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Abstract We present a novel method for human action recognition based
on estimated poses from image sequences. The key idea behind our method
is to take advantage of a compact human pose representation, called weak
pose, in a low-dimensionality space while still keeping the most discriminative
information for a given pose. Once the 2D silhouettes are detected in an input
image and represented using shape context, Gaussian Process Regression is
applied to estimate weak poses. Subsequently, we perform action recognition
by considering a Bag of Poses model built on these estimated weak poses.
The Bag of Poses model is a modified version of the classical Bag of Words
pipeline by building the vocabulary based on the most representative weak
poses for a given action. Compared with the standard k-means clustering,
our vocabulary selection criteria is proven to be more efficient and robust
against the inherent challenges of action recognition. Moreover, since for action
recognition the ordering of the poses is discriminative, the Bag of Poses model
incorporates temporal information: in essence, groups of consecutive poses
are considered together when computing the vocabulary and assignment. We
tested our method on two well-known datasets, HumanEva and IXMAS, to
demonstrate that our results are scene-independent and go beyond the state
of art.

Keywords Human action recognition · Human pose estimation · Gaussian
process regression · Bag of words

1 Introduction

Human Action Recognition (HAR) is an important problem in computer vi-
sion. Application fields include video surveillance, automatic video indexing
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and human computer interaction. Most solutions for HAR learn action pat-
terns from sequences of image features like Space-Time Interest Points [3,4],
temporal templates [5], 3D SIFT [6], optical flow [7,8], Motion History Vol-
ume [9], among others. These features are commonly used to describe human
actions which are subsequently classified using techniques like Hidden Markov
Models [8,10–13], and Support Vector Machines [4]. Recent and exhaustive
reviews of methods for HAR can be found in [1,2].

Despite of its wide range of applications and the huge number of research
works, action recognition from 2D image sequences still remains a challenging
problem. One of the reasons is due to the high variability of scenarios and
situations which can be found in videos, thus resulting in very different image
qualities and content. As a result, we need to choose robust features and clas-
sification methods which can work well in multiple scenarios and for different
actions.

One can categorize the scenarios found in the literature into several groups:
single-human action [14], crowds [15], human-human interaction [16], and ac-
tion recognition in aerial views [17], to cite but a few. Although the method
proposed in this paper mainly concentrates on single-human action recogni-
tion, our contribution can be also applied to all the aforementioned scenarios,
given that the 2D silhouettes of the agents are extracted from image sequences.

In this paper, our main hypothesis is that estimating 3D poses from 2D sil-
houettes can be advantageous for action recognition. Considering this, another
reason that makes action recognition a challenging problem is the inherent
ambiguities between 2D image features and 3D poses. Some researchers use
multiple-view videos [18–20], although single-view image sequences are more
generic and easy to acquire. Moreover, recent work shows that even in monoc-
ular image sequences, reconstruction ambiguity can be tackled using regression
methods like Relevance Vector Machine (RVM) [21].

RVM is a special case of Gaussian Process Regression (GPR) [48]: while
RVM considers the most representative training samples (thus being fast in
the learning step), GPR takes all the training samples thus being a more
accurate regression technique. For this reason, GPR has been successfully used
for modeling the mapping between 2D image features and 3D human poses [22,
23].

Inspired by these works, the whole procedure presented in this paper is
shown in figs 1 and 2. In essence the method is composed of two steps: training
and prediction. In training, a set of Gaussian processes (first row fig. 1) and the
Bag of Poses (BoP) model (second row fig. 1) are learnt. On one hand, Gaussian
processes are trained with pairs of 2D image features and our intermediate
3D pose representation or weak poses. For each dimension of the weak pose
parameter space, we define a Gaussian process to map from 2D image features
to this particular dimension. On the other hand, the BoP model is trained
with weak poses and motion sequences. We introduce temporal information in
BoW by grouping consecutive video frames. Similar to graphical models which
account for the influence of neighboring data, in our case we take into account
those neighboring frames by merging consecutive frames in a single word. After
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Fig. 1 Learning step: we train Gaussian processes to learn the regression function from
shape context descriptors to weak poses. In parallel, a BoP model is built for each action
class by extracting key poses and training SVM classifiers.

Fig. 2 Predicting phase. The test video sequence is described using shape context descrip-
tors as in the learning phase (see fig. 1). Weak poses are predicted from shape context
descriptors using trained Gaussian processes and the video is represented as a histogram of
the vocabulary learned in the training phase. The video is finally labeled using the ensemble
of trained SVMs for each action class.

choosing the most representative weak poses for the vocabulary, each motion
sequence is represented as a histogram and SVMs are finally trained. In the
prediction step, given an unknown video sequence, we predict human poses
with the trained set of Gaussian processes, and represent the video sequence
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using the histogram of the vocabulary. After that, we label the action by the
trained SVMs.

The work most similar to our framework was proposed by [14]. They pro-
pose a model by adding one hidden layer to Conditional Random Fields (CRF)
containing pose information. One of the advantages is that every video frame
has an action label, so that action segmentation is integrated with action recog-
nition as a whole. However, the optimal number of consecutive frames which
contribute to the decision of the action label of the current frame is given by
the model. In our proposal, the optimal frame number is calculated from the
training data. Also, while authors in [14] use CRFs to model relations between
image features and action labels, we label motion sequences with a BoP model,
an extension of BoW [24–28].

The rest of the paper is organized as follows: next section introduces our
human body model and human posture representation; section 3 describes
how we use a set of Gaussian processes for learning the mapping from 2D
image features to 3D human poses; in section 4, we describe a procedure for
incorporating temporal information in a BoW schema, showing the results in
section 5. Finally section 6 presents the future avenues of research.

2 Data representation

The flexibility of the human body and the variability of human actions produce
high-dimensional motion data. Given a number of video sequences of a single
actor executing certain actions, in training each image has its corresponding 3D
motion capture data. How to represent these data in a compact and effective
way is also a challenge.

We select a compact representation of human postures in 3D, in our case
a stick figure of twelve limbs. For representing 3D motion data, a human pose
is defined using twelve rigid body parts: hip, torso, shoulder, neck, two thighs,
two legs, two arms and two forearms. These parts are connected by a total
of ten inner joints, as shown in fig. 3(a). Body segments are structured in a
hierarchical manner, constituting a kinematic tree rooted at the hip, which
determines the global rotation of the whole body.

Although some works only consider the 3D position of the markers at each
time step [31–33], others have explored representations like polar angles [34] or
Direction Cosines (DCs) [35]. In the latter case, the orientation of each limb is
represented by three direction cosines of the angles formed by the limb in the
world coordinate system. DCs embed a number of useful invariants, and by
using them we can eliminate the influence of different limb lengths. Compared
to Euler angles, DCs do not lead to angle discontinuities in temporal sequences.
Lastly , DCs have a direct geometric interpretation which is an advantage over
quaternions [36].

So we use the same representations for human postures and human motions
as in [35]: a limb orientation is represented using three parameters, without
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(a) (b)

Fig. 3 (a) The 3D stick figure model used for representing human pose. Ten principal
joints corresponding to the markers used in motion capture are used [38]. (b) The angles
(θx

l
, θy

l
, θz

l
) between the limb l and the axes [35].

modeling self rotation of the limb around its axes, as shown in fig. 3(b). This
results in a 36-D representation of the pose of the actor in frame j of video i:

ψi
j = [cos θx1 , cos θ

y
1 , cos θ

z
1 , . . . , cos θ

x
12, cos θ

y
12, cos θ

z
12], (1)

where θxl , θ
y
l and θzl are the angles between the limb l and the axes as shown

in fig. 3(b).
After representing static human postures using direction cosines, we rep-

resent a motion sequence of the actor in video i as a sequence of poses:

Ψ i = [ψi
1, ψ

i
2, . . . , ψ

i
ni
], (2)

where ni is number of poses (frames) extracted from video i.

2.1 Universal Action Space or UaSpace

Since natural constraints of human body motions lead to highly correlated
data [37], we build a more compact, non-redundant representation of human
pose by applying Principle Component Analysis (PCA). This universal action
space (UaSpace) will become the basis for vocabulary selection and finally
classification using BoP.

We denote the pose representation in the reduced dimensionality space as
weak poses or ψ′. By projecting human postures into the UaSpace, distances
between poses of different actions can be computed and used for classification.
Fig. 4 shows pose variation corresponding to the top (in terms of eigenvalues) 9
eigenvectors in the UaSpace. From the figure, one can see which pose variations
each eigenvector accounts for in the eigenspace decomposition. For example,
one can see that the first eigenvector corresponds to the characteristic motion
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Fig. 4 Visualizing the 9 principal variations of the pose within UaSpace learnt from Hu-
manEva data. Each plotted stick figure is a re-projected pose by moving it in one eigenvec-
tor’s dimension from −3 up to 3 times the standard deviation.

of the arms and the second eigenvector corresponds to the motion of the torso
and the legs. In the following section, we describe how weak poses are estimated
from video frame feature descriptors using GPR.

3 Weak pose estimation using GPR

We use Shape Context Descriptor (SCD) to represent the human silhouette
found using background subtraction [44]. Shape context is commonly applied
to describe shapes given silhouettes [45,46], and have been proven that it is
an effective descriptor for human pose estimation [47] .

The main idea of our SCD is to place a sampled point on a shape in the
origin of a radial coordinate system and then to divide this space into different
range of radiuses and angles. In this way, the number of points that fall in each
bin of the radial coordinate system are counted and encoded into a bin of an
histogram. In our experiments, we place the origin of radial coordination on
the centroid of a silhouette and divide radius into 5 bins equally spaced and
divide angle into 12 equally spaced bins, as shown in fig. 5. As a result, the
SCD vector is 60-D.

The normalization of the resulting SCD has a significant impact on the
performance of Gaussian process regression. We exploit two different ways of
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Fig. 5 Radial coordinates for shape context descriptor. The origin of the polar coordinate
system is placed on the centroid of the bounding box of the silhouette. The radius is divided
equally into 5 bins and the circle is divided equally into 12 bins.

normalizing data: standard deviation and individual normalizations. Suppose
sorig denotes the original shape context descriptor from one image, and

sorig = [np1, np2, . . . , npi, . . . , np60], (3)

where npi is the number of pixels that fell in the i-th bin.

In standard deviation based normalization, we calculate standard devia-
tions from all training shape context descriptors std = [std1, std2, . . . , std60].
Then we normalize each dimension of the shape context descriptor by dividing
it with the corresponding standard deviation. If we represent the normalized
shape context descriptor as snormlized, then

snorm1 = [
np1

std1
,
np2

std2
, . . . ,

npi

stdi
, . . . ,

np60

std60
] (4)

In individually normalizing method, we divide the pixel number in a bin by
the total pixel number of the shape context descriptor. That is, if we represent
the total number of pixels in one shape context descriptor as npSum, then in
individually normalizing method, the normalized shape context descriptor is
defined as:

snorm2 = [
np1

npSum
,

np2

npSum
, . . . ,

npi

npSum
, . . . ,

np60

npSum
]. (5)

We compare these two different ways of normalizing shape context descriptors
in experimental results.
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3.1 Gaussian Process Regression

The problem of predicting 3D human postures from 2D silhouettes is highly
non-linear. Gaussian processes have been effectively applied for modeling non-
linear dynamics [39–41]. For example, Gaussian process has been applied to
non-linear regression problems, like robot inverse dynamics [42] and nonrigid
shape recovery [43].

With the method described in the above section, we extract human sil-
houettes from training video sequences and describe them with normalized
SCD.

S = [s1, s2, . . . , sp], (6)

where si is the vector of shape context descriptor extracted from the i-th
training video sequence. The methd described in [21] predicts 3D poses from
2D image features using Relevance Vector Machine (RVM). RVM is more
efficient during learning, but less accurate since RVM is a special case of GPR:
during the learning phase, RVM takes the most representative training samples
while GPR takes all training samples. Additionally, GPR has been successfully
applied to pose estimation and tracking problems, for example [22,23]. So in
our approach, we will use GPR for modeling the mapping between silhouettes
and weak poses.

According to [48], Gaussian process is defined as: a collection of random
variables, any finite number of which have (consistent) joint Gaussian distri-
bution. A Gaussian process is completely specified by its mean function and a
covariance function. Integrating with our problem, we denote the mean func-
tion as m(s) and the covariance function as k(s, s′), so a Gaussian process is
represented as:

ζ(s) ∼ GPj(m(s), k(s, s′)), (7)

where

m(s) = E[ζ(s)],

k(s, s′) = E[(ζ(s) −m(s))(ζ(s′)−m(s′))], (8)

We set a zero-mean Gaussian process whose covariance is a squared expo-
nential function with two hyperparameters controlling the amplitude θ1 and
characteristic length-scale θ2:

k1(s, s
′) = θ21 exp(−

(s− s′)2

2θ22
). (9)

We assume prediction noise as a Gaussian distribution and formulate finding
the optimal hyperparameters as an optimization problem. We seek the opti-
mal solution of hyperparameters by maximizing the log marginal likelihood
(see [48] for details):

log p(Ψ ′|s, θ) = −
1

2
Ψ ′TK−1

Ψ ′ Ψ
′ −

1

2
log |KΨ ′ | −

n

2
log 2π, (10)
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where KΨ ′ is the calculated covariance matrix of the target vector (vector of
training weak poses in UaSpace) Ψ ′ under the kernel defined in equation 8.

With the optimal hyperparameters, the prediction distribution is repre-
sented as:

Ψ ′∗|s∗, s, Ψ ′ ∼ N (k(s∗, s)T [K + σ2
noiseI]

−1Ψ ′,

k(s∗, s∗) + σ2
noise − k(s∗, s)T [K + σ2

noiseI]
−1k(s∗, s)), (11)

where K is the calculated covariance matrix from training 2D image features
s and σnoise is the covariance of Gaussian noise. We train a set of Gaussian
processes to learn regression from SCD to each dimension of the weak poses
separately.

4 Bag of Poses for action recognition

Given a test video sequence, we extract SCDs from image sequences and then
predict the weak pose by the set of trained Gaussian processes. With the
predicted weak poses, the problem turns into a classification problem in the
UaSpace.

Inspired by BoW [24–26], we apply the following steps for action recogni-
tion: compute descriptors for input data; compute representative weak poses
to form vocabulary; quantize descriptors into representative weak poses and
represent input data as histograms over the vocabulary, a Bag of Poses (BoP)
representation. Next we explain how to compute the vocabulary and perform
classification with our modified BoP model.

4.1 Vocabulary selection

The classic BoW pipeline uses k-means for calculating the vocabulary. But this
way of calculating the vocabulary does not give promising action recognition
results [49]. We propose a new method for computing the vocabulary. First,
we select candidate key weak poses using energy optimization as in [49]. The
key weak poses are pre-selected as:

F i
pre = {f i

1, f
i
2, , . . . , f

i
l }, (12)

where f i
j corresponds to local maximum or local minimum energies in i-th mo-

tion sequence. And l is the total number of local maximum and local minimum
values. Note, l is not a fixed value, and it depends on number of motion cycles
and motion variations in the sequence.

Without taking into account temporal information, we cluster all prese-
lected key weak poses from all performances: Fpre = {F 1

pre, F
2
pre, . . . , F

p
pre},

where F i
pre is calculated as in equation 12 and p is the number of training

motion sequences. Then, we select k most representatives weak poses Fk from
Fpre with k-means. So Fk makes the vocabulary.
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To incorporate temporal information into our solution, we consider d con-
secutive frames as one unit. That is, key weak poses are preselected as F t

pre =

{F t1
pre, F

t2
pre, . . . , F

tl
pre}, where

F tj
pre = [ffrm−d+1

j , f
frm−d+2

j , . . . , f
frm
j ] (13)

is a concatenation of d consecutive weak poses and ffrm
j corresponds to local

maximum or local minimum energies in j-th motion sequence, and tl equals the
total number of preselected key weak poses. Then, the vocabulary is calculated
as k-means clustering centers F t

k from F t
pre.

Temporal step d is a critical factor. Experimental results show that, for
weak poses, after temporal step d reaches a certain value, classification results
remain comparatively steady. In section 5.1.3, we will show how we fix d using
cross validation on training data.

4.2 Action Classification

A vocabulary is calculated as a collection of characteristic key weak poses.
Then we represent our motion sequences as histograms over the vocabulary.
That is, video sequence V i is represented as:

histi = [n1, n2, . . . , ni, . . . , ntk], (14)

where ni is the number of weak poses in sequence V i that are nearest to i-th
word in vocabulary Fk. To incorporate temporal information, we start from
d-th frame of video sequence V i, and compare a concatenation of consecutive
d weak poses with each entry of the vocabulary F t

k.
For each action, we train a SVM with histograms and their corresponding

action class labels. We choose a linear kernel according to experimental results
and use cross validation to fix the cost value as 5. For measuring classification
results, we use classification accuracy:

accuracy =
tp+ tn

tp+ tn+ fp+ fn
, (15)

where tp, tn, fp, fn refer to true positive, true negative, false positive and
false negative respectively. tp+ tn represents correctly classified samples, and
tp + tn + fp + fn is the total number of all samples. We use this criterion
as the maximizing target when we do cross validation to fix parameters, for
example, number of Gaussian process m and temporal step size d.

5 Experimental results

To verify robustness of our method, we choose two public datasets: HumanEva
and IXMAS. [14] gives state of art action classification accuracy for HumanEva
dataset. We will compare with this result with our experiments on this dataset.
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There are several related works on action recognition with IXMAS dataset, for
example [18–20,29]. Authors of [30] listed all state of art experimental results
on this dataset. Among all, we will compare with experimental results in [29],
because this method uses single viewpoint as input like our method while other
methods need multiple viewpoints.

The composition of the data are:

1. HumanEva 1 dataset. This dataset contains six actions: “Walking”, “Jog”,
“Gesture”, “Throw/Catch”, “Box”, and “Combo”. We consider the first
five actions, since “Combo” is a combination of “Walking”, “Jog”, and
“Balancing on each of two feet”. Four actors perform all actions a total of
three times each. Trial 1 has both video sequences and 3D motion data; in
trial 2, 3D motion data are withheld for testing purposes; trial 3 contains
only 3D motion data.

2. IXMAS 2 dataset. We further apply trained models from HumanEva dataset
to IXMAS dataset, to test robustness of our method. From this dataset, we
take four actions: “Walk”, “Wave”, “Punch” and “Throw A Ball”. They
correspond to actions “Walking”, “Gesture”, “Box” and “Throw/Catch”
in Humaneva dataset.

We take only the frontal view from the two dataset. Note that positions
of vision cameras in these two dataset of frontal view are not set exactly the
same.

5.1 Model training

In our experiments, we take the first half of each performance for training
< S,Ψ > and the second half for validation < SV al,ΨV al >.

5.1.1 Number of Gaussian processes

We train a set of Gaussian processes to learn mappings between shape context
descriptors and weak poses in UaSpace with the training data < S,Ψ >.
We calculate pose estimation errors between estimated weak poses Ψ̂ and the
ground truth weak poses Ψ′ as:

ε =
1

N

P∑

p=1

Fp∑

f=1

‖ψ̂ − ψ′‖2, (16)

where N is the total number of frames used for training, P is the total num-
ber of training performances and Fp is frame numbers of the p-th training
performance. To discard missing human detection, we first calculate the en-
ergy of shape context descriptor for each training frame and filter the training

1 http://vision.cs.brown.edu/humaneva/
2 http://4drepository.inrialpes.fr/public/viewgroup/6
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GP dims 3 6 10 15 20 25 30

Voc size: 5 73.9 86.8 86.3 86.0 86.1 86.1 85.6
Voc size: 10 67.7 83.6 82.9 83.0 84.4 84.2 84.2
Voc size: 15 64.1 83.9 82.6 80.8 85.4 83.9 83.7
Voc size: 20 64.7 79.0 77.5 79.7 78.4 84.2 82.2

Mean Error 0.399 0.304 0.241 0.200 0.169 0.146 0.127

Table 1 Comparison of classification accuracy (%) and weak pose reconstruction error with
different numbers of Gaussian processes and different vocabulary size. Reconstruction error
is the difference between predicted weak poses and ground truth weak poses.
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Fig. 6 Two examples of good estimation of weak poses in back-projected from UaSpace to
the original parameter space and visualized as human poses.
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Fig. 7 An example of bad estimation of a weak pose.

sequences based on calculated energies by keeping 90% of the energies over all
frames. This effectively eliminates frames containing catastrophic silhouette
extraction failures.

In our experiments, we evaluate different numbers of Gaussian processes
(recall that we use one Gaussian process for each dimension in our weak pose
space). From table 1, we observe that with fewer than 20 Gaussian processes,
increasing the number of Gaussian processes results in noticeable increases in
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Fig. 8 The relations between number of temporal steps, number of key poses and action
recognition accuracy.

classification accuracy and also decreases in pose estimation error. Our ex-
planation for this is: a small numbers of Gaussian processes are not able to
capture or describe all the motion possibilities for actions, which results in pre-
dictions that are not accurate. After 20 Gaussian processes, increasing number
of Gaussian processes does not result in notable increases in classification ac-
curacy or decreases in pose estimation error. So the best trade-off between
accuracy and model complexity is found with 20 Gaussian processes with a
vocabulary size of 10. The subsequent experiments are computed with these
optimal settings.

5.1.2 Weak pose reconstruction results

To visualize results of weak pose reconstruction, we project weak poses from
UaSpace back to the original parameter space. Figs 6 and 7 show some exam-
ples of estimated weak poses. We can see that in fig. 6, pose estimation results
are satisfactory. In fig. 7, there is a big difference between the estimation and
the ground truth. But since our ultimate goal is action recognition and not
pose estimation, we will not concentrate on further improvements on pose es-
timation. We show in following sections, that this pose estimation precision
give a promising action recognition rate.

5.1.3 Temporal step size

We also use cross validation to get optimal temporal step size d. We add Gaus-
sian noise of different scales to the original 3D marker positions to simulate
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Acc. Box Jog Gest Walk T/C All - T/C All + T/C

[14] 98.9 99.0 63.7 99.6 no 90.3 no
Std-norm 88.4 75.1 87.6 91.0 80.0 85.5 84.4
Ind-norm 97.1 91.8 91.9 94.6 80.0 93.9 91.1

Table 2 Comparison of action recognition accuracy (%) in HumanEva between our meth-
ods and the method presented in [14]. Classification accuracy is defined as correctly labeled
samples over total number of samples(refer to equation 15). “Std-norm” and “Ind-norm” re-
fer to standard deviation normalizing method and individually normalizing method (refer to
section 3). The column “All−T/C” shows the average classification accuracy for all actions
excluding “Throw/Catch” and and the column ”All + T/C” including “Throw/Catch”.

noisy 2D feature descriptors from video sequences. We run each noise scale 5
times and calculate average accuracy for all noise scales. Experiment results
are shown in fig. 8. This figure shows relations between numbers of temporal
steps, numbers of key poses and action recognition accuracies. From the fig-
ure, we can see that the size of temporal steps has more influences than the
number of key poses (vocabulary size). And after the size of temporal steps
reaches 13, classification accuracy becomes rather stable. This implies that
the decisive factor in action recognition comes from the continuous motion.
Motion elements of short duration is more representative for an action than
the overall distribution of important poses. Later on, we fix temporal step size
as 13 for the rest of our experiments.

5.2 Action recognition accuracy

We utilize a BoP model in classifying actions, as described in section 4. A
set of Gaussian processes and a BoP model are trained on all training data
including training and validation data. With the trained models, we evaluate
our method on the test data from both HumanEva and IXMAS datasets.

As we take the whole performance as one training example, we have an
acute lack of training data. We address this problem by synthesizing train-
ing data like [50]. We first split training performances into sub-performances.
Then, we translate sub-performances with trans times the maximum differ-
ence of the training data, where

trans = {−0.20,−0.15,−0.10,−0.05, 0.05, 0.10, 0.15, 0.20}, (17)

and scale sub-performances by

scale = {0.80, 0.85, 0.90, 0.95, 1.05, 1.10, 1.15, 1.20}. (18)

We also split and translate test performances into sub-performances. The
procedure is the same as for training date. Experimental results for Humaneva
dataset are shown in table 2. The method from [14] shows upper bound ac-
curacy for initialized latent pose conditional random field model (LPCRFinit

in [14]) with the same training and test data.
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Accuracy Punch Wave Throw a ball Walk All actions

Ind-normal 75.0 79.2 75 87.5 79.2
[29] 86.8 79.9 82.4 79.7 82.2

Table 3 Action recognition accuracy (%) of our individually normalizing method for IX-
MAS dataset using the models learnt from HumanEva dataset compared with the method
prosed in [29].

In our experiments, normalization of input data is a very important step
for Gaussian process regression to make good predictions. So we experimented
with two different ways of normalizing data: standard-deviation based and in-
dividual normalizations. Our method with individual normalization has better
average classification accuracy than the approach presented in [14].

Due to illumination changes and errors from background subtraction, hu-
man silhouettes from every image frame have variant qualities. As a result, the
total pixel numbers vary from one frame to another. Individually normalizing
method eliminates these differences. So that, later histograms are computed
on the same basis. On the contrary, standard deviation based normalization
are more suitable to cases while different dimensions from image features have
different range of variations. In this case, different dimensions are normal-
ized separatively. In later experiments, we fix our normalization as individual
normalization.

From experimental results, we observe that for “Throw/Catch” action, in
both normalization strategies, classification accuracy are not as satisfactory
as other actions. One possible reason for this is the limited number of train-
ing samples for this action. We are using PCA in reducing representation
dimensionality. In this case, if training examples for an action are too few,
the variations of this action would not be able to be captured by the main
eigenvectors. As a result, action recognition accuracy is not as good as other
classes. Another observation is, for “Jog” and “Box”, individual normalization
has a much better performance than the standard-deviation based one. Our
explanation for this is, “Jog” and “Box” have more variate poses compared
with “Gesture” (the lower body parts of the performer are relatively stable),
“Throw/Catch” (the lower body parts are also relatively stable) and “Walk-
ing” (the movements of body parts are not as fierce as in “Jog” and “Box”).
As a result, when we normalize all training data together, these action classes
are more likely to be influenced. While individual normalization keeps variate
information of the SCD from each image frame.

We further test our action model (trained using HumanEva data) on IX-
MAS dataset and experimetal results is shown in table 3. We compare our re-
sults with method in [29]. Note that camera settings in HumanEva dataset and
IXMAS dataset are slightly different. This results in slight difference between
human silhouettes from these two dataset. Also although we have four corre-
sponding actions, they are not exactly the same action. But all corresponding
actions in IXMAS dataset are subsets from HumanEva dataset. For example,
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“Gesture” action in HumanEva dataset semantically contains “Wave” and
“Come”.

Despite the differences between these two datasets, our models trained on
HumanEva dataset obtain a relatively close result as method in [29]. We even
achieve better results with action “Walk”. One explanation is that test data
in “Walk” have more frames than other actions in IXMAS dataset, and our
holistic method performs better with more frames. Another reason might be,
“Walk” is a relatively repetive action that does not have as much variance as
other actions when performed by a different human. While for other action, this
is not the case. For example, for “Box” in Humaneva dataset, performer “S1”
does not move his legs while performer “S2” jumps forward and backwards
during the performances.

6 Conclusions and discussion

In this paper we have proposed a novel approach to action recognition using
a BoP model with weak poses estimated from silhouettes. We have applied
GPR to model the mapping from silhouettes to weak poses. We have modifed
the classic BoW pipeline by incorporating temporal information. We train our
models with the HumanEva dataset and test it with test data from HumanEva
and IXMAS datasets. Experimental results show that our method performs
effectively for the estimation of weak poses and action recognition. Even though
different datasets have different camera setting and different perception about
performing actions, our method is robust enough to obtain satisfactory results.

In further work, it would be interesting to model the dynamics of human
poses in actions and also utilize this as priors for action recognition. An inte-
grated regression model that incorporated 3D pose and 3D motion models into
the GPR model described in this paper would likely improve the robustness
of both weak pose estimation and action recognition.
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