toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Michael Holte; Bhaskar Chakraborty; Jordi Gonzalez; Thomas B. Moeslund edit   pdf
url  doi
openurl 
  Title A Local 3D Motion Descriptor for Multi-View Human Action Recognition from 4D Spatio-Temporal Interest Points Type Journal Article
  Year 2012 Publication IEEE Journal of Selected Topics in Signal Processing Abbreviated Journal J-STSP  
  Volume 6 Issue 5 Pages 553-565  
  Keywords  
  Abstract In this paper, we address the problem of human action recognition in reconstructed 3-D data acquired by multi-camera systems. We contribute to this field by introducing a novel 3-D action recognition approach based on detection of 4-D (3-D space $+$ time) spatio-temporal interest points (STIPs) and local description of 3-D motion features. STIPs are detected in multi-view images and extended to 4-D using 3-D reconstructions of the actors and pixel-to-vertex correspondences of the multi-camera setup. Local 3-D motion descriptors, histogram of optical 3-D flow (HOF3D), are extracted from estimated 3-D optical flow in the neighborhood of each 4-D STIP and made view-invariant. The local HOF3D descriptors are divided using 3-D spatial pyramids to capture and improve the discrimination between arm- and leg-based actions. Based on these pyramids of HOF3D descriptors we build a bag-of-words (BoW) vocabulary of human actions, which is compressed and classified using agglomerative information bottleneck (AIB) and support vector machines (SVMs), respectively. Experiments on the publicly available i3DPost and IXMAS datasets show promising state-of-the-art results and validate the performance and view-invariance of the approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-4553 ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ HCG2012 Serial 1994  
Permanent link to this record
 

 
Author Wenjuan Gong; Jordi Gonzalez; Xavier Roca edit   pdf
doi  openurl
  Title Human Action Recognition based on Estimated Weak Poses Type Journal Article
  Year 2012 Publication EURASIP Journal on Advances in Signal Processing Abbreviated Journal EURASIPJ  
  Volume Issue Pages  
  Keywords  
  Abstract We present a novel method for human action recognition (HAR) based on estimated poses from image sequences. We use 3D human pose data as additional information and propose a compact human pose representation, called a weak pose, in a low-dimensional space while still keeping the most discriminative information for a given pose. With predicted poses from image features, we map the problem from image feature space to pose space, where a Bag of Poses (BOP) model is learned for the final goal of HAR. The BOP model is a modified version of the classical bag of words pipeline by building the vocabulary based on the most representative weak poses for a given action. Compared with the standard k-means clustering, our vocabulary selection criteria is proven to be more efficient and robust against the inherent challenges of action recognition. Moreover, since for action recognition the ordering of the poses is discriminative, the BOP model incorporates temporal information: in essence, groups of consecutive poses are considered together when computing the vocabulary and assignment. We tested our method on two well-known datasets: HumanEva and IXMAS, to demonstrate that weak poses aid to improve action recognition accuracies. The proposed method is scene-independent and is comparable with the state-of-art method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ GGR2012 Serial 2003  
Permanent link to this record
 

 
Author Noha Elfiky; Jordi Gonzalez; Xavier Roca edit   pdf
doi  openurl
  Title Compact and Adaptive Spatial Pyramids for Scene Recognition Type Journal Article
  Year 2012 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 30 Issue 8 Pages 492–500  
  Keywords  
  Abstract Most successful approaches on scenerecognition tend to efficiently combine global image features with spatial local appearance and shape cues. On the other hand, less attention has been devoted for studying spatial texture features within scenes. Our method is based on the insight that scenes can be seen as a composition of micro-texture patterns. This paper analyzes the role of texture along with its spatial layout for scenerecognition. However, one main drawback of the resulting spatial representation is its huge dimensionality. Hence, we propose a technique that addresses this problem by presenting a compactSpatialPyramid (SP) representation. The basis of our compact representation, namely, CompactAdaptiveSpatialPyramid (CASP) consists of a two-stages compression strategy. This strategy is based on the Agglomerative Information Bottleneck (AIB) theory for (i) compressing the least informative SP features, and, (ii) automatically learning the most appropriate shape for each category. Our method exceeds the state-of-the-art results on several challenging scenerecognition data sets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ EGR2012 Serial 2004  
Permanent link to this record
 

 
Author Jordi Gonzalez; Thomas B. Moeslund; Liang Wang edit   pdf
doi  openurl
  Title Semantic Understanding of Human Behaviors in Image Sequences: From video-surveillance to video-hermeneutics Type Journal Article
  Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 116 Issue 3 Pages 305–306  
  Keywords  
  Abstract Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries.Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound (IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations.Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall.Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ GMW2012 Serial 2005  
Permanent link to this record
 

 
Author Murad Al Haj; Jordi Gonzalez; Larry S. Davis edit  doi
isbn  openurl
  Title On Partial Least Squares in Head Pose Estimation: How to simultaneously deal with misalignment Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2602-2609  
  Keywords  
  Abstract Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.  
  Address Providence, Rhode Island  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ HGD2012 Serial 2029  
Permanent link to this record
 

 
Author Wenjuan Gong; Jordi Gonzalez; Joao Manuel R. S. Taveres; Xavier Roca edit  doi
isbn  openurl
  Title A New Image Dataset on Human Interactions Type Conference Article
  Year 2012 Publication 7th Conference on Articulated Motion and Deformable Objects Abbreviated Journal  
  Volume 7378 Issue Pages 204-209  
  Keywords  
  Abstract This article describes a new collection of still image dataset which are dedicated to interactions between people. Human action recognition from still images have been a hot topic recently, but most of them are actions performed by a single person, like running, walking, riding bikes, phoning and so on and there is no interactions between people in one image. The dataset collected in this paper are concentrating on human interaction between two people aiming to explore this new topic in the research area of action recognition from still images.  
  Address Mallorca  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-31566-4 Medium  
  Area Expedition Conference AMDO  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ GGT2012 Serial 2030  
Permanent link to this record
 

 
Author Pau Baiget; Carles Fernandez; Xavier Roca; Jordi Gonzalez edit   pdf
doi  isbn
openurl 
  Title Trajectory-Based Abnormality Categorization for Learning Route Patterns in Surveillance Type Book Chapter
  Year 2012 Publication Detection and Identification of Rare Audiovisual Cues, Studies in Computational Intelligence Abbreviated Journal  
  Volume 384 Issue 3 Pages 87-95  
  Keywords  
  Abstract The recognition of abnormal behaviors in video sequences has raised as a hot topic in video understanding research. Particularly, an important challenge resides on automatically detecting abnormality. However, there is no convention about the types of anomalies that training data should derive. In surveillance, these are typically detected when new observations differ substantially from observed, previously learned behavior models, which represent normality. This paper focuses on properly defining anomalies within trajectory analysis: we propose a hierarchical representation conformed by Soft, Intermediate, and Hard Anomaly, which are identified from the extent and nature of deviation from learned models. Towards this end, a novel Gaussian Mixture Model representation of learned route patterns creates a probabilistic map of the image plane, which is applied to detect and classify anomalies in real-time. Our method overcomes limitations of similar existing approaches, and performs correctly even when the tracking is affected by different sources of noise. The reliability of our approach is demonstrated experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1860-949X ISBN 978-3-642-24033-1 Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ BFR2012 Serial 2062  
Permanent link to this record
 

 
Author Josep M. Gonfaus; Theo Gevers; Arjan Gijsenij; Xavier Roca; Jordi Gonzalez edit   pdf
url  isbn
openurl 
  Title Edge Classification using Photo-Geo metric features Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1497 - 1500  
  Keywords  
  Abstract Edges are caused by several imaging cues such as shadow, material and illumination transitions. Classification methods have been proposed which are solely based on photometric information, ignoring geometry to classify the physical nature of edges in images. In this paper, the aim is to present a novel strategy to handle both photometric and geometric information for edge classification. Photometric information is obtained through the use of quasi-invariants while geometric information is derived from the orientation and contrast of edges. Different combination frameworks are compared with a new principled approach that captures both information into the same descriptor. From large scale experiments on different datasets, it is shown that, in addition to photometric information, the geometry of edges is an important visual cue to distinguish between different edge types. It is concluded that by combining both cues the performance improves by more than 7% for shadows and highlights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ GGG2012b Serial 2142  
Permanent link to this record
 

 
Author Adela Barbulescu; Wenjuan Gong; Jordi Gonzalez; Thomas B. Moeslund; Xavier Roca edit   pdf
url  isbn
openurl 
  Title 3D Human Pose Estimation Using 2D Body Part Detectors Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2484 - 2487  
  Keywords  
  Abstract Automatic 3D reconstruction of human poses from monocular images is a challenging and popular topic in the computer vision community, which provides a wide range of applications in multiple areas. Solutions for 3D pose estimation involve various learning approaches, such as support vector machines and Gaussian processes, but many encounter difficulties in cluttered scenarios and require additional input data, such as silhouettes, or controlled camera settings. We present a framework that is capable of estimating the 3D pose of a person from single images or monocular image sequences without requiring background information and which is robust to camera variations. The framework models the non-linearity present in human pose estimation as it benefits from flexible learning approaches, including a highly customizable 2D detector. Results on the HumanEva benchmark show how they perform and influence the quality of the 3D pose estimates.  
  Address Tsubuka, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ BGG2012 Serial 2172  
Permanent link to this record
 

 
Author Ariel Amato edit  openurl
  Title Environment-Independent Moving Cast Shadow Suppression in Video Surveillance Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This thesis is devoted to moving shadows detection and suppression. Shadows could be defined as the parts of the scene that are not directly illuminated by a light source due to obstructing object or objects. Often, moving shadows in images sequences are undesirable since they could cause degradation of the expected results during processing of images for object detection, segmentation, scene surveillance or similar purposes. In this thesis first moving shadow detection methods are exhaustively overviewed. Beside the mentioned methods from literature and to compensate their limitations a new moving shadow detection method is proposed. It requires no prior knowledge about the scene, nor is it restricted to assumptions about specific scene structures. Furthermore, the technique can detect both achromatic and chromatic shadows even in the presence of camouflage that occurs when foreground regions are very similar in color to shadowed regions. The method exploits local color constancy properties due to reflectance suppression over shadowed regions. To detect shadowed regions in a scene the values of the background image are divided by values of the current frame in the RGB color space. In the thesis how this luminance ratio can be used to identify segments with low gradient constancy is shown, which in turn distinguish shadows from foreground. Experimental results on a collection of publicly available datasets illustrate the superior performance of the proposed method compared with the most sophisticated state-of-the-art shadow detection algorithms. These results show that the proposed approach is robust and accurate over a broad range of shadow types and challenging video conditions.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Mikhail Mozerov;Jordi Gonzalez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ Ama2012 Serial 2201  
Permanent link to this record
 

 
Author Noha Elfiky edit  openurl
  Title Compact, Adaptive and Discriminative Spatial Pyramids for Improved Object and Scene Classification Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The release of challenging datasets with a vast number of images, requires the development of efficient image representations and algorithms which are able to manipulate these large-scale datasets efficiently. Nowadays the Bag-of-Words (BoW) is the most successful approach in the context of object and scene classification tasks. However, its main drawback is the absence of the important spatial information. Spatial pyramids (SP) have been successfully applied to incorporate spatial information into BoW-based image representation. Observing the remarkable performance of spatial pyramids, their growing number of applications to a broad range of vision problems, and finally its geometry inclusion, a question can be asked what are the limits of spatial pyramids. Within the SP framework, the optimal way for obtaining an image spatial representation, which is able to cope with it’s most foremost shortcomings, concretely, it’s high dimensionality and the rigidity of the resulting image representation, still remains an active research domain. In summary, the main concern of this thesis is to search for the limits of spatial pyramids and try to figure out solutions for them.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ Elf2012 Serial 2202  
Permanent link to this record
 

 
Author Marco Pedersoli edit  openurl
  Title Hierarchical Multiresolution Models for fast Object Detection Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The ability to automatically detect and recognize objects in unconstrained images is becoming more and more critical: from security systems and autonomous robots, to smart phones and augmented reality, intelligent devices need to understand the meaning of images as a composition of semantic objects. This Thesis tackles the problem of fast object detection based on template models. Detection consists of searching for an object in an image by evaluating the similarity between a template model and an image region at each possible location and scale. In this work, we show that using a template model representation based on a multiple resolution hierarchy is an optimal choice that can lead to excellent detection accuracy and fast computation. We implement two different approaches that make use of a hierarchy of multiresolution models: a multiresolution cascade and a coarse-to-fine search. Also, we extend the coarse-to-fine search by introducing a deformable part-based model that achieves state-of-the-art results together with a very reduced computational cost. Finally, we specialize our approach to the challenging task of pedestrian detection from moving vehicles and show that the overall quality of the system outperforms previous works in terms of speed and accuracy.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ Ped2012 Serial 2203  
Permanent link to this record
 

 
Author Bhaskar Chakraborty edit  openurl
  Title Model free approach to human action recognition Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Automatic understanding of human activity and action is very important and challenging research area of Computer Vision with wide applications in video surveillance, motion analysis, virtual reality interfaces, video indexing, content based video retrieval, HCI and health care. This thesis presents a series of techniques to solve the problem of human action recognition in video. First approach towards this goal is based on a probabilistic optimization model of body parts using Hidden Markov Model. This strong model based approach is able to distinguish between similar actions by only considering the body parts having major contributions to the actions. In next approach, we apply a weak model based human detector and actions are represented by Bag-of-key poses model to capture the human pose changes during the actions. To tackle the problem of human action recognition in complex scenes, a selective spatio-temporal interest point (STIP) detector is proposed by using a mechanism similar to that of the non-classical receptive field inhibition that is exhibited by most oriented selective neuron in the primary visual cortex. An extension of the selective STIP detector is applied to multi-view action recognition system by introducing a novel 4D STIPs (3D space + time). Finally, we use our STIP detector on large scale continuous visual event recognition problem and propose a novel generalized max-margin Hough transformation framework for activity detection  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ Cha2012 Serial 2207  
Permanent link to this record
 

 
Author Josep M. Gonfaus edit  openurl
  Title Towards Deep Image Understanding: From pixels to semantics Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Understanding the content of the images is one of the greatest challenges of computer vision. Recognition of objects appearing in images, identifying and interpreting their actions are the main purposes of Image Understanding. This thesis seeks to identify what is present in a picture by categorizing and locating all the objects in the scene.
Images are composed by pixels, and one possibility consists of assigning to each pixel an object category, which is commonly known as semantic segmentation. By incorporating information as a contextual cue, we are able to resolve the ambiguity within categories at the pixel-level. We propose three levels of scale in order to resolve such ambiguity.
Another possibility to represent the objects is the object detection task. In this case, the aim is to recognize and localize the whole object by accurately placing a bounding box around it. We present two new approaches. The first one is focused on improving the object representation of deformable part models with the concept of factorized appearances. The second approach addresses the issue of reducing the computational cost for multi-class recognition. The results given have been validated on several commonly used datasets, reaching international recognition and state-of-the-art within the field
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Theo Gevers  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE Approved no  
  Call Number Admin @ si @ Gon2012 Serial 2208  
Permanent link to this record
 

 
Author Noha Elfiky; Fahad Shahbaz Khan; Joost Van de Weijer; Jordi Gonzalez edit   pdf
url  doi
openurl 
  Title Discriminative Compact Pyramids for Object and Scene Recognition Type Journal Article
  Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 4 Pages 1627-1636  
  Keywords  
  Abstract Spatial pyramids have been successfully applied to incorporating spatial information into bag-of-words based image representation. However, a major drawback is that it leads to high dimensional image representations. In this paper, we present a novel framework for obtaining compact pyramid representation. First, we investigate the usage of the divisive information theoretic feature clustering (DITC) algorithm in creating a compact pyramid representation. In many cases this method allows us to reduce the size of a high dimensional pyramid representation up to an order of magnitude with little or no loss in accuracy. Furthermore, comparison to clustering based on agglomerative information bottleneck (AIB) shows that our method obtains superior results at significantly lower computational costs. Moreover, we investigate the optimal combination of multiple features in the context of our compact pyramid representation. Finally, experiments show that the method can obtain state-of-the-art results on several challenging data sets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISE; CAT;CIC Approved no  
  Call Number Admin @ si @ EKW2012 Serial 1807  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: