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Abstract

Hand-written Text Recognition techniques with
the aim to automatically identify and transcribe
hand-written text have been applied to histor-
ical sources including ciphers. In this paper,
we compare the performance of two machine
learning architectures, an unsupervised method
based on clustering and a deep learning method
with few-shot learning. Both models are tested
on seen and unseen data from historical ciphers
with different symbol sets consisting of various
types of graphic signs. We compare the models
and highlight their differences in performance,
with their advantages and shortcomings.

1 Introduction

Encrypted historical manuscripts contain a large
variety of symbols taken from different symbol
sets, often digits, characters of the Latin and
Greek alphabets, or graphic signs such as the
Zodiac or alchemical symbols. Diacritics and
dots can be used systematically to make fur-
ther distinction between the symbols. One of
the main challenges that arises when transcrib-
ing ciphers is the transcription process which is
normally the first necessary step to decrypt the
manuscript at hand. Partly of fully automatizing
the transcription would not only save time but
also lead to more consistent transcriptions, even
on the error side which would make correction
easier and faster. Therefore, (semi-)automated
transcription of historical ciphers would be of
great help. Recently, Hand-Written Text Recog-
nition (HTR) has made great progress. The main
challenge with encrypted sources is the segmen-
tation and recognition of the symbol set due to

the variability of the written characters and the
use of alphabets and symbol sets across ciphers.

HTR techniques (just as any field within Arti-
ficial Intelligence) are built upon unsupervised,
semi-supervised or fully supervised methods,
where the former does not need any annotated
training data such as clustering, while the lat-
ter needs a rather big set to reach high(er) per-
formance. Powerful architectures, magic black
boxes, have recently become available through
deep learning. These systems are known to be
data- and energy hungry, requiring big data sets
and huge computer power in terms of GPUs for
training. Recently, supervised models have been
developed where only a few transcribed exam-
ples of text segments is needed for training. The
recent development in HTR makes transcription
less expensive and more manageable.

The work presented in this paper investigates
two approaches applied to the automatic tran-
scription of ciphers with various types of symbol
sets including a large variety of graphic signs.
We compare unsupervised clustering that does
not require any training data but needs a post-
processing step for cleaning the output, and the
supervised few-shot learning approach, which
requires only a few examples of each symbol in
a cipher for training but does not need any post-
processing. We evaluate both methods on the
same cipher sample and provide the Symbol Er-
ror Rate value for the models to measure their
performance. We also give a time estimate for
transcription of historical encrypted sources.

Next, in Section 2 we give an overview on
previous studies on the automatic transcription
of ciphers. In Section 3 we describe the cluster-
ing and the few-shot model architectures under
evaluation. In Section 4 we present the perfor-
mance of the models, in Section 5 we discuss the
results, and in Section 6 we conclude the paper.



2 Transcribing Historical Ciphertexts

During the past years, several work have been
published on the automated transcription of his-
torical ciphers. Given the thorough monitoring
of the factors that make or break the efficiency
of an instrument for automated transcription —
accuracy and time — previous studies have re-
ported the advantages and efficiency of auto-
mated transcriptions based on Recurrent Neural
Networks and compared to manual ones, once
the accuracy of the instrument achiever results
higher than 90% (Fornés et al., 2017).

The promising results presented in one of the
more recent publications, involving the evalu-
ation of an interactive online transcription tool
(Baró et al., 2019) and (Johansson, 2019), con-
firmed the direction in which to proceed in
the development of HTR tools — unsupervised
models such as clustering developed in an image
processing pipeline including cropping of the
image, binarization, line- and character segmen-
tation, and finally symbol recognition by cluster-
ing (Chen et al., 2018) and (Chen et al., 2021).

Other methods were recently proposed using
powerful deep learning architectures. Such ar-
chitectures used to require a big amount of train-
ing data with lots of manual effort for providing
transcription of hundreds of images to be used
for training for high performance. An exam-
ple of such a study on the transcription of ci-
phers was the Seq2seq Attention model (Ren-
fei, 2020). The need of reducing the expen-
sive preparation step to produce training data
and develop models that require only a few im-
ages of each alphabet symbol became emerging.
(Souibgui et al., 2020) presented an architecture
based on few-shot learning by detecting all sym-
bols in a given alphabet in a textline image, and
decoding the obtained similarity scores to the fi-
nal sequence of transcribed symbols. The model
was shown to be powerful on various types of
ciphers.

Given the promising results of clustering and
the few-shot architectures, we choose to evalu-
ate each and compare them on the same set of
ciphers. The evaluation was conducted in order
to provide more specific directions on how to
implement the best performing pieces of archi-
tectures, as well as to provide an analysis of the
strength and shortcomings of the two models.

3 Automatic Transcription

Before we describe the involved models to be
evaluated, let us introduce the datasets used in
the experiments.

3.1 Data

We selected three decrypted ciphers with tran-
scriptions freely available. The ciphers contain
various symbols sets of different size and differ-
ent hand-writing styles. The three ciphers are
exemplified in Figure 1.

The Borg cipher (Aldarrab et al., 2017) is a
historical encrypted source originating from the
17th century. It consists of 408 pages with 34
eclectic symbols with space between the code
sequences. The symbol set ranges from Latin
letters and diacritics to Zodiac and alchemical
symbols. The hand-writing is greatly varied and
sometimes rather difficult to interpret, since the
symbols are connected not only horizontally but
oftentimes also vertically across lines leading to
many touching symbols. 16 transcribed pages
containing ∼ 17 lines and ∼ 280 characters per
page on average were used for the test set, with
a total number of characters around ∼ 4 480.

The Copiale cipher (Knight et al., 2011) orig-
inates from the 18th century. It consists of
100 different symbols including digits, Latin
and Greek letters, diacritics, punctuation marks,
and a big variety of graphic signs. The cipher
is meticulously written with clearly segmented
symbols and straight lines. The total amount of
pages used as test set for model evaluation is 24,
with ∼ 18 lines and ∼ 720 characters per page
on average; the total amount of characters was
∼ 17 280.

The Ramanacoil cipher (Dinnissen and Kopal,
2021) reveals two Dutch East India Company
letters from 1674. The cipher consists of 55 dif-
ferent graphic signs. The symbols are clearly
separated and spaces are used to mark symbol
sequences. The cipher is meticulously written
but the lines are not necessarily straight. The
symbols are tiny and the pages contain the high-
est number of lines and characters per page on
average among the three manuscript, reaching ∼
40 lines and ∼ 2 240 glyphs per page. There-
fore, we only chose 8 pages for test set, reach-
ing a total amount of characters around ∼ 13
440. Noteworthy that no pages from Ramana-



The Borg Cipher

The Copiale Cipher

The Ramanacoil cipher

Figure 1: Example of the three ciphers.

coil were used for training — the cipher has been
unseen — as opposed to the two other ciphers.

3.2 Unsupervised Clustering

The architecture we choose to evaluate is based
on the work by (Baró et al., 2019) and (Chen et
al., 2021). The transcription process of the tool
follows five macro-steps including binarization,
segmentation, clustering, label propagation, and
transcription, which are presented below in op-
erational order and illustrated in Figure 2.
Binarization. The conversion of the manuscript
image into a black and white picture with a stark
contrast between glyphs and background. The
threshold that produced the results is based on
the experiments by (Sauvola and Pietikäinen,
2000).
Segmentation. A two-fold process that involves
line segmentation followed by character seg-
mentation, where the tool divides the image into
single lines and the single lines into smaller rect-
angles to isolate the glyphs. The user can choose
a preset of measures from known ciphers (e.g.
space between the lines, avg. surface of the sym-
bols, space between symbols) or input a custom
set to fine-tune the model to specific characteris-
tics of a particular manuscript.
Clustering. The process recognizes and groups
characters together through k-mean clustering
with the use of a hierarchical algorithm (Al-
mazán et al., 2014). After clustering, the user
can set the number of clusters that the tool has

to output — ideally the total number of unique
symbols plus one for uncertain cases — or let
the tool automatically decide the total number
of clusters.
Label propagation. Two parameters are re-
quired from the user, the alpha value (default set
to 0.2) and a confidence threshold, as a method
of soft-assignment of a cluster-related label to
each glyph that resembles the specific cluster.
The values used for the experiments conducted
in this study were 0.2 and 0.8.
Transcription. Outputs a transcription as a
single-file or page by page, as the user prefers.

Figure 2: Processing steps of clustering of the
Ramanacoil cipher.

3.3 Few-Shot Modeling

The few-shot architecture is based on the work
presented in (Souibgui et al., 2020). Quite
differently from the previous model, the main
steps for user interaction are only two: the data
preprocessing and the model run in the com-
mand line. Given that the architecture was used
as an unsupervised model, the trained weights
were generated from the Omniglot dataset (Lake
and Tenenbaum, 2015) which served as baseline
(Souibgui et al., 2020) for our experiments.
Preprocessing. Since the transcription architec-
ture does not have an automated line segmenta-
tion process, the document had to be manually
cropped and divided into single lines. Then, the
lines were resized vertically to a height of 105
px before running the model using the same size
as during training. The architecture-specific fea-



ture called alphabet support requires the user to
provide 10 examples of each character in the ci-
pher alphabet. Having more (and different) sam-
ples usually boosts the performance. However,
we can also choose to copy the same character
multiple times to obtain 10 samples to save time
and minimize the human effort.
Running the model. Starting the model is done
through a single command line, with which the
user can alter the number of ”shots” of the archi-
tecture (i.e. the iterations of the model, max 5)
and input a threshold for the transcription akin
to the clustering architecture. The main char-
acteristic of the architecture is the multi-layered
structure used for extracting features from both
the alphabet support images and the input docu-
ment, presented in (Souibgui et al., 2020). This
model currently requires great computer power
in terms of GPU.

4 Results

Upon obtaining the output transcriptions for
each of the three ciphers, the accuracy of the two
models was evaluated through the use of Leven-
shtein’s distance to calculate Symbol Error Rate
(SER) in order to provide a standardised result.
The formula for Levenshtein’s distance SER is
given below, with N representing the total num-
ber of symbols in a line, and the total number
of operations that is necessary to carry out to
turn the transcription output into the gold stan-
dard output measured as three types of opera-
tions: S symbol substitution, D symbol deletion,
and I symbol insertion.

SER =
S+D+ I

N
(1)

The performance of the two architectures is
shown in Table 1. The results measured as sym-
bol error rate clearly show the overall better per-
formance of the few-shot architecture both on
seen [S] and unseen data [U], respectively, com-
pared to the clustering architecture.

Where it is expected for the few-shot model to
show a larger performance gap when perform-
ing on seen data [S], there is the presence of a
small gap when the few-shot model transcribes
unseen data [U]; therefore, the model performs
better than the clustering not only when work-
ing as intended (as a supervised architecture),

Dataset Clustering Few-Shot
Borg [S] 0.638 0.150
Copiale [S] 0.350 0.104
Ramanacoil [U] 0.800 0.754
Avg. SER 0.596 0.336

Table 1: Symbol error rate (SER) and average
value (bottom line) for each model performing
on the three ciphers.

but when underperforming (as an unsupervised
architecture) as well.

The meticulously written Copiale cipher leads
to lowest transcription errors by both systems,
while the unseen Ramanacoil — not surprisingly
— contains the largest number of transcription
errors by both methods.

4.1 Transcription Time

We present the average time required to tran-
scribe a hand-written cipher of 10 pages with
250 lines in total, as shown in Table 2. We look
at the preprocessing, parameter setting and post-
processing steps for each method and count the
exact time it takes to finalize each step. It should
be noted that the data reported in Table 2 is only
representative of the time required to go from
image to model output, the kind used for the
performance evaluation shown in Table 1; time
for further corrections that would be required on
the resulting automated transcription is not taken
into account.

The values in Table 2 are derived from an es-
timate of the time required for each page of the
three datasets, respectively made of 16 pages
with ∼17 lines per page for Borg, 24 pages with
∼18 lines per page for Copiale, and 8 pages with
∼40 lines per page for Ramanacoil.

The time required to assist the systems to
produce the transcription output differ greatly
from each other. While clustering has a fast
pre-processing due to the automatized process
of segmentation, the post-processing phase is
time-consuming in order to reach high(er) per-
formance in transcription. On the other hand,
the few-shot model requires preprocessing in
terms of time-consuming manual line segmen-
tation and a segmentation of a few examples of
each symbol in the document, called Alphabet
support.



Figure 3: The few-shot model architecture.

Process Clustering Few-shot
Line preprocessing × ∼8h 20’ (2’ / line)
Alphabet support × ∼1h 15’ (3’ / char.)
Parameter setting ∼0h 15’ ∼0h 01’
Cluster clean & label ∼1h 00’ ×
Automated processes ∼2h 10’ ∼0h 50’
Avg. Time Elapsed ∼2h 55’ ∼0h 51’ (+ prep.)

Table 2: Estimate of time required for a full tran-
scription of 10 pages with 250 lines. All user-
independent processes have been unified under
Automated processes.

5 Discussion

Above all, we would like to emphasize that
the two architectures presented in the paper
are not fully comparable since they do not use
the same set of pre- and postprocessing steps
which makes comparisons a bit unfair. However,
the results indicate some major advantages and
drawbacks with each method.

The few-shot model architecture achieves
highest performance shown as lowest symbol er-
ror rate both on seen and unseen datasets. How-
ever, the model requires manual segmentation of
lines, and at least five examples of each sym-
bol in each cipher document. On the other side,
while the current implementation of the cluster-
ing architecture performs lower in the transcrip-
tion output, it allows for automatic segmentation
of lines and symbols. One major weak point
of the clustering approach that we identified is
the failure of symbol segmentation in cursive
writing style. Implementing and improving the

segmentation algorithms on line and character
levels would greatly increase performance for
faster and more accurate transcription for both
approaches.

A tool including both methods and allowing
end-to-end transcription from image upload to
transcription output would be beneficial for a
more adequate and systematic evaluation of the
methods. Since the advantage of the two archi-
tectures can be said to be complementary, they
could be combined for higher performance and
less user effort allowing automatic segmentation
and postprocessing equally in both architectures.

All in all, using the few-shot model is rec-
ommended — in case of access to high-end
GPUs —- for datasets with regular line orien-
tation (such as the Copiale cipher) and datasets
with an alphabet smaller than 30 symbols (such
as the Borg cipher). In cases when the line
segmentation as part of the preprocessing has
to be done manually, it might be unsuited for
datasets longer than 10 pages due to the length
of the manual segmentation required being equal
to the speed of the full manual transcription of
the dataset. In case of CPU-only machines,
datasets with highly irregular line orientation,
and datasets with alphabets larger than 30 sym-
bols, the use of the clustering architecture is sug-
gested in its current state.

6 Conclusion

We presented an evaluation and comparison be-
tween two structurally different transcription



tools developed for hand-written text recogni-
tion and applied to historical ciphertexts. We
showed how the use of few-shot architecture
with supervised learning with a few examples
used for training achieves the highest perfor-
mance. Further development of the tool is the
implementation of an automatic line and sym-
bol segmentation in order to make the process
of creating training data and select examples of
glyphs faster and easier for the user.

We also showed that the clustering tool in-
cluding its fully automated pre-processing of
segmentation and its unsupervised nature are
promising and could be used for ciphers and
other scripts with unknown symbol systems.

It is worth exploring a combination of the two
approaches; where the automatic segmentation
is used along with the examples from already se-
lected and corrected clusters to be used with the
Few-Shot model. We believe that the combina-
tion of the two architectures would be ideal to
take as the next steps.
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