et al., 2017]). Recently, several SR approaches using CNN (e.g., SRFeat-
M [Park et al., 2018], EDSR [Lim et al., 2017], RCAN [Zhang et al., 2018]) have
been proposed obtaining state-of-the-art performance for visible LR images. The
CNNs mentioned above aim to minimize the difference between SR and GT
images by using a supervised training process with a pair of images having a
pixel-wise registration. In general, the strategy followed by these approaches is
to down-sample the given HR image, add random noise or blur it, and then use
it as the input LR image.

To overcome the limitation of having a pixel-wise registration between SR
and GT images, unsupervised approaches have been proposed. For instance,
[Shi et al., 2018] proposes a single image super-resolution approach, referred to
as SRGAN, which achieves impressive state-of-the-art performance. This ap-
proach is inspired by the seminal Generative Adversarial Network (GAN) pre-
sented in [Goodfellow et al., 2014]. In recent literature, different unsupervised
training processes have been presented for applications such as transferring
style [Chang et al., 2018], image colorization [Mehri and Sappa, 2019], image en-
hancement [Chen et al., 2018], feature estimation [Suarez et al., 2019], among
others. All these approaches are based on two-way GANs (CycleGAN) networks
that can learn from unpaired data sets [Zhu et al., 2017]. CycleGAN can be used
to learn how to map images from one domain (source domain) into another do-
main (target domain). This functionality makes CycleGAN models appropriate
for image SR estimation when there is not a pixel-wise registration.

Most of the SR approaches mentioned above are focused on images from
the visible spectrum. Based on SRCNN, [Choi et al., 2016] propose the first ap-
proach named Thermal Enhancement Network (TEN). Due to the lack of ther-
mal image dataset, TEN uses RGB images for training. In [Rivadeneira et al., 2019],
a dataset of 101 HR thermal images have been considered and, in conclusion,
the authors state that better results are obtained if the network is trained us-
ing images from the same spectral band. Recently, [Mandanici et al., 2019] uses
a concept of multi-image SR (MISR) for thermal imaging SR. As mentioned
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above, in [Rivadeneira et al., 2020a] a novel dataset using three different camera
resolutions has been proposed; this dataset is used to train a CycleGAN archi-
tecture that makes a transfer domain from a LR image (from one camera) to a
HR image (of another camera), without pairing the images. Using this dataset as
a reference, in [Rivadeneira et al., 2020b] two kinds of evaluations are proposed,
the first evaluation consists of down-sampling a HR thermal images by ×2, ×3
and ×4 and comparing their SR results with the corresponding GT images. The
second evaluation consists in obtaining the ×2 SR from a given MR thermal
image and comparing it with its corresponding semi registered HR image. Re-
sults from this work are considered as baseline measures for future works in
the thermal images super-resolution—MLVC-Lab [Chudasama et al., 2020] and
Couger AI [Kansal and Nathan, 2020] corresponds to the approaches with the
best results according to the mentioned evaluations.

3 Proposed Approach

In Section 3.1, details of the proposed architecture are given together with in-
formation about the proposed loss function. Additionally, in Section 3.2, the
datasets used for training and validation are described. Finally, the process fol-
lowed to evaluate the performance of the proposed approach is introduced.

3.1 Architecture

The proposed approach is based on the usage of Cycle Generative Adversarial
Network (CycleGAN) [Zhu et al., 2017], widely used for map feature maps from
one domain to another domain. In the current work, this framework is used to
tackle the SR problem by mapping information from the mid-resolution (MR)
to the high-resolution (HR) domain. As shown in Fig. 1, the proposed approach
consists of two generators (MR to HR and HR to MR), with their corresponding
discriminators (DISC MR and DISC HR) that validate the generated images.
As generators, a ResNet with 6 residual blocks (ResNet-6) is considered. It uses
optimization to avoid degradation in the training phase. The residual blocks have
convolutional layers, with instant normalization and ReLu, and skip connections.
As discriminators a patchGAN architecture is considered; the generated image
and a non paired GT image are used to validate if the output is real or not.

Following the architecture presented in [Rivadeneira et al., 2020a], a combi-
nation of different loss functions is used: i) adversarial loss LAdversarial, ii) cycle
loss LCycle, iii) identity loss LIdentity, and iv) structural similarity loss LSSIM ;
additionally, another loss term, Sobel loss LSobel, is proposed. Sobel loss consist
in apply Sobel filter edge detector [Kittler, 1983] to the input image and the cy-
cled generated image, and get the mean square difference between both images,
helping to evaluate the contour consistency between the two images. Details on
each of these loss terms are given below—Fig. 1 illustrates these terms.

The adversarial loss is designed to minimize the cross-entropy to improve
the texture loss:
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Fig. 1. CycleGAN architecture with 6 blocks ResNet for MR to HR generator and
for HR to MR; with cycled + Sobel Loss and Identity + SSIM loss, and it respective
discriminators,

LAdversarial = −
∑
i

logD(GM2H(IM ), IH), (1)

where D is the discriminator, GM2H(IM ) is the generated image, IM and IH are
the low and high-resolution images respectively.

The cycled loss (LCycled) is used to determinate the consistency between
input and cycled output; it is defined as:

LCycled =
1

N

∑
i

||GH2M (GM2H(IM ))− IM ||, (2)

where GM2H and GH2M are the generators that go from one domain to the other
domain.

The identity loss (LIdentity) is used for maintaining the consistency between
input and output; it is defined as:

LIdentity =
1

N

∑
i

||GH2M (IM )− IM ||, (3)

where G is the generated image and I is the input image.
The structural similarity loss (LSSIM ) for a pixel P is defined as:

LSSIM =
1

NM

P∑
p=1

1− SSIM(p), (4)

where SSIM(p) is the Structural Similarity Index (see [Wang et al., 2004] for
more details) centered in pixel p of the patch (P ). The Sobel loss (LSobel) is
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used to determinate the edge consistency between input and cycled output; it is
defined as:

LSobel =
1

N

∑
i

||Sobel(GH2M (GM2H(IM )))− Sobel(IM )||, (5)

where GM2H and GH2M are the generators that go from one domain to the other
domain and Sobel gets the contour of the images.

The total loss function (Ltotal) used in this work is the weighted sum of
the individual loss function terms:

Ltotal = λ1LAdversarial + λ2LCycled + λ3LIdentity + λ4LSSIM + λ5LSobel, (6)

where λi are weights empirically set for each loss function.

3.2 Datasets

The proposed approach is trained by using two datasets. The novel dataset from
[Rivadeneira et al., 2020a] and the FLIR-ADAS mentioned in Section 2.1. For
the first dataset, only mid-resolution (MR) and high-resolution (HR) images,
acquired with two different cameras at different resolutions (mid and high reso-
lution) are considered; each resolution set has 951 images and 50 images are left
for testing. Figure 2 shows some illustrations of this dataset, just images from
the mid-resolution and high-resolution are depicted.

For the second dataset, which contains 8862 training images, just one out
of nine images have been selected, resulting in a sub-set of 985 images. This
subsampling process has been applied in order to have more different scenarios
since these images correspond to a video sequence, consecutive images are quite
similar. Figure 3 shows some illustrations from this second dataset.

Both datasets have HR images with a native resolution of 640x512; these
images have been cropped to 640x480 pixels, centered, to be exactly x2 of MR
images; both datasets have 8bits and are saved in jpg format, so both have
similar scenarios but acquired in different places and conditions.

Fig. 2. Examples of thermal images. (top) MR images from Axis Q2901-E. (bottom)
HR images from FC-6320 FLIR [Rivadeneira et al., 2020a].
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The main idea is to train the network with a shuffle mix of images between
these two datasets, having the same proportion of images, sizes, and the same
condition’s scenarios. As mention in section 3.3, the validation is done with the
same set of images used in the PBVS-CVPR2020 challenge [Rivadeneira et al., 2020b],
to compare the results with the most recent results in the state-of-the-art liter-
ature.

Fig. 3. Examples of the Free FLIR Thermal Dataset for Algorithm Training (FLIR-
ADAS).

3.3 Evaluation

The quantitative evaluations of the proposed method are performed as pro-
posed in [Rivadeneira et al., 2020a] for MR to HR case; this evaluation has been
adopted in the PBVS-CVPR2020 Challenge [Rivadeneira et al., 2020b], referred
to as evaluation2, which consists in getting the average results of PSNR and
SSIM measures on the generated SR of mid-resolution images and compared
with the semi registered high-resolution image obtained from the other camera.
This process is illustrated in Fig. 4. Just a centered region containing 80% of the
image is considered in order to use these measures. For a fair comparison, the
images from the validation set are the same ones used in the previous works men-
tioned above. Results from this evaluation2 are compared with those presented
in [Rivadeneira et al., 2020a].

4 Experimental Results

This section presents the results obtained with the unsupervised SThISR archi-
tecture proposed in this work. Section 4.1 describes the settings used for training
the proposed approach, while Section 4.2 presents the quantitative results.
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Fig. 4. PBVS-CVPR2020 Challenge evaluation2 approach [Rivadeneira et al., 2020b]
.

4.1 Settings

The proposed approach is trained on a NVIDIA Geforce GTX mounted in a
workstation with 128GB of RAM, using Python programming language, Ten-
sorflow 2.0, and Keras library. Only the two datasets mentioned in 2.1 are con-
sidered, no data-augmentation process has been applied to the given input data.

Images are up-sampled by bicubic interpolation, due to the CycleGAN trans-
fer domain (from mid to high resolution) needs images at the same resolution.
Images are normalized in a [-1,1] range. The network was trained for 100 epochs
without dropout since the model does not present overfit. The generator is a
ResNet with 6 residual blocks (ResNet-6) using Stochastic AdamOptimizer to
prevent over fittings and lead to faster convergent and avoiding degradation
in the training phase. The discriminators use a patchGAN architecture, and it
validates if the generated image together with the GT images is real or not.
For each epoch in the training phase, input mages were shuffle random mix.
The hyper-parameters used were 0.0002 for learning rate for both the generator
and the discriminator networks; epsilon=1e-05; exponential decay rate for the
1st moment momentum 0.5 for the discriminator and 0.4 for the generator. For
λi values weights in losses, the set of values that obtain the best results were:
for LCycled=10, LIdentity=5, LSSIM=5 and LSobel=10. The proposed architec-
ture has been trained twice, one with just the first dataset and once with both
datasets.

4.2 Results

The quantitative results obtained for each training, together with previous works
and other approaches from the PBVS-CVPR2020 Challenge are shown in Table
1 using PSNR and SSIM measures comparison. The best results are highlighted
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in bold and the second-best result is underline. As can be appreciated, the pro-
posed SThISR approach achieves better results than other works. Between both
current work results, using just one dataset gets seven-tenths better PSNR re-
sults rather than using both datasets. SSIM measure gets higher result using the
two datasets buts just by one-thousandth. These results show that using just
the first dataset the proposed approach archive better results, meaning that this
dataset is varied enough to train a network and that it is possible to do a Single
Thermal Image Super-Resolution between two different domains using images
acquired with different camera resolutions and without registration.

Approachs’ PSNR SSIM

Bicubic Interpolation 20,24 0,7515

[Rivadeneira et al., 2020a] 22,42 0,7989

MLVC-Lab+ 20,02 0,7452

COUGER AI+ 20,36 0,7595

Current Work1 22,98 0,8032

Current Work2 22,27 0,8045

Table 1. Quantitative average results of evaluation detail in Section 3.3. +Winner
approaches at the PBVS-CVPR2020 Challenge. Work1 using just first dataset; Work2

using both datasets. Bold and underline values correspond to the first and second best
results respectively.

Regarding the quality of the obtained results, Fig. 5 shows the worst and best
super-resolution results from the validation set. The worst result gets 20.11/0.6464
PSNR and SSIM measures respectively; it should be mentioned that although it
is the worst result from the whole validation set, it is considerably better than
the results obtained with a bicubic interpolation: 17.36/0.6193 PSNR and SSIM
respectively. In the case of the best result, a 26.06/0.8651 PSNR and SSIM mea-
sures respectively are obtained, in this case, the bicubic interpolation reaches
19.41/0.8021 PSNR and SSIM respectively. In conclusion, it could be stated
that the most challenging scenarios are those with objects at different depth
and complex textures, on the contrary, it can be appreciated that scenes with
planar surfaces are more simple to obtain their corresponding super-resolution
representation.

5 Conclusions

This paper presents an extended version of the work presented at VISAPP 2020.
Two datasets are considered during the training stage, and adjusting differ-
ent hyper-parameters values on loss function in CycleGAN and adding a Sobel
loss. The proposed approach has shown an improvement on previous work and
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Fig. 5. Examples quality results. (top) from left to right, MR image, HR image, worst
results. (bottom) best results.

achieved better results on state-of-the-art values comparing to the results from
the first challenge on SR thermal images in terms of PSNR and SSIM measures.
It should be mentioned that the proposed SThISR architecture is trained using
an unpaired set of images. The first dataset has large variability, showing that
its not necessary the use of other datasets.
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