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Abstract

Most successful approaches on scene recognition tend to efficiently combine

global image features with spatial local appearance and shape cues. On the

other hand, less attention has been devoted for studying spatial texture fea-

tures within scenes. Our method is based on the insight that scenes can be

seen as a composition of micro-texture patterns. This paper analyzes the role

of texture along with its spatial layout for scene recognition. However, one

main drawback of the resulting spatial representation is its huge dimensional-

ity. Hence, we propose a technique that addresses this problem by presenting

a compact Spatial Pyramid (SP) representation. The basis of our compact

representation, namely, Compact Adaptive Spatial Pyramid (CASP) consists

of a two-stages compression strategy. This strategy is based on the Agglom-

erative Information Bottleneck (AIB) theory for (i) compressing the least

informative SP features, and, (ii) automatically learning the most appropri-

ate shape for each category. Our method exceeds the state-of-the-art results

on several challenging scene recognition data sets.

Keywords: Scene Recognition, Spatial Pyramids, Texture, Dimensionality

Reduction, and Agglomerative Information Theory.
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1. Introduction

Scene recognition is one of the most appealing, yet challenging problems

in computer vision. Fig. 1 shows such kind of challenges, namely, illu-

mination changes, intra-class variabilities, scale variabilities, and inter-class

similarities. The goal is to identify an image as belonging to one of several

scene classes such as mountains, beaches, indoor-offices, etc.. Effective so-

lutions to this problem can be useful in many other applications, such as

detection [1, 2], action recognition [3], and content based image retrieval [4].

Approaches to scene recognition can be divided into two main categories.

(a) (b) (c) (d)

Figure 1: Scene recognition challenges are: (a) illumination changes, (b) intra-class vari-

abilities, (c) scale variabilities, and (d) inter-class similarities (in the example, river can

be easily confused with forest).

First, methods that use low-level features such as color, texture, etc. [5, 6].

Despite the good performance obtained using these approaches, they lack

an intermediate image description (such as the presence of the sky, grass, or

other semantic concepts) that can be extremely valuable in determining scene

types [7, 8, 9]. On the other hand, other techniques make use of intermediate

representations [10, 11, 12]. Towards this direction, the Bag-of-Words (BoW)

approach has been used to model scenes [13, 14, 15]. However, its foremost

shortcoming is the lack of spatial information. Recently, several approaches

considered the immense success of Spatial Pyramid (SP) [16, 17], due to its
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inclusion of important spatial information. For example, Bosch et. al. [17]

demonstrated how spatial appearance features benefit the scene recognition

task. Moreover, the work in [18, 19] showed the significance of fusing com-

plementary spatial shape, and appearance features along with global image

cues. However, much less attention has been devoted to studying the texture

features within this context. To this end, we propose three contributions

over the standard SP:

• The first contribution is concerned with, the exploration of the spatial

texture features along with the shape, and appearance cues for scene

recognition. Our novel descriptor is mainly inspired by two sources:

(i) the Pyramid of Histograms of Oriented Gradients (PHOG) descrip-

tor [18], and (ii) the Histogram of Three Patch Local Binary Patterns

(TPLBP) [20, 21], which has been recently proposed to encode texture

data in both static images and videos.

• The second contribution is addressing the huge dimensional histograms

generated using the standard SP scheme, while going towards the finest

level of representation. We address this problem by finding a more com-

pact SP representation that maintains or even improves their original

counterparts.

• The third contribution is regarding the rigid SP assumption proposed

by Lazebnik et. al. [16], that suits each category. We propose a

method for learning the best partition for each category. The resulting

SP shapes have the advantages of being compact, while improving the

original SP performance.
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We refer to the resulting representation of combining the second and third

contributions as Compact Adaptive Spatial Pyramid (CASP). This powerful

representation helps in overcoming the common scene recognition challenges,

shown in Fig. 1, and, consequently, improving the scene recognition perfor-

mance.

Outline This paper is organized as follows: next section proposes our

novel texture descriptor. Section 3 briefly explains the basic idea of Spatial

Pyramids (SP), and discusses how the Agglomerative Information Bottleneck

(AIB) theory is extended for building our novel Compact Adaptive Spatial

Pyramid (CASP). Section 4 describes the datasets used in the experiments.

Section 5 shows, and compares the experimental results with the state-of-

the-art. Finally, section 6 presents the main conclusions of this paper, and

shows the most important avenues of future research.

2. Pyramids of Colored Three-Patch Local Binary Patterns

Our first contribution exploits the spatial texture features for the task of

scene recognition. We propose using our texture representation that retains

both local image texture, and its spatial layout. This novel representation is

able to capture the large illumination variabilities illustrated in Fig.1(a).

Our descriptor is an extension of the Local Binary Patterns (LBP), which

has been shown to be one of the best performing texture descriptors [22, 23,

24, 21]. LBP has been successfully used in various applications, such as face

recognition [23], background subtraction [25], object recognition [26], interest

regions description [24], and action recognition [21]. It also has various prop-

erties that favor its usage such as, its tolerance against illumination changes,
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and its ability to discriminate a large range of rotated textures efficiently.

Moreover, its computational simplicity, and efficiency makes it suitable for

the scene recognition task.

The next sections describe our novel spatial texture descriptor: First, we

give a brief survey on LBP. We further examine the incorporation of color

[27, 17, 28] and spatial information to our final texture representation.

2.1. Local Binary Patterns

LBP descriptor [22], and its variants use short binary strings to encode

properties of the local micro-texture around each pixel. LBP simplest form

works as follows: For a 3 × 3 neighborhood, (i) the value of each pixel is

compared with the central pixel’s intensity value, and (ii) the result from

each pixel is then concatenated to form an 8 bits binary descriptor.

Recently, significant works introduce variants of LBP descriptors, which

are based on patch statistics, namely: Center-Symmetric LBP (CSLBP)

[24], Three-Patch LBP (TPLBP) [20], and Four-Patch LBP (FPLBP) [20].

CSLBP encodes at each pixel the gradient signs at the pixel at four different

angles. TPLBP and FPLBP encode the similarities between neighboring

patches of pixels, thus capturing information which is complementary to

pixel-based descriptors.

2.2. Colored Three-Patch Local-Binary Patterns

In this section, we propose to fuse TPLBP with complementary color

information. We refer to it as Colored TPLBP (C-TPLBP). To compute C-

TPLBP, we extract the TPLBP descriptor for each channel of the examined

color spaces. Consequently, a dictionary is created for each color-texture

5



channel. The generated histograms of each color-texture channel are then

concatenated. This results in a (vocabularysize× 3) dimensional histogram

for the standard BoW representation.

In particular, we examine two standard color spaces, namely, Opponent

Color (OppC) [28, 29] and HSV. OppC is defined as:

O1 =
R−G√

2
, O2 =

R +G− 2B√
6

, O3 =
R +G+B√

3
(1)

So the fusion of OppC with TPLBP is done as follows1:

C-TPLBP(OppC) = TPLBP(O1) + TPLBP(O2) + TPLBP(O3). (2)

Similarly, fusing TPLBP with HSV is done as:

C-TPLBP(HSV) = TPLBP(H) + TPLBP(S) + TPLBP(V). (3)

2.3. Pyramids of Colored TPLBP

Finally, in order to incorporate the spatial information, we follow the

scheme proposed by [16]. In particular, we apply the standard spatial pyra-

mid upon each color-texture channel, as shown in Fig. 2. This leads to

a (vocabularysize × 21) dimensional histogram per channel. The resulting

descriptor is referred to as Pyramids of C-TPLBP (PC-TPLBP).

The main drawback of the resulting spatial representation, is its high

dimensionality. In the following section we will introduce our CASP approach

1The + operator indicates that the histograms of each colored-texture channel are

concatenated.
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Figure 2: Given the dictionaries built for each colored-texture channel, they are concate-

nated using a (1 × 1) + (2 × 2) + (4 × 4) = 21 image representation. This representation

is denoted to as PC-TPLBP resulting in a 21× (vocsize) dimensional histogram.

for reducing the SP dimensionality of the final histogram, while preserving

its original performance.

3. Compact and Adaptive Spatial Pyramids

SP proposed by [16] is a simple, and computationally efficient extension

of the order-less BoW. This technique works by representing an image us-

ing weighted multi-resolution histograms. These histograms are obtained

by repeatedly sub-dividing the image into increasingly finer sub-regions by

doubling the number of divisions on each axis direction and computing his-

tograms of features over the resulting sub-regions.

Matches within each sub-region are then determined. Matches found at

finer resolutions are closer to each other in the image space, and are therefore
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(a) l0 (b) l1 (c) l2

Figure 3: Example of SP high dimensionality problem for a three-level SP. l0, l1 and l2

refer to the first, second and third SP levels, respectively.

more heavily weighted. For each sub-region, a histogram of the matches is

created. When histograms for all regions at all levels are created, they are

concatenated to form the final image representation. Fig. 3, shows an exam-

ple of a three level SP. This results in a (21 × vocabularysize) dimensional

histogram. This clarifies the SP high dimensional problem, and hence, the

huge memory usage during the classification stage.

In the next section, we give a brief explanation about the Agglomerative

Information Bottleneck (AIB) algorithm. Finally, we explain our two-stages

SP compression techniques, namely, feature and block compression, respec-

tively. We refer to our two-stages SP compression approach as Compact and

Adaptive Spatial Pyramid (CASP).

3.1. Agglomerative Information Bottleneck Theory

In our work, we aim at tailoring the high dimensional SP histograms

to discriminate between the different categories. Towards this objective,

several works address the problem of compact vocabulary construction [30,

31, 32]. In particular, AIB [31, 33] provides a guideline for the compression
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of vocabularies.

The main goal of AIB is reducing the dictionary of visual words X re-

quired for representing the categories Y . Using terms from information the-

ory, this means generating a compact set of words X̂ from the original dic-

tionary X so that the loss of mutual information:

I(X;Y ) = DKL [p(x, y)‖p(x)p(y)] , (4)

to the categories Y is minimal [33, 31]. The functional DKL [p‖q] is the

Kullback-Leiber divergence, and the joint distribution p(x, y) is estimated

from the training set by counting the number of occurrences of each visual

word x in each category y.

The information about x captured by y can be measured by the mutual

information,

I(X, Y ) =
∑
i

∑
t

p(xi, yt)log
p(xi, yt)

p(xi)p(yt)
, (5)

which measures the amount of information (discriminative power) I that one

random variable carries about the other.

The merging of visual words is achieved by applying the AIB method

[33]. In essence, AIB is applied by iteratively merging the two visual words

xi and xj into x̂ that causes the smallest decrease in the original mutual

information.

3.2. Feature Compression

The usage of non-optimized dictionaries for building SP results in its

huge dimensional histograms. Our first aim is to optimize the dictionaries

in a way that maintains the original SP performance. For this purpose, we
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(a) (DirectComp). (b) (WholeComp).

(c) (LevelComp).

Figure 4: Two highlighted words are the most similar ones to be merged (see text).

investigate the direct usage of the original AIB algorithm as proposed in [31]

for the task of SP compression. We refer to this scheme as DirectComp.

In DirectComp strategy, two features in any SP region can be suggested

to be fused. Since, these candidate features can be located at different SP

regions, then different vocabularies for each SP region can be obtained, as

shown in Fig. 4(a). Hence, discarding the important spatial property of SP.

Consequently, we propose two alternative spatial feature compression

strategies, which we refer to them as WholeComp and LevelComp. In Whole-

Comp strategy, we propose to remove the spatially least informative features

within the whole SP levels simultaneously. Hence, the occurrence of a spatial

word (xsp) at index i over a three-level SP is measured as:

p(xspi) =
J=21∑
j=1

p(xi+(j−1)×v), (6)

where, j is the index of the current SP region, J is the total number of

regions within a three-level SP and v is the vocabulary size. Fig. 4(b) shows
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an example of applying our WholeComp compression scheme on a two-level

SP : where the original 5 features per region are reduced to 4 features for all

the regions of the pyramid.

On the other hand, for LevelComp compression strategy, we propose to

learn the most compact vocabulary x̂sp that best suits each SP level by

eliminating the occurrences of the least informative features from each specific

SP level l, as shown in Fig. 4(c). For instance, for a three level pyramid,

we first eliminate from its third level (i.e., l = 2) the least informative visual

word from all its sixteen spatial occurrences. Subsequently, we eliminate

from its second level (i.e., l = 1) the least informative visual word from all

its four spatial occurrences, etc. To this end, the probability of a spatial

visual word p(xspi) at level l is then computed as follows:

p(xspi) =

 p(xi) if l = 0.∑22l

j=1 p(x(i+j×v)) if l > 0,
(7)

Where, i indicates the index of the spatial word xspi , j indicates a specific

region index at level l and v is the vocabulary size. Finally, we use the in-

formation content criteria to measure the discriminative power of the spatial

vocabulary Xsp as follows:

I(Xsp, Y ) =
∑
i

∑
t

p(xspi , yt)log
p(xspi , yt)

p(xspi)p(yt)
. (8)

3.3. Block Compression

Our last contribution, is concerned with the assumption that the hier-

archical approach proposed by [16] with a set of regular grids of increasing

density is inappropriate for scenes. In this section, we propose a method
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(a) (b) (c)

Figure 5: Block Compression Example. (a) Given an input (3× 3) block image. (b) Each

block is represented by a node in a decision tree. (c) We calculate the discriminative power

of each possible merging. See text for details.

for learning a proper spatial split-up that best suits each category. For this

purpose, we adopt the original AIB such that we relate each block (bk) in

level (l) with the data set categories. The probability p(bk) of each block (bk)

is formulated as:

p(bk) =
22l∑
k=1

ks∑
v=(k−1)s+1

p(x̂spv), (9)

where s is the size of the compact vocabulary, k indicates the current block

index within level l and v refers to the current vocabulary index within block

k. In essence, p(bk) is calculated by summing up the probabilities of the

compact vocabularies they contain. In order to fuse the least informative

blocks, we evaluate the discriminative power of each block as follows:

I(X, Y ) =
∑
k

∑
t

p(bk, yt)log
p(bk, yt)

p(bk)p(yt)
. (10)

Fig. 5 visualizes our block fusion approach. The Decision Tree (DT)

shown in Fig. 5(b) represents our input image in Fig. 5(a). Each node
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in DT is equivalent to an image block, while arrows indicate neighboring

blocks that are candidates for fusion. Each block can be merged with either

its right or its bottom neighboring block (if any). Initially, all the adjacent

blocks indicated by arrows are considered for fusion. However, the actual

fusion occurred is between b3, and b6 as it caused the minimum loss in dis-

criminative power, see Fig. 5(c). As a result, b3 is updated to b(3,6), and

the neighbors of both b3 and b6 are inherited (i.e. b2, b5, b9). Thus, a di-

mensionality reduction is achieved by removing b6 from DT. This iterative

procedure results in generating adaptive shapes, and it terminates when all

blocks are merged. Hence, it converges when it reaches the standard BoW

representation. Fig. 8 shows a visual explanation for the whole process.

Lastly, we propose two approaches for learning the adaptive pyramid

shapes, namely Global Pyramid Shapes (GPS) and Class-specific Pyramid

Shapes (CPS). In GPS, instead of having a fixed rigid shape for representing

any task as in [16], we propose to learn the adaptive pyramid shape that

best suits all the data set categories. For CPS, instead of learning the adap-

tive shape across all the data set categories, we propose learning the most

suitable shape for each category separately by optimizing the classification

performance for each category versus the rest.

Fig. 6 shows an example of learning the most suitable shape using the

proposed approaches. Fig. 6(a), shows the globally learned shape that suits

all the categories. On the other hand, Fig. 6(b) shows the learned shape

specifically tailored for the inside city category. This shows the importance

of developing specific image representations for the task at hand.
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(a) (b)

Figure 6: (a) Our Global Compact, Adaptive Spatial Pyramid (CASP) learning scheme

converges to the Ad-Hoc SP proposed in [34], vs. (b) Our Class-Specific (CASP).

4. Experimental Setup

In this section, we describe the data sets and the implementation details

used within our experiments.

4.1. Data Sets

We use three standard scene recognition data sets are used to evaluate

our approach:

• Vogel and Schiele (VS) data set [9] includes 7 natural scenes consisting

of 6 categories: 142 coasts, 111 rivers/lakes, 103 forests, 131 plains, 179

mountains, and 34 sky/clouds. Every scene category is characterized

by a high degree of diversity, and potential ambiguities.

• Oliva and Torralba (OT) data set [35] includes 2688 images classified

as 8 categories: 360 coats, 328 forest, 374 mountain, 410 open country,

260 high way, 308 inside of cities, 356 tall buildings, 292 streets.

• Quattoni and Torralba (QuT) indoor scene data set [19] is a recent

data set characterized by 67 indoor categories with high intra-class

variations, since the classification of indoor scenes are very challenging.
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4.2. Implementation Details

In this section, we discuss the implementation details. For the purpose of

classification, we use a multiple-scale grid detector. In the feature extraction

step, we use various state of the art features. We use GIST descriptor [35]

to represent the scene semantics. We use two standard color spaces, namely,

HSV, and opponent (OppC) [28, 29] for obtaining color information. For

capturing texture aspects, we use TPLBP descriptor [20]. We use both Op-

ponent SIFT [28], and PHOG [18] descriptors for capturing both appearance,

and shape aspects, respectively. For the vocabulary creation, we use a stan-

dard K-means for constructing vocabularies of size 1.5k as in [17]. We use a

three-level SP, which results in (1.5k × 21 = 31.5k) dimensional histogram.

Finally, we use a non-linear Support Vector Machine (SVM) classifier with

χ2 kernel.

To evaluate the classification performance, we use the mean of the diag-

onal values of the confusion matrix. This score is averaged over 10 trials,

where training and testing samples are replaced randomly. For VS, and OT

data sets, we follow the same learning protocol proposed in [36]. Hence, the

data sets are split randomly into two separate sets of images, half for training

and half for testing. From the training set, we randomly select 100 images

to form a validation set.

5. Experiments

In this section, we provide experimental results to validate our proposed

contributions. In section 5.1, we evaluate the performance of our proposed

PC-TPLBP descriptor against several baseline LBP-based texture descrip-
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tors. In section 5.2, we demonstrate the performance of the proposed pyramid

compression approaches. In section 5.3, experiments using multiple com-

plementary spatial cues along with the proposed compression method are

presented. Finally, in section 5.4, we compare our results with several state-

of-the-art algorithms.

5.1. Evaluation of PC-TPLBP

In this section, we investigate the effect of texture features for scene recog-

nition. We first compare the different LBP descriptors discussed in Sec. 2.1

over OT, and VS data sets. We also report the performance score of the

Gabor descriptor, as a baseline.

For both OT and VS data sets, the classification scores are improved

by 10.6% and 9.5% respectively based on CSLBP descriptor relative to the

baseline. Using FPLBP descriptor, leads to a relative improvement of 15.0%

and 14.3% on both data sets. Finally, TPLBP leads to a major relative

improvement up to 25.8%, as shown in Table 1.

Table 1, also shows the importance of fusing color information with

TPLBP. Compared to TPLBP, the combination of TPLBP with oppC (de-

noted as C-TPLBP in OppC in Table 1) yields a relative improvement of

1.0% and 0.7% on both OT and VS data sets, respectively. On the other

hand, the combination of TPLBP with HSV (denoted as C-TPLBP in HSV )

yields a relative performance increase up to 2.4% and 3.0% on both data sets.

This demonstrates the importance of C-TPLBP over TPLBP. However, less

gain is obtained using C-TPLBP in OppC.

Lastly, we examine the effect of incorporating spatial information to C-

TPLBP descriptor. For both OT and VS data sets, PC-TPLBP improves
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the performance by around 3.0% and 2.5% respectively, relative to C-TPLBP.

We then conclude that both color, and spatial information cues play an

important role for scene recognition.

Method OT VS

Gabor 66.0 65.2

CSLBP 73.0 (+10.9%) 71.4 (+9.5%)

FPLBP 76.0 (+15.0%) 74.5 (+14.3%)

TPLBP 83.0 (+25.8%) 82.0 (+25.8%)

C-TPLBP in OppC 83.8 (+1.0%) 82.6 (+0.7%)

C-TPLBP in HSV 85.0 (+2.4%) 84.5 (+3.0%)

PC-TPLBP 87.0 (+3.0%) 86.6 (+2.5%)

Table 1: Classification Score using different LBP operators. TBLBP improves by 25.8%

relative to the baseline “Gabor”. colored-TPLBP improves by 2.4% relative to the best

performing texture descriptor “TPLBP”. PC-TPLBP improves by 3.0% relative to best

performing colored-TPLBP descriptor, see text.

5.2. Evaluation of CASP with PC-TPLBP

In this section, we demonstrate the benefits of our two-stages compression

strategy. Based on the empirical evaluation, we determined the best com-

pression scheme over OT data set, and continued the rest of the experiments

using the same configuration.
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5.2.1. Evaluation of Feature Compression with PC-TPLBP

As a baseline, we directly apply the original AIB on our PC-TPLBP (de-

noted as DirectComp). We then examine our feature compression approaches

described in Sec. 3.2), namely: WholeComp, and LevelComp.

Table 2 shows a major loss in the performance by around 5.7% (relative to

the original SP performance) by using the DirectComp scheme. We attribute

this performance degradation to the fact that AIB is greedy in its nature.

When AIB suggests fusing two features, it just looks greedily all over the SP

features which minimizes the overall loss in its discriminative power. As ex-

plained earlier, these two candidate features can be from different SP regions,

which in turn leads to obtaining different vocabularies within the SP regions.

Hence, discarding the important spatial property of SPs. Subsequently, this

results in dropping the final SP performance.

The quantitative results in Table 2 also show that both of our spatially

enhanced feature compression schemes outperform the DirectComp method.

A minor performance loss by around 2.1% (relative to the original SP per-

formance) is obtained by using our WholeComp compression scheme. Level-

Comp is the best performing scheme; as it preserves the original SP perfor-

mance of 87.0%, while reducing the dimensionality significantly.

Moreover, for LevelComp, we show that there is a strong relation between

the vocabulary size, and the SP level of concern, see Fig. (7). In other words,

the finer the SP level, the fewer the number of features required to represent

it, while maintaining its accuracy. Hence, for a three-level SP a vocabulary

of size 0.6k is sufficient. While, for a two-level SP a vocabulary of size 0.8k

is needed. However, for coarser BoW representation, a vocabulary of size 1k
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Method Size Score

Original 31.5k 87.0

DirectComp [31] 14k 82.0 (−5.7%)

WholeComp 14k 85.2 (−2.1%)

LevelComp 14k 87.0 (±0%)

GPS 6k 89.5 (+2.9%)

CPS < 6k 90.6 (+4.1%)

Table 2: Classification Score on OT data set to compress a SP of size 31.5k to a 14k one

using PC − TPLBP , see text for details.
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Figure 7: Learning specific vocabulary compression per SP level. See text for details.

is required.

5.2.2. Evaluation of Block Compression with PC-TPLBP

In this section, we examine the usage of our block compression scheme

proposed in Sec. 3.3. The quantitative results reported in Table 2 show the

successfulness of our proposed scheme, in terms of accuracy and dimension-

ality reduction.

GPS reduces the SP dimensionality up to 6k (1k+0.8k×4+0.6k×3), while
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improving the original SP performance by around 2.9%. Fig. (8) shows an

example of the adaptive shapes obtained after each iteration. Interestingly,

our approach recommends the usage of the horizontal 3× 1 shape for scene

recognition. Thus, theoretically justifying the better performance obtained

using the ad-hoc horizontal 3× 1 SP proposed by Marszalek et al. [34] over

the standard SP proposed by Lazebnik et al. [16]. We also demonstrate in

Fig. 8(j) the convergence of our approach.

The last row in Table 2 shows that the performance of CPS scheme im-

proves over GPS. Moreover, a significant performance improvement of 4.1%

is achieved relative to the original SP performance. For dimensionality com-

parison, we use the notion < 6k to indicate the upper bound of CPS dimen-

sionality, since it varies per category, see Fig. 9. For instance, for the coast

category, we obtain a 6k-dimensional histogram (1k+[0.8k×4]+ [0.6k×3]).

While, for the forest category, a 5.4k-dimensional histogram (1k + [0.8k ×

4] + [0.6k × 2]) is obtained. Fig. (9) shows the learned shapes obtained for

each category using our CPS scheme.

In conclusion, our feature, and block compression stages, which we refer

to them as CASP are both necessary for obtaining compact, yet efficient SP.

5.3. Combining Multiple Cues using CASP

In this section, we investigate the importance of fusing spatial texture,

shape, and appearance features besides the global image cues using our CASP

representation. To this end, we use CASP of PC-TPLBP for capturing

texture aspects. For appearance features, we use CASP of Opponent-SIFT

features (denoted as PC-SIFT). For shape features, we extend the PHOG

descriptor to incorporate color information motivated by [17, 28, 37, 38].
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(a) (b)

(c) I=87.7 (d) I=88.1 (e) I=88.5 (f) I=89.3

(g) I=89.5 (h) I=91.1 (i) I=89.0 (j) I=86.4

Figure 8: Top left grid in blue represents the (3 × 3) grid for an input image. Our GPS

fuses the most similar blocks (depicted as red). The scores (I) are optimized over all the

categories. Fig. 8(h) shows the successfulness of the 3× 1 shape for scene recognition.

Table 3 demonstrates that coloring PHOG is beneficial for our task. Com-

pared to PHOG, a relative performance improvement by 2.8% and 2.6% on

OT and VS data sets, respectively, is obtained by fusing PHOG with OppC.

However, a major performance improvement of 4.7% and 5.6% is achieved by

fusing PHOG with HSV (denoted as PC-HOG). The results also show that

our CASP compression approach (denoted as CASP-CHOG) improves the

relative performance by 7.2% and 8.2% for both data sets. Similar behavior

is obtained for appearance features, where a performance improvement of

2.0% and 2.1% is obtained by using our CASP compression scheme (denoted

as CASP-CSIFT). Table 3 also shows the importance of fusing CASPs of
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(a) Coast. (b) Forest. (c) Open Country.

(d) Mountains. (e) Inside City. (f) Street.

(g) Tall Building. (h) Highway.

Figure 9: Examples of our CPS adaptive shapes learned over OT data set.

shape, and appearance cues. Compared with the best performing single de-

scriptor (PC-SIFT), a significant improvement of 3.6% and 3.5% is achieved

on both data sets.

In Table 4, we use the notion Local Descriptors (LD) to refer to CASP

that uses pixel-based statistics features (PC-HOG, and PC-SIFT). Further-

more, we use the notion Regional Descriptors (RD) to refer to CASP that

uses patch-based statistics features (PC-TPLBP). Lastly, we use the notion

Global Descriptors (GD) for features that capture the global image seman-

tics (GIST). The quantitative results in Table 4 illustrate the importance of

combining (i) GD with LD as demonstrated in [19], (ii) RD with GD, (iii)

RD with LD using our CASPs representation, and, finally (iv) GD, RD, and

LD. Table 4 also shows that the CPS learning scheme improves the perfor-
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Method OT VS

Size Score Size Score

PHOG [18] 31.5k 79.5 31.5k 78.2

PHOG + OppC 31.5k 81.7 (+2.8%) 31.5k 80.2 (+2.6%)

PHOG + HSV (PC-HOG) 31.5k 83.2 (+4.7%) 31.5k 82.6 (+5.6%)

CASP-CHOG 6k 85.2 (+7.2%) 6k 84.6 (+8.2%)

PC-SIFT [28] 31.5k 88.4 31.5k 87.7

CASP-CSIFT 6k 90.2 (+2.0%) 6k 89.5 (+2.1%)

CASP-CHOG&CSIFT 12k 91.6 (+3.6%) 12k 90.8(+3.5%)

Table 3: Classification scores of (i) Fusing PHOG with HSV (denoted as PC-HOG) out-

performs that of OppC. (ii) Combining CASPs of PC-HOG, and PC-SIFT.

mance over the GPS by 2%, while reducing the dimensionality to less than

< 18.4k.

5.4. Comparison with State-of-the-Art

In this section, we evaluate the performance of our approach with state-

of-the-art methods on OT, VS, and QuT data sets. Table 5, summarizes

and compares these results. For OT, our best score using our approach

which exploits the fusion of complementary CASPs of (LD + RD + GD) is

97.4%. The obtained result excels state-of-the-art score 92.8% on this data

set [15, 16, 17, 35]. For VS data set, we achieve a score of 96.2%, which

outperforms the best reported result 90.3% on this data set [16, 17, 9]. In

Indoor67, our best score is 48.9%, which exceeds state-of-the-art score 45.5%

for this data set [39].
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Features for CASP OT VS

Size Score Size Score

GD 0.4k 83.7 0.4k 82.9

RD 6k 89.5 6k 88.8

LD 12k 91.6 12k 90.8

GD + RD 6.4k 91.0 6.4k 90.2

GD + LD 12.4k 92.8 12.4k 92.0

LD + RD 18k 93.5 18k 92.5

GPS with LD+RD+GD 18.4k 95.2 18.4k 94.2

CPS with LD+RD+GD < 18.4k 97.4 < 18.4k 96.2

Table 4: Experimental results with CASP demonstrate that combining shape, appearance

(LD), texture (RD) with global cues (GD) improves the performance significantly. See

text for details.

Method OT VS QuT

Vogel et al.[9] - 75.1 -

Oliva et al. [35] 83.7 - -

Bosch et al. [17] 86.6 85.7 -

Perina et al. [15] 92.8* 90.3* -

Quattoni et al. [19] - - 25.0

Nakayama at al. [39] - - 45.5*

CPS with LD+RD+GD 97.4 96.2 48.9

Table 5: Comparison with state-of-the-art. * indicates the best reported state-of-the-art

results.
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6. Conclusion and Future Work

In this paper, we proposed a novel and efficient texture descriptor based

on patch-based texture features TPLBP. For this purpose, we incorporated

both color information C-TPLBP, and spatial information PC-TPLBP to

TPLBP.

Furthermore, we addressed the high dimensionality problem of the gen-

erated SP histograms. We introduced a novel SP compression approach,

which works on two stages. The first compression stage is done within the

SP features. We eliminated the spatially least informative features for each

SP level. We also showed that there is a strong relation between the compact

vocabulary size, and the SP level in concern: the finer the level, the fewer

the required words for representing it. The second compression stage is done

within the blocks of each level. We further introduced two alternative ap-

proaches, namely, GPS and CPS for learning the best SP block partitioning.

Regarding GPS scheme, we justified theoretically the better performance

of the ad-hoc horizontal h3 × 1 pyramid [34] over the traditional one [16]

for the task of scene recognition. When the CPS scheme is considered, the

resulting CASP representation maintains the performance of their original

counterparts, while reducing the dimensionality significantly.

Finally, we showed the importance of combining the complementary patch-

based texture features (regional) with the pixel-based shape and appearance

ones (local). In addition, we investigated the effect of fusing global image

cues along with regional, and local ones, which resulted in improving the

overall performance. Consequently, we conclude that CASP-based comple-

mentary descriptors, together with class-specific learning are all important
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for obtaining good performance. We evaluated the proposed framework on

scene recognition task, and obtained state-of-the-art results on several scene

recognition benchmark data sets.

For future work we are interested in applying CASPs to the task of BoW-

based object detection [40, 41]. The application of BoW-based detection has

been advanced due to the efficient sub-window search (ESS) algorithm pro-

posed by Lampert et al. [40]. The usage of compact discriminative SPs to

this application could help in obtaining faster detection methods without a

significant loss in accuracy. Another line of future research includes inves-

tigating the application of our approach to video scenes, complementary to

motion features which show excellent results recently [42, 43]. Therefore, we

expect that combining the strengths of both methods will lead to further

improvements.
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