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Abstract

This paper details the results and main findings of the
second iteration of the Multi-modal Aerial View Object
Classification (MAVOC) challenge. The primary goal of
both MAVOC challenges is to inspire research into meth-
ods for building recognition models that utilize both syn-
thetic aperture radar (SAR) and electro-optical (EO) im-
agery. Teams are encouraged to develop multi-modal ap-
proaches that incorporate complementary information from
both domains. While the 2021 challenge showed a proof
of concept that both modalities could be used together, the
2022 challenge focuses on the detailed multi-modal meth-
ods. The 2022 challenge uses the same UNIfied COincident
Optical and Radar for recognitioN (UNICORN) dataset and
competition format that was used in 2021. Specifically, the
challenge focuses on two tasks, (1) SAR classification and
(2) SAR + EO classification. The bulk of this document is
dedicated to discussing the top performing methods and de-
scribing their performance on our blind test set. Notably,
all of the top ten teams outperform a Resnet-18 baseline.
For SAR classification, the top team showed a 129% im-
provement over baseline and an 8% average improvement
from the 2021 winner. The top team for SAR + EO clas-
sification shows a 165% improvement with a 32% average
improvement over 2021.

1. Introduction
The goal of Automatic Target Recognition (ATR) models

is to accurately recognize, identify, classify and target sig-
natures within remotely sensed imagery [1, 7, 8, 19, 20, 22].

ATR shares many similarities with object detection and la-
belling in natural imagery. However, most ATR systems
are built on complex remote sensing (RS) systems that are
often mounted on aircraft or spacecraft. The unique per-
spective of these aerial view images can challenge identi-
fication and labelling in many ways (e.g., there may only
be a handful of pixels on target due to limited sensor res-
olution) [6]. When the image modalities are different such
as EO and SAR, less work has been published due to the
challenges of non-collocated sensor collections, association
of pixel intensities, as well as different image sizes, ground
sampling distance (GSD), and image noise [28]. Specifi-
cally, SAR, while researched as a single-mode ATR has the
benefit of all-weather, all-time, and stand-off results, it also
has challenges with signal multi-bounce, shadows, and dis-
cerning boundaries of closely-space objects. Hence, there
are many unique research challenges when trying to com-
bine EO and SAR for ATR. The 2022 PBVS Multi-modal
Aerial View Object Classification (MAVOC) challenge pro-
vides an opportunity to study these complicated issues and
provides key insights into how to best leverage multi-modal
information in ATR models.

There are many benefits to considering multiple sensor
types in RS systems. Some modalities are self-illuminated
and do not require sunlight to operate. Some microwave
band systems can image through clouds and vegetation.
Passive, sub-optical sensors can be used to remotely mea-
sure temperature, and active radars can identify man-made
objects in jungles, or even infer wind speed. Each RS sys-
tem is often tuned to specific tasks and are rich in infor-
mation. Despite these RS systems benefits, they are often
overlooked in computer vision applications, as it is diffi-
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cult to combine different sensor’s data in complementary
ways. For this reason, the majority of RS systems lever-
age only one modality [9]. Visual data is typically the most
common as it is widely collected, human interpretable, and
composes multiple spectrum bands. Extensions for multi-
spectral (MSI) and hyperspectral (HSI) data includes more
spectrum bands, but includes 3D large data cubes, requires
determining the salient bands for the targets of interest, and
necessitates more computation power than the EO domain.
Critically, by intelligently fusing various sensors’ data, it is
expected to observe ATR performance improvements.

The MAVOC challenges use the UNIfied COincident
Optical and Radar for recognitioN (UNICORN) dataset.
The UNICORN dataset consists of aligned SAR and EO
aerial view images. These large images are segmented and
hand labelled into a variety of classes. Concretely, the
MAVOC challenge is divided into two tracks:

• Track 1: SAR - Classifiers in Track 1 have EO and
SAR data available at training time, but are only tested
on SAR data. Track 1 encourages the development of a
maximally accurate SAR classifier that can learn using
a combination of SAR and EO images, which would
enable classification and use in ATR applications if
only SAR images are available during deployment.

• Track 2: SAR + EO - Classifiers in Track 2 have EO
and SAR data available at training and testing time.
Contest 2 encourages the development of a maximally
accurate SAR and EO classifier, when both SAR and
EO images are present together at collection.

The primary metric for measuring performance in both con-
tests is accuracy on a sequestered test set.

The remainder of this document is organized as follows.
Section 2 describes more details on the MAVOC challenge
problem, including the track definitions, details of the UNI-
CORN dataset, and the evaluation procedures. Section 3
discusses the main results. Section 4 provides methodolog-
ical details for the top performing approaches in both tracks.
Section 5 gives some analysis of the top methods, and Sec-
tion 6 offers our conclusions.

2. Challenge
The 2022 MAVOC challenge is held jointly with the

Perception Beyond the Visible Spectrum (PBVS) workshop
following the 2021 competition which was held in conjunc-
tion with the 2021 NTIRE workshop [17]. The MAVOC
challenge is designed to facilitate innovative approaches in
multi-modal classifiers using pairs of SAR and EO images.
The SAR images provide a unique challenge to participants
as the SAR images are self-illuminated and coherent, which
could result in images with unique SAR shadows and a tilted
perspective. The MAVOC challenge is divided into two

tracks focusing on multi-modal models with different utili-
ties.

2.1. Track 1

Track 1 focuses on building a classifier that can be
trained on both SAR and EO data but is tested on only
SAR data. A resulting classifier should not be dependent
on EO data when deployed, but have potentially learned
from the combined features found in both SAR and EO im-
ages during training. By removing the dependency on hav-
ing both modalities available at test time, decisions can be
made quicker as the computationally expensive rectification
preprocessing that is required to align SAR and EO is un-
necessary. The multi-modal nature of the different data for
training results in a non-trivial task.

2.2. Track 2

Track 2 focuses on building a classifier that is trained on
both SAR and EO data and is tested on (SAR, EO) image
pairs. Track 2 creates a scenario where the trained ATR
models are able to leverage features in both the SAR and
EO images during training and deployment. Track 2 is ex-
pected to have more accurate classifiers as there is more
input information at test time and EO images are generally
less noisy than their SAR counterparts.

2.3. Dataset

The dataset on which the challenge is formulated is
based on the UNIfied COincident Optical and Radar for
recognitioN (UNICORN) dataset [14]. The UNICORN data
set is chosen because it is both a public dataset and it is an
aligned SAR-EO dataset with hand labelled classes. The
2008 UNICORN dataset consists of Wide Area Motion Im-
agery (WAMI) large format electro-optical (EO) sensor, and
Wide Area Synthetic Aperture Radar (SAR). The data was
collected from aircraft flown over Dayton, Ohio. The SAR
and EO data cover the same approximate field of view, but
the reconstructed SAR image has a finer resolution than the
EO image. The large SAR and EO images are rectified and
aligned using homography algorithms, as shown in Fig. 2.
The competition dataset consists of small windowed sec-
tions (chips) that are sub-images of the aligned large image.
The EO chips are 31 × 31 px images. Due to the differing
resolutions of the large images, the SAR chips are 55 × 55
px. Each chip contains one of 10 objects to be classified.
Figure 1 displays example (SAR, EO) pairs from each class
of the dataset. As shown in Table 1, the dataset is parti-
tioned into train, validation, and test sets. The classes in the
train set are non-uniformly distributed and follow a long-
tail distribution. Importantly, the validation and test set are
uniformly distributed across all 10 classes which allow for
a true and unbiased measurement of accuracy.
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Figure 1. Two sample pairs of EO and SAR chips from each of the 10 classes in the UNICORN Dataset [17].

Figure 2. The aligned scene of the full UNICORN dataset before
chipping is performed [14].

2.4. Evaluation

The scoring uses a top-1% accuracy to determine a clas-
sifier’s performance. The test set contains 2,000 unlabelled
(SAR, EO) chip pairs, with 200 examples for each of the
10 classes. During the testing phase of the competition,
teams are allowed up to ten submissions per day. During the
evaluation phase, teams submit their label predictions to be

Table 1. Details of the UNICORN Dataset used in this challenge
(counts represent the number of (EO, SAR) pairs).

Class # Vehicle Type # Train # Val # Test

0 sedan 234,209 77 200
1 SUV 20,089 77 200
2 pickup truck 15,301 77 200
3 van 10,655 77 200
4 box truck 1,741 77 200
5 motorcycle 852 77 200
6 flatbed truck 828 77 200
7 bus 624 77 200
8 pickup truck w/ trailer 840 77 200
9 flatbed truck w/ trailer 633 77 200

Total 285,772 770 2000

evaluated on the competition server. Teams are allowed up
to six submissions, which prevents teams from effectively
fine-tuning on the test dataset. Accuracy results are made
visible during both phases.

2.5. Challenge Phases

The challenge began January 17, 2022, and the test data
was released March 10, 2022. The testing phase ended on
March 15, 2022 with team submissions finalized.

3. Challenge Results

Eighty-two teams participated in Track 1. Of those 82
participants, 32 teams submitted their algorithms during the
development phase, and 33 teams submitted during the test-
ing phase. Track 2 has 77 participants. Of those 77 par-
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ticipants, 24 submitted their algorithm during the develop-
ment phase, and 37 submitted their algorithm during the
testing phase. There is both an average performance im-
provement and a top accuracy improvement when compared
to the 2021 NTIRE MAVOC challenge results. Table 2
summarizes the observed improvements of the 2022 PBVS
MAVOC challenge over 2021.

Table 2. Various percent improvements of the 2022 PBVS
MAVOC challenge over the 2021 NTIRE MAVOC challenge and
baselines. The Baseline column shows the percent improvement
the top scoring team had over the baseline. The Average of Top
10 column shows the average percent improvement of the top 10
teams from the 2022 challenge over the top 10 teams from the
2021 challenge. The Top Teams column shows the percent im-
provement the top scoring team from the 2022 challenge had over
the top scoring team from the 2021 challenge.

Track Baseline Average of Top 10 Top Teams

Track 1 +129.57% +8.59% +5.26%
Track 2 +165.68% +32.79% +9.05%

3.1. Baselines

The baseline classifier utilizes ResNet-18 [3] which has
been pre-trained on ImageNet, and fine-tuned on the train-
ing and validation sets for 15 epochs. In Track 1, the base-
line accuracy was 15.87% and the baseline for Track 2 was
19.23%. Throughout the remainder of this paper, all results
may be compared to these values.

3.2. Track 1 SAR Classification Results

For SAR classification, the overall performance in-
creases between the top ten teams from the 2022 PBVS
MAVOC challenge when compared with the 2021 NTIRE
MAVOC challenge. The percent improvement of the top ac-
curacy score is 5.26%; which is a non-trivial improvement,
and can be attributed to newer techniques, and the leading
team’s novel approach. The test accuracy results of the top
10 teams for SAR classification are show in Table 3 and
a breakdown of performance between the 2021 and 2022
MAVOC challenge is shown in Fig. 3.

3.3. Track 2 Results

In SAR + EO classification, we see significant perfor-
mance improvements when compared with the 2021 NTIRE
MAVOC challenge. As shown in Table 2, there is a 9.05%
improvement between the two competition’s top accuracy
scores. We also observed more competitive results from all
participating teams. The test accuracy results of the top 10
teams from EO + SAR classification are show in Table 4
and a comparison with 2021 results is shown in Fig. 4.

Table 3. Top-10 Teams for Track 1 (SAR)

Rank Team Accuracy

1 USTC-IAT-United 36.44
2 NLPR-RVG 31.23
3 NYCX 28.09
4 Moyu 27.97
5 Tassel tzw 27.48
6 mytry1 26.76
7 MEYE 26.63
8 priyakansal 25.67
9 anirudhsikdar3 25.30
10 robot-1 25.06

baseline 15.87

Figure 3. The performance differences between the 2021 NTIRE
and 2022 PBVS MAVOC challenges. This figure plots the perfor-
mance of the ten top performing teams for SAR classification.

4. Challenge Methods
This section briefly summarizes the approaches used by

the teams that submitted their models and documentation
for prize consideration. Not all teams submitted their meth-
ods and are subsequently absent from this paper. We ex-
amine the submitted methods from the top teams in each
track. This section consists of edited summaries submitted
by each team.

4.1. Track 1 - SAR

4.1.1 Rank 1: USTC-IAT-United

Team USTC-IAT-United proposes a novel two stage ap-
proach. In stage 1, a supervised training step is conducted
based on a combination of SeNet [5] and MobileNet-V3
models [4]. In stage 2, pseudo-labels are generated followed
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Table 4. Top-10 Teams for Track 2 (EO + SAR)

Rank Team Accuracy

1 USTC-IAT-United 51.09
2 SunshineMu 46.85
3 SH 41.77
4 NLPR-RVG 37.65
5 sumanth udupa 34.26
6 jzsherlock 33.17
7 adityakane 30.39
8 hsansui 28.81
9 CiuchitiPoc 28.57
10 mcc 27.85

baseline 19.23

Figure 4. The performance differences between the 2021 NTIRE
and 2022 PBVS MAVOC challenges. This figure plots the perfor-
mance of the ten top performing teams for track 2.

by k-means clustering. SeNet is utilized to adapt to the
different image resolutions of the UNICORN dataset. The
SeNet is also used to capture the fine-grained detail con-
tained in the images. The team found that there were multi-
ple images that varied in their angle, lighting, and sharpness
of the same scene. They exploited the collection of varia-
tions for scene clustering, which provided significant im-
provements to their classifier’s performance. The classifier
performs feature preprocessing and feature enhancement on
the validation set and test set features are extracted by global
average pooling, with k-means to cluster pictures of sim-
ilar scenes into the same cluster, and assigns all pictures
in the cluster to the same label. The pseudo-labeling strat-
egy based on scene clustering can be employed as a post-
processing method and also suitable for semi-supervised
learning.

This USTC-IAT-United team used the same general ar-
chitecture for both Track 1 and Track 2. The main differ-
ence between the two Tracks is in Track 1, the team trains
three SAR image classifiers, while in Track 2 they train
three EO classifiers and one SAR classifier.

4.1.2 Rank 2: NLPR-RVG

Team NLPR-RVG proposes a method which employs the
feature similarity loss and the transductive learning for
boosting the performance of SAR aerial view object clas-
sification. The team firstly uses a network comprised of a
Swin-transformer (Base) [18] and a three-layers multi-layer
perceptron (MLP) to predict the class labels from the input
SAR images. Considering that the distribution of the train-
ing data is unbalanced, they randomly select 500 samples in
each class from all the training data for training the network
in each epoch and employ on-the-fly data augmentations at
the training stages.

For learning more powerful features from the noisy SAR
images, the team proposes a feature similarity loss, which
is inspired by the supervised contrastive learning [12] and
the triplet loss [24] methods. In each training batch, the fea-
ture similarity loss pulls together the features from the same
class in the feature space and pushes apart the features from
different classes. By using the feature similarity loss, the
predicted ratio of class ‘sedan’ on the testing data is reduced
from 45.0% to 14.5% after training 100 epochs. Since the
testing data is approximately uniformly distributed among
the ten classes, it indicates that the feature similarity loss
could also alleviate the influence of the unbalanced training
data distribution to some extent.

It is noted that the performances of the network are ob-
viously different between the training data and the valida-
tion/testing data, which indicates there is a potential domain
shift between the training and validation/testing data. Ad-
dressing the domain-shift problem, the team trains the net-
work in the transductive setting [21] and a two-stage train-
ing strategy is proposed. At the first training stage, the net-
work is trained on the labeled training data. At the second
training stage, the network firstly predicts the pseudo la-
bels of the testing data before each epoch. Then, the testing
data and the corresponding pseudo labels which have higher
confidence in each class are added to the training data in the
epoch. The network is trained on both the labeled training
data and the selected testing data with the pseudo labels.

The loss function for training the network is a weight
combining of the cross-entropy loss LCE and the feature
similarity loss Lsim, which is formulated as:

L = LCE + λLsim , (1)

where λ is a preseted weight parameter. The team sets λ =
1 on the first training stage and set λ = 0.5 at the second
training stage. The similarity loss Lsim is formulated as:
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Lsim =
1

B2

B∑
i=1

[
−

∑
j∈P (i)

F⊤
i · Fj

+
∑

k∈N(i)

max
(
F⊤
i · Fk, ϵ

)] (2)

where B denotes the batch size, F denotes the feature vec-
tor extracted by the backbone. P (i) is the positive feature
vectors, which are extracted from the images in the same
class with that produces Fi, while N(i) is the negative fea-
ture vectors. ϵ is a predefined threshold which is set to
ϵ = 0.1.

4.1.3 Rank 3: NYCX

Team NYCX uses a two-stage training method to deal with
the long-tailed distribution of the data. In the first stage, the
team uses the four classes with the most samples (10,000
samples per class) to train a ResNet-50 network with basic
feature extraction and discrimination capabilities. The sec-
ond stage selects 624 samples from each class in the data set
(as many as possible) to form a balanced data set. They use
the ResNet-50 network trained in the first stage and replaced
its classification head with a 10-class MLP to fine-tune on
the balanced data set, to get the final classification network.

4.1.4 Rank 4: Moyu

The inspiration for team Moyu’s approach comes from [11]
and [10]. A two-stage training strategy is used to decou-
ple the learning procedure into the representation learning
stage and the classification learning stage. For the train-
ing phase, the team trains the Shake-Shake model [2] with
the complete dataset to learn the feature representation, then
they freeze the parameters of the feature extractor and only
train the classifier with the class-balanced dataset. The team
chose Shake-Shake32 as the backbone of the feature extrac-
tor, which proves to have great performance when facing
over-fitting datasets. A fully connected (FC) layer serves
as the classifier. The distribution of the given SAR image
dataset is long-tailed and the percent of class “0” is close
to 80%. To alleviate the over fitting problem caused by too
many head-classes, the team first extends the dataset for all
classes except the “sedan” class by random rotation, random
horizontal flip, and vertical flip. On the first stage, model is
trained using the full expanded data (still long-tailed) to get
a useful pre-trained weights. However, since there is less in-
formation for the tail-classes of the dataset, the model will
still be biased towards the head-classes. For the next stage,
they establish a class-balanced dataset containing of 50000
images (5000 images per class) by random selecting from
the extended dataset. The team freezes the parameters of the

feature extractor and only train the FC layer on this class-
balanced dataset. The model can achieve higher classifica-
tion performance on all categories after two stage training
strategy. In the test phase, the team first employs the test
time augmentation (TTA [25]) while they set the number of
images generated by one image to 12 to obtain the classes
probability distribution of all the samples. They then use a
post-processing approach, called the Classification with Al-
ternating Normalization (CAN [10]), to get the final results.
The CAN is a non-parametric post-processing trick and can
improve classification accuracy for some challenging exam-
ples by re-adjusting category probability distribution using
the prior category distributions of dataset.

4.2. Track 2 - SAR + EO

4.2.1 Rank 1: USTC-IAT-United

Team USTC-IAT-United uses the same architecture as de-
scribed in Section 4.1.1, with a small change. Instead of
training three SAR classifiers, they train three EO classi-
fiers and one SAR classifier.

4.2.2 Rank 4: NLPR-RVG

Team NLPR-RVG considers that both the EO images and
SAR images are available in the Track2 in both training and
testing phases. They propose to ensemble the two trained
models from the two kinds of images (i.e., EO images and
EO-SAR images). The EO-SAR pairs are made by concate-
nating the images. Considering the successful applications
of transductive learning in many vision tasks, they propose a
transductive learning framework for the training of EO im-
ages and EO-SAR images, which firstly selects a subset of
the unlabeled test samples with relatively higher confidence
scores predicted by an inductive baseline model, and then
reassigns these selected samples with pseudo labels either
based on the K-Nearest Neighbors (K-NN) classification al-
gorithm in the feature space spanned by the feature vectors
resulting from a pretrained feature extractor, or based on the
predictions of the updated baseline model. Finally, the base-
line model is updated by jointly using the labeled training
samples and the selected pseudo-labeled test samples, and
the final predictions on the test samples are co-predicted by
the models trained on both EO images and EO-SAR images.

4.2.3 Rank 5: sumanth udupa

Team sumanth udupa trained their classifier based on the
philosophy that the domain gap between the EO and SAR
can be reduced. The EO and SAR models have a feature
extractor and a classifier.

The team begins with two ResNet-models that have been
pre-trained on ImageNet. One model is then fine-tuned on
EO images, and the other is fine-tuned on both EO and
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SAR images. The team uses Focal Loss to fine tune their
models [15]. Because of the long-tailed distribution of the
dataset, they perform data-augmentation on the less repre-
sented classes. They use a weighted random sampler to in-
crease the representation of the tail classes.

They used sliced Wasserstein discrepancy as the domain-
gap loss [13]. They take the outputs of the feature extractors
of the EO model and the SAR model, and minimize the do-
main gap in the embedding space. To make the learning
more efficient, they use class-conditional domain adapta-
tion which they achieve by passing the EO and SAR image
pair at a time to the two models, effectively making it shared
feature learner. They also use the unlabelled data points and
frames provided to them (validation and test set) to mini-
mize the cross-domain Wasserstein loss. The classifiers of
both the models are trained using the Focal loss. Focal loss
worked better than cross-entropy loss suggesting that some
samples are easier to learn than the others.

For Track 2, they just use the ResNet-50 EO model for
EO image and SAR image and take weighted average of the
two results and achieve competitive results.

4.2.4 Rank 6: jzsherlock

Due to the large difference between SAR and EO images,
team jzsherlock constructed a dual-stream network struc-
ture to encode the SAR and EO images separately to fea-
ture vectors, and then concatenated the two vectors to an
a fully connected layer to generate the class prediction.
They apply MobileNetV2 [23] structure with pretrained
weights from the timm [26] library as encoders for rea-
sons from two aspects: 1) efficiency and lightweight, which
can reduce the model size (compared with ResNet-34 [3]
based model (170.6M), MobileNetV2 based model is only
18.5M), and boost training speed while maintaining or even
slightly boosting the performance, as well as 2) reduce over-
fitting, because larger models tend to overfit from the avail-
able data.

Using the dataset imbalance of each class, the team first
uses under-sampling to select same number of k samples
for each class, where k is set to the minimum of number
of samples per class. Then 20% of each class is randomly
separated out as a validation set while the remaining data are
used for training. Focal loss [16] is used as the loss function
instead of commonly used cross entropy loss to cast more
attention on hard samples to tackle with overfitting. Label
smoothing and various data augmentation are also used in
calculating focal loss for the same reason.

The team utilized semi-supervised strategy in training as
well. After the accuracy in validation set is stable, the test
set was inferenced with the trained model, and the results
with max probability higher than a threshold is added to the
training dataset with the inferenced class as their pseudo la-

bel. Then the model continued to train some epoches using
the combined train dataset. The model weights with best
validation accuracy are used for the final inference to gen-
erate results of test dataset.

Even if all the strategies are taken to reduce the class bias
of models with more samples, the final outputs still tend
to bias for the common classes (the first 4 classes which
have over 10k samples) over long-tailed classes (the last 6
classes, which all have less than 1k samples, except class
“box truck”, which is less than 2k). Inspired by [27], the
team re-calibrated the output using post-processing: the first
four classes are sorted by the predicted probabilities and la-
beled one-tenth of test samples for each class. Then the re-
maining samples which have relatively lower probabilities
of the common classes are labeled by their maximum prob-
ability class. Experiments show that removing the influence
of common classes can obtain a more balanced result for the
long-tailed classes.

4.2.5 Rank 9: CiuchitiPoc

Team CiuchitiPoc uses a model that consists of a convolu-
tional neural network (CNN) with 11 convolutions, and 1
max pooling layer. The convolution layers use the recti-
fied linear unit (ReLU) activation function and are followed
by batch normalization, its kernel, number of channels and
parameters are 3x3, 32 and 9248, respectively. The total
number of parameters is 94,410. In order to compensate for
the uneven distribution of the dataset classes, the team used
class weights that improve the class difference and don’t
allow the CNN to skew the results towards the class with
the highest representation within the dataset. The results
are given by averaging the output of the two networks. For
SAR images, the team took the last 100 images from each
class and made a validation set. For EO the team took the
last 100 images from each class for validation.

5. Analysis
The 2022 MAVOC challenge had significant perfor-

mance increases when compared with the 2021 NTIRE
MAVOC challenge. The average performance between the
top ten teams increased as well as the performance of the
best classifiers. Approaches from both years used novel
and unique methods to address the unbalanced dataset.
However, the 2022 teams used newer techniques such
as Swin-Transformers, self-supervised learning, and semi-
supervised learning. These techniques are state-of-the-art
and were published during 2021. Hence, the top perform-
ing 2022 teams leverage recent techniques to outperform the
top performers from the 2021 competition. From the com-
petition results, many of these techniques are well suited for
ATR applications.

In both the 2021 and 2022 competitions, teams addressed
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the data imbalance distribution of the training set. Be-
cause the training set has a long-tailed distribution, teams
developed methods to increase the frequency of the tail
classes. They used various data augmentation techniques,
or weighted sampling methods. However, the validation
and test set are uniformly distributed. Had the validation
and test set matched the distribution of the train set, there
might not have been such a consistent effort towards data
augmentation.

6. Conclusions
The 2022 MAVOC challenge encourages the develop-

ment of multi-modal models that excel at image classifi-
cation which aligns with ATR applications. The MAVOC
challenge used the UNICORN dataset that consists of aerial
view SAR and EO image pairs; which has unique chal-
lenges due to the view point of the SAR and EO images.
The challenge comprises two contests: (1) learning from
both SAR and EO, but can be used with only SAR inputs,
and (2) training and testing with both SAR and EO images
at test time. Congratulations to the winners for superior re-
sults, participants who enter, and those all those facilitat-
ing the challenge which will motivate future work in multi-
modal ATR.
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