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Universitat Autònoma de Barcelona Universiteit van Amsterdam

Abstract

Edges are caused by several imaging cues such as
shadow, material and illumination transitions. Classi-
fication methods have been proposed which are solely
based on photometric information, ignoring geometry
to classify the physical nature of edges in images.

In this paper, the aim is to present a novel strategy
to handle both photometric and geometric information
for edge classification. Photometric information is ob-
tained through the use of quasi-invariants while geo-
metric information is derived from the orientation and
contrast of edges. Different combination frameworks
are compared with a new principled approach that cap-
tures both information into the same descriptor.

From large scale experiments on different datasets,
it is shown that, in addition to photometric information,
the geometry of edges is an important visual cue to dis-
tinguish between different edge types. It is concluded
that by combining both cues the performance improves
by more than 7% for shadows and highlights.

1. Introduction

Edges are fundamental visual cues which are at the
basis of many image understanding and computer vi-
sion methods. Edges are caused by a large variety of
imaging variables such as shadows, highlights, illumi-
nation and material changes. The classification of edges
by their physical origin is useful for image understand-
ing, where corresponding edge types (e.g. material
edges) are considered for a specific task at hand while
discounting other accidental and disturbing edge types
(such as shadows and highlight edges). In this paper,
we consider the problem of discriminating shadow and
specular edge types based on local surface properties.

In general, edge classification is commonly based on
photometric information only. For instance, Gevers and
Stokman [3] distinguish between shadow-geometry,

Figure 1. Shadow-Edge Detection. Pho-
tometric information (left) is enhanced
when it is combined with geometric infor-
mation (right).

highlight and material edges by using a rule-based ap-
proach. They compute image-derivatives in different
(invariant) color spaces, and then assign class labels to
edges based on the whether they are present or not in
different (invariant) color spaces. Van de Weijer et al.
[14] propose a slightly different scheme, called quasi-
invariants, but is still based on similar invariant princi-
ples. Further, Finlayson et al. [1] propose a transfor-
mation that results in an image that is invariant to the
light intensity and color. This approach distinguished
between shadow and material edges. Shadow edges are
then detected by subtracting the derivatives of this in-
variant image from the derivatives of the original image.
Since only material edges are present in both images,
shadow edges remain when subtracting the two images.

The above methods use photometric information
for edge classification ignoring geometric information
completely. However, geometric information may con-
tain valuable information for edge classification which
has not been used so far. Taking the example presented
in Fig. 1, on the left we only use photometric informa-
tion to detect edges caused by shadows. On top, high
probable regions are isolated, and on the bottom the im-
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Figure 2. Illustration of the different com-
bination frameworks to combine photo-
metric and geometric features.

age without shadow edges is shown. On the right, we
use the geometry on top of the photometric space to de-
tect the same type of edges. Notice how shadow-edges
are more localized, for example the surrounding area of
the mirrors is now properly discovered.

Therefore, in this paper, the aim is to use both pho-
tometric and geometric information for edge classifi-
cation and evaluate how they can be combined. It is
shown that the local geometry of edges is as important
as photometric information to distinguish between dif-
ferent types of edges. For instance, in [12], the use of
monochromatic cues provide a more accurate percep-
tual recovering of intrinsic images. However, strong il-
lumination constraints difficult its applicability to natu-
ral images. In [4], several local photometric and geo-
metric descriptors are evaluated to only detect shadow
edges. However, the coarse combination of all the fea-
tures leads to a very costly approach.

2 Combination Framework

To take advantage of both photometric and geomet-
ric information for the classification of the physical na-
ture of edges, both types of features need to be com-
bined. Three approaches are compared in this paper.
First, two widely known data-driven frameworks are de-
tailed and finally, a more fundamental method is formu-
lated to integrate the photometric color variants with the
geometric features. Fig. 2 illustrates the differences be-
tween the approaches here described.

Early fusion (EF). This approach is based on con-
catenating the different image descriptors into one large
feature vector, which contains the information of all
used features [11]. The method combines specific prop-
erties of the descriptors into a larger feature space. This
increases the dimensionality of the feature space signif-
icantly, but it is also able to distinguish whether geo-
metric information (e.g. vertical or horizontal edges) is
relevant or not.

One of the main drawbacks of this approach is re-

lated to feature space encoding. First, each new feature
that is added requires learning the whole model again.
Secondly, when features with different characteristics
are concatenated (like number of dimensions or differ-
ent bin distributions), then a tedious cross-validation
procedure is required to find the proper weighting for
the different features. Further, more examples are re-
quired to properly model the increase of dimensionality.

Late fusion (LF). The second data-driven fusion ap-
proach avoids the problem of merging unbalanced or
very different types of feature vectors by learning each
of the descriptors independently, and after combining
the posterior probabilities of each of the classifiers [6].

The advantage of this approach is that the learning
stage becomes faster, since feature vectors are much
smaller. The output of each of the single classifiers is
used to learn a new linear SVM, which learn the im-
portance of each one of the features, and it allows to
avoid the raw high-dimensional features. However, this
approach fails when specific relations between the fea-
tures are important, because it will be unable to detect
them. For example, the combined occurrence of a spe-
cific geometric response (e.g. diagonal edges) and a
high contrasted patch response can not be learned be-
cause one classifier can only process one type of infor-
mation simultaneously.

Low-level integration (LLI). In contrast to the pre-
vious approaches, photometric features are used as a
pre-processing step for the geometric features. This im-
plies that this low-level integration approach can also be
combined with the previous data-driven approaches.

To describe a patch, the image is converted into the
desired photometric invariant space, and the geometric
descriptor is applied on each one of their channels inde-
pendently. The main difference with conventional geo-
metric features applied only on the illuminant space, is
that material edges are similarly encoded than any other
type of edges. With this approach, by definition, the
patch is described in two clear directions: the variant
and the invariant. Therefore, both types of edges will
be easily differentiable. The final descriptors need to be
normalized by the magnitude of the body reflectance in
order to be comparable among images [14].

This low-level integration approach has not been
used before to classify the different types of edges.
Other works have explored the invariances of several
color spaces to improve the discriminative power of the
descriptors [13]. Their aim is to obtain feature descrip-
tions that can be easily found under different illumina-
tion conditions. In contrast, in our case, we are looking
for the opposite, discover the edges that are variant to
certain characteristics (e.g. shadows or highlights).



3 Experiments

To validate our method, different experiments are
performed. First, a shadow edge classifier is presented.
Next, we extend shadow edge classification to other
types (specular edges in particular) by using the same
approach. Finally, the proposed method is used to esti-
mate the illuminant direction in a scene.

For extracting the geometric information in the im-
ages, we use the SIFT descriptor [9] and the Weibull
descriptor [2]. To obtain the photometric information
we use the quasi-invariants approach [14].

3.1 Edge Classification

Shadow-Edge Classification. The aim of this ex-
periment is to derive the common characteristics of
shadow edges. To this end, we use the annotations
from [4], which contains 7047 patches extracted from
3699 images from outdoor and indoor scenarios [8].
All patches are 19 × 19 pixels, and split into shadow
patches, which contains at least one clear shadow edge
(in any position of the patch) and non-shadow patches,
which corresponds to patches without any shadow edge.

Each patch is described by one of the previous dis-
cussed descriptors. Then, a SVM-classifier is used to
evaluate a 10-fold cross-validation. Single features are
learnt with linear and RBF-kernel, and the best results
are kept. Parameters are tuned by cross-validation.

Results are summarized in Table 1, where we report
the Area under the ROC curve (AUC). This metric is in-
variant to an unbalanced number of examples per class,
which is desirable to detect image effects that only ap-
pear from time to time (e.g.. shadow or specular edges,
reflections). It can be observed that none of the single
features is able to exceed 0.77. The combination by
means of Early (EF) or Late (LF) Fusion ends up with
a similar performance of 0.83. However, when combin-
ing the integration of the new low-level features, per-
formance is still improved to 0.84, outperforming pre-
viously reported methods.

Shadows in natural images can take any contrast or
shape. However, our improvement can be explained by
the fact that shadows tend to be mainly diagonal ori-
ented, or in a patch, all of them usually follow the same
direction, and this information was lost in the previous
approaches.

Highlight-Edge Classification. As an illustration of
the generalization of our method, we extended our edge
classification technique to highlights, since speculari-
ties are valuable clues for color constancy [5]. Given
the photometric invariance that the quasi-invariants pro-
vide, we focus now on the opponent color space, which

Features Shadow Highlight
Quasi-invariants (QI) 0.77 0.78
SIFT 0.77 0.82
Weibull 0.77 0.76
LLI ( SIFT + QI ) 0.79 (1) 0.83
LLI ( Weibull + QI ) 0.80 (2) 0.85
EF ( SIFT + Weibull + QI ) 0.83 0.82
LF ( SIFT + Weibull ) 0.81 0.83
LF ( SIFT + QI ) 0.82 0.83
LF ( Weibull + QI ) 0.79 0.80
LF ( SIFT + Weibull + QI ) 0.83 0.83
EF( (1) + (2) ) 0.83 0.85
LF( (1) + (2) ) 0.84 0.87
Best previously reported [4] 0.82 -

Table 1. Results for edge classification.
The results denote the area under the cor-
responding ROC-curve.

accompanies the specular variant and invariant space.
For more details on quasi-invariants, we refer to [14].
400 patches of highlights and 400 of non-highlights are
extracted from a car exposition dataset [10].

Results shown in Table 1 report a similar behaviour
as the classification of shadow-edges. The most remark-
able fact is that the low-level integration framework is
the one performing better. This can be easily explained
by the fact that the specularites are characterized as
spots, i.e. the edges around of the highlight follow a
circular pattern. In this case, our new approach, is the
only one able to detect such patterns in the photometric
and geometric space at the same time. The combination
improves over a single feature by more than 7%.

3.2 Illumination Direction

To demonstrate the possibilities of using shadow
edge classification in different applications, we use our
method to estimate the direction of the illumination
source. In contrast to [7] (use multiple cues), we only
focus on shadow edges to estimate the sun position.
Given a single image, the LLI (SIFT + QI) descriptor
is extracted every 9 pixels. Then, by using the previ-
ously learned classifier from Section 3.1. The classifier
responses are used to weight the edge orientations of the
descriptor. After being accumulated into an histogram
of 8 bin orientations, a SVM-regression is learnt to re-
cover the sun position.

We use a subset of real still images extracted from
outdoor webcams, which were kindly provided by [7].
It consists of 13 different scenarios containing 391 im-



Figure 3. Qualitative results. Shadow
edge detection and sun position estima-
tion.

ages in total. The evaluation methodology is based on
cross-validation of sequences, leaving each sequence
out for testing once. Some scenarios with the estimated
(gray) and the real (blue) shadows are shown in Fig. 3.

Fig. 4 reports the cumulative histogram of errors in
sun position estimation. A large improvement is ob-
served when using shadow-edges or all the edges. For
example, by assuming at most 45 degrees of error, more
than 54% of the images are well classified, with respect
to the 31% achieved by counting all the edges. By us-
ing only the shadow-edges with a very naive scheme,
the method achieves comparable results to [7].

4 Conclusions
In this paper, we present the idea to improve edge

classification by enriching the widely used photometric
information with several geometric features. A princi-
pled approach has been proposed to obtain an integrated
combination of photometric and geometric information.
With this approach, the combined representation per-
forms the best among the single features.

From the experiments on different datasets, it is
shown that the addition of the geometry of edges is
an important visual cue to distinguish between differ-
ent edge types. It is shown that by combining both cues
improves over using only one by 7% for shadows and
highlights. This remarks the fact that it not only works
for shadows. Other types of edges can be also identified
by using the appropriate photometric color space as a
basis of the framework.
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Figure 4. Quantitative results. The per-
centatge of correctly estimated images
taking into account the error (in degrees).
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