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Abstract 

 
    Automatic 3D reconstruction of human poses from 

monocular images is a challenging and popular topic 

in the computer vision community, which provides a 

wide range of applications in multiple areas. Solutions 

for 3D pose estimation involve various learning 

approaches, such as support vector machines and 

Gaussian processes, but many encounter difficulties in 

cluttered scenarios and require additional input data, 

such as silhouettes, or controlled camera settings.  

     We present a framework that is capable of 

estimating the 3D pose of a person from single images 

or monocular image sequences without requiring 

background information and which is robust to camera 

variations. The framework models the non-linearity 

present in human pose estimation as it benefits from 

flexible learning approaches, including a highly 

customizable 2D detector. Results on the HumanEva 

benchmark show how they perform and influence the 

quality of the 3D pose estimates. 

 

 

1. Introduction 

 
     3D human pose estimation from monocular images 

represents an important and top researched subject in 

the computer vision community due to its challenging 

nature and widespread applications, ranging from 

advanced human computer interaction, smart video 

surveillance to arts and entertainment industry. The 

difficulty of the topic resides in loss of depth 

information that occurs during 3D to 2D space 

projection. Thus, a wide set of approaches have been 

proposed to tackle the problem of 3D configuration 

recovery from monocular images. 

    Due to the 2D-3D ambiguity, many approaches rely 

on  well-defined  laboratory  conditions and  are based 
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on additional information such as silhouettes or edge-

maps obtained for example from background 

subtraction methods [1, 2, 3, 4]. However, realistic 

scenarios present highly articulated human poses 

affected by self-occlusion, background clutter and 

camera motion, requiring more complex learning 

approaches. 

    A particular class of learning approaches use direct 

mapping methods from image features such as grids of 

local gradient orientation histograms, interest points, 

image segmentations to 3D poses [5, 6, 7, 8]. Another 

class of approaches maps the image features to 2D 

parts and then uses modeling or learning approaches to 

map these to 3D poses [9, 10]. Among these learning 

approaches, the most used ones are support vector 

machines, relevance vector machines and Gaussian 

processes. In [10] a comparison is presented between 

modeling and learning approaches in estimating 3D 

poses from available 2D data, using geometrical 

reconstruction and Gaussian processes.  

This paper describes a two-stage framework which 

recovers 3D poses without requiring background 

information or static cameras. Image features are 

mapped to 2D poses using a flexible mixture model 

which captures co-occurrence relations between body 

parts, while 3D poses are estimated using a Gaussian 

process regressor. Experiments are conducted 

systematically on the HumanEva benchmark, 

comparing the 3D estimates based on different 

methods of mapping the image features to Gaussian 

process inputs. 

 

 2. Detector of 2D Poses 

 
 The dominant approach towards 2D human pose 

estimation implies articulated models in which parts 

are described by pixel location and orientation. The 

approach used by Ramanan [11] introduces a model 

based on a mixture of non-oriented pictorial structures. 



The main advantages of using the articulated mixture 

model consist in the fact that it is highly customizable, 

using a variable number of body parts, and that it 

reflects a large variability of poses and appearances 

without requiring background or temporal information. 

Also, it outperforms state-of-the-art 2D detectors 

while requiring less processing time. The next sections 

describe the model proposed in [11]:   

 

2.1. Part-based Model for Human Detection  
 

     The mixture model implies mixtures of parts or part 

types for each body part, in our case spanning different 

orientations and modeling the implied correlations. 

The body model can be associated with a graph 

𝐺 = (𝑉, 𝐸)  in which nodes are represented by body 

parts and edges connect parts with strong relations. 

      Similar to the star-structured part-based model in 

[3], this mixture model involves a set of filters that are 

applied to a HOG feature map [12] extracted from the 

analyzed image. A configuration of parts for an n-part 

model specifies which part type is used from each 

mixture and its relative location. The score of a 

configuration of parts is computed according to three 

model components: co-occurrence, appearance and 

deformation [11]: 

 

          𝑆 𝐼, 𝑝, 𝑡 =  𝑏𝑖
𝑡𝑖

𝑖∈𝑉 +  𝑤𝑖
𝑡𝑖 ∙ 𝛷 𝐼, 𝑝𝑖 𝑖∈𝑉 +

 𝑤𝑖𝑗
𝑡𝑖 ∙ 𝛹 𝑝𝑖 − 𝑝𝑗  𝑖 ,𝑗 ∈𝐸                                                   (1)    

 

     where the first term favors certain part type 

associations, the second term expresses the local 

appearance score by assigning weight templates 

associated to part i and part-type 𝑡𝑖  to certain locations 

𝑝𝑖 , described by the extracted HOG descriptor, and the 

third term expresses the deformation score by 

assessing the part-type pair assignment parameters and 

the relative location between connected parts 𝑖 and 𝑗.  
      As the model described is highly customizable, 

experiments have been deployed as to find a more 

efficient model structure by varying the number of 

part-types and mixtures. A full-body 26-part model 

(Figure 1) is chosen, as it shows increased 

performance due to the capture of additional 

orientation. 

               

2.2. Inference and Learning 
 

       Inference using the mixture model described is 

obtained by retrieving the highest-scoring 

configuration, precisely by maximizing S(I, p, t) (1) 

over all parts and part-types. Building the associated 

relational graph G as a tree allows for efficient 

inference with dynamic programming.  

The solution used for training a model which 

generates high scores and outputs a set of parameters 

containing limb locations is a structural SVM, leading 

to a problem of quadratic programming (QP), which in 

this case is solved using dual coordinate-descent.  

 

 
 

Figure 1. Person detected using a 26-part 

model, highlighting body part locations with 

circles. The upper row presents successful 

detections and the lower row presents limb 

misdetections. 
 

Although the detector covers a wide variability of 

articulated poses, there are situations of limb 

misdetection, generated by self-occlusion, double-

counting phenomena or background clutter. 

 

3. Estimation of 3D Poses 

 

      Currently, Gaussian processes regression 

represents the most widespread learning method used 

in pose estimation, proving to be an effective approach 

for tackling the 2D to 3D mapping problem [5]. Given 

a prediction problem, Gaussian processes can be 

considered as a fine tool that extends a multivariate 

Gaussian distribution of the training data and which, 

using a correlation between observations and test data, 

maps the test data to new estimates. In our case, the 

input data is represented by the normalized and re-

projected 2D body-part coordinates provided by the 

previously described detector and the output is 

represented by 3D pose estimates as direction cosines 

of limb orientations. 



3.1. 3D pose representation 

 
     Considering the fact that the regressor outputs 3D 

poses, a robust representation is needed for the human 

pose. As training time is also an important factor, a 

smaller dimension representation is desirable. The 

human body is represented by a stick figure model 

composed of 13 body parts. As described in [13], a 

robust and efficient manner of representing 3D body 

limbs is the use of direction cosines. The angles of the 

limbs are considered with respect to a local coordinate 

system, fixed in the hip, with the y axis given by the 

torso, the z axis given by the hip line pointing from the 

left to right hip and the x axis given by the direction of 

their cross product.  

      The output is represented as a 36-dimensional 

vector: 

 
𝑣 =  cos𝜃1

𝑥 , cos𝜃1
𝑦

, cos𝜃1
𝑧 , … , cos𝜃12

𝑥 , cos𝜃12
𝑦

, cos𝜃12
𝑧   

(2) 
       

      where 𝜃𝑙
𝑥 , 𝜃𝑙

𝑦
, 𝜃𝑙

𝑧  represent the angles formed by a 

limb with the respective axes of the coordinate system. 

The use of direction cosines is robust and easily 

treatable as it prevents singular positions and 

discontinuities of angle values. 

 

3.2. Gaussian process regression 

 
     Using Gaussian processes for prediction problems 

can be regarded as defining a probability distribution 

over functions, such that inference is defined in the 

function space-view. The training data observations 

𝑦 = {𝑦1 , … , 𝑦𝑛}  are considered samples from the n-

variate Gaussian distribution that is associated to a 

Gaussian process and which is specified by a mean 

and a covariance function. Usually, it is assumed that 

the mean of the associated Gaussian process is zero 

and that observations are related using the covariance 

function 𝑘(𝑥, 𝑥′) . The covariance function describes 

how function values 𝑓(𝑥1) and 𝑓(𝑥2)  are correlated, 

given 𝑥1   and  𝑥2. As the Gaussian process regression 

requires continuous interpolation between known 

input data, a continuous covariance is also needed. A 

typical choice for the covariance function is the 

squared exponential function: 

 

𝑘 𝑥, 𝑥 ′ = 𝜎𝑓
2exp

−(𝑥 − 𝑥′)2

2𝑙2
                 (3) 

 

      where 𝜎𝑓  represents the amplitude or the maximum 

allowable covariance, reached when 𝑥 ≈ 𝑥′ and 𝑓(𝑥) 
is very close to 𝑓(𝑥′) , and 𝑙 represents the length 

parameter which influences the separation effect 

between input values. If a new input data 𝑥 is distant 

from 𝑥′ then 𝑘(𝑥, 𝑥′) ≈ 0  and the observation 𝑥′ will 

have a negligible effect upon the interpolation.  

       Therefore, Gaussian processes represent a flexible 

learning approach, capable of modeling the inherent 

non-linearity found in human pose estimation. 

 

3.3. Testing and results 

 

      All experiments are carried on the HumanEva I 

dataset as it provides ground truth 2D and 3D 

information on subjects performing different actions. 

For every action, the image frames are equally divided 

in training and testing data, the input received being 

vectors of 2D coordinates. The measure of 3D 

estimation performance is computed using the average 

angle error and the average body part position error: 

 

𝐸𝑟𝑟𝑎𝑛𝑔 =
  𝜃𝑖 − 𝜃 𝑖 mod 180°𝐽

𝑖=1

𝐽
              (4) 

 

𝐸𝑟𝑟𝑝𝑜𝑠 =
  𝑃𝑖 − 𝑃 𝑖 

𝑀
𝑖=1

𝑀
                       (5) 

 

 

      where 𝐽=3∙14, for 3 Euler angles and 14 limbs, 𝜃𝑖 , 

𝜃 𝑖 , represent ground truth and predicted limb angles, 

𝑀=3∙15, for 3 coordinates per marker and 15 markers 

and 𝑃𝑖 , 𝑃 𝑖 , represent ground truth and predicted 

marker positions.  

       Experiments are conducted by varying the 

dimension of the input vectors containing the 

normalized 2D coordinates from the 2D detector. The 

final results are compared with an approach that uses a 

similar Gaussian process regressor and, as input, 

histograms of shape contexts obtained from extracted 

silhouettes [7]. As the silhouette-based experiments 

are carried in controlled conditions, requiring fixed 

cameras and background information, we will consider 

the method as ground truth experiment (GT). 

      The dimensions of the input are varied by 

manually choosing significant body parts and 

obtaining the associated coordinates by re-projecting 

the 2D coordinates. Ground truth data is obtained in a 

similar manner according to the HumanEva marker 

positions. The results show that using a simpler body 

representation for regression input performs better 

while training and prediction are less time consuming. 

Therefore, a 16-dimensional input is chosen 

containing normalized 2D coordinates corresponding 

to body parts: head, neck, upper and lower torso, two 

shoulders, two elbows, two wrists, two hips, two knees 

and two ankles. Results obtained for the two 

approaches are shown in Table 1: 



Table 1. Results obtained on the HumanEva dataset

 

Input Motion 

(CAM1, S1) 
𝐸𝑟𝑟𝑎𝑛𝑔 [°] 𝐸𝑟𝑟𝑝𝑜𝑠 [𝑚𝑚] 

 

 

Our 

system 

Walking 1.85 41.50 

Box 2.68 45.45 

ThrowCatch 2.50 45.98 

Jog 2.64 49.93 

Gestures 0.89 12.07 

 

 

GT 

Walking 0.96 21.75 

Box 1.04 16.97 

ThrowCatch 1.08 19.19 

Jog 1.42 26.96 

Gestures 0.55 7.61 

 

     The shape context-based solution [7] outperforms 

the two-stage framework because of the increased 

reliability of the features extracted from silhouettes. 

The biggest error rate is obtained for the “Jog” 

database, where a bigger number of frames present 

self-occlusions and generate double-counting and limb 

misdetections. In the “Gestures” database the camera 

viewpoint is constant leading to a smaller error rate. 

Figure 2 presents visualizations of results for the 

HumanEva database:  

 

 
 (a)                       (b)                               (c) 
 

Figure 2. (a) RGB human pose, (b) results using 

shape contexts (c) results of our approach. 

Estimated body parts are highlighted, while the 

simple body model represents 3D GT data. 

 

4. Conclusion and future work  

 
       The paper presents learning approaches for the 

problem of 3D pose estimation from monocular 

images. The framework is composed of an articulated 

2D detector with a varying number of body parts based 

on a structural SVM and a 2D to 3D Gaussian process 

regressor. Experiments carried on the HumanEva 

benchmark show that a simpler 2D body part model 

performs better, while the 3D estimates depend on the 

reliability of the 2D inputs. For future work, the 2D 

detector will be improved within the temporal context, 

using a “tracklets” approach [9] for different frame 

window sizes [10], followed by motion smoothing. 
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