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Abstract The recognition of abnormal behaviors in video sequences has raised as
a hot topic in video understanding research. Particularly, an important challenge
resides on automatically detecting abnormality. However, there is no convention
about the types of anomalies that training data should derive. In surveillance, these
are typically detected when new observations differ substantially from observed,
previously learned behavior models, which represent normality. This paper focuses
on properly defining anomalies within trajectory analysis: we propose a hierarchi-
cal representation conformed by Soft, Intermediate, and Hard Anomaly, which are
identified from the extent and nature of deviation from learned models. Towards
this end, a novel Gaussian Mixture Model representation of learned route patterns
creates a probabilistic map of the image plane, which is applied to detect and clas-
sify anomalies in real-time. Our method overcomes limitations of similar existing
approaches, and performs correctly even when the tracking is affected by different
sources of noise. The reliability of our approach is demonstrated experimentally.

1 Introduction

Recognizing abnormal behaviors is a main concern for research on video under-
standing [7]. The challenge exists not by the difficulty of implementing anomaly
detectors, but because it is unclear how to generally define anomaly. On the one
hand, anomalies in video surveillance are usually related to suspicious or danger-
ous behaviors, i.e., those for which an alarm should be fired. Unfortunately, such a
vague concept is difficult to learn automatically without prior explicit formal mod-
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els. Existing top-down approaches take advantage of this prior models to identify
suspicious behavior [3] or to generate conceptual descriptions of detected behavior
patterns [5]. However, these approaches are scenario oriented and are designed to
recognize or describe a reduced set of specific behaviors.

On the other hand, from a statistical perspective, recent works in anomaly detec-
tion assume that normal behavior occurs more frequently than anomalous one, and
define anomalies as deviations from what is considered to be normal [1, 8, 10, 11].
In surveillance, a standard learning procedure consists of extracting observations by
motion tracking over continuous recordings to build scenario models that determine
the normality or abnormality of new observations.

We define anomalies considering the types of deviations from a learned model.
We distinguish among three semantic types, namely Soft (SA), Intermediate (IA),
and Hard (HA) anomalies. In essence, a SA represents a slight deviation from the
parameters of a typical pattern, e.g. a person running, stopping, walking backwards
for a while, etc. Secondly, a HA occurs when an observed event occurs completely
outside of the model parameters, e.g. a person appearing from an unnoticed en-
trance. These two types are currently recognized by different approaches, see Table
1, but there exists an important gap between them. The IA represents observations
that deviate from learned patterns but still fit into the model, e.g., starting a typical
path and changing to a different one.

To recognize these anomaly types, we present a novel unsupervised learning
technique that generates a scenario model in terms of paths among observed en-
try and exit areas. We use Gaussian Mixture Models (GMM) to describe transition
probabilities between pairs of entry and exit points. GMM model n-dimensional
datasets, where each dimension is conditionally independent from the others. Thus,
although our method currently uses only trajectory positions to fit GMM into the
training set, it can be easily extended to features like bounding boxes, orientations,
speed, etc. Additionally, our methodology identifies online previously introduced
anomalies in new observed trajectories.

Recent surveillance techniques to learn motion patterns have been applied to
anomaly detection, behavior description, semantic scene labeling, or tracking en-
hancement. Johnson and Hogg [9] and Fernyhough et al [6] use vector quantization
to learn routes and semantic regions. The methods depends on target size. More re-
cently, Makris et al [10] proposed a method to label semantic zones –entry, exit, stop
area– and model typical routes. However, temporal consistency is not maintained,
and speed variation anomalies are not covered. Hu et al [8] use spatiotemporal tra-
jectory clustering to detect abnormality and predict paths. However, anomalies are
only defined as low probable fittings. Piciarelli et al [11] proposed an online method
to generate route models from key points. The order of apparition of the observa-
tions affects the model. Finally, a probabilistic method by Basharat et al [1] detects
abnormality not only from trajectory positions but also from object sizes. However,
this method is very dependent on a clean training dataset, classifying as anomaly
slight variations of previously observed trajectories.

Next section describes the creation of scenario models from noisy trajectory
training sets. Next, the hierarchy of anomalies is introduced. Subsequently, the per-
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Approach Model used Robust to noise Types of anomaly
Fernyhough et al [6] Vector quantization No HA

Makris et al [10] GMM and vector quantization Yes HA
Hu et al [8] Fuzzy C-means and GMM Yes SA, HA

Piciarelli et al [11] Vector quantization No HA
Basharat et al [1] Transition vectors and GMM No SA, HA

Our approach GMM with Splines Yes SA, IA, HA

Table 1 Comparison of previous approaches in terms of model, robustness and the types of anoma-
lies detected.

(a) (b) (c)

Fig. 1 (a) Original dataset of 4250 trajectories. (b) Detected Entry areas. (c) Dataset after removing
noise caused by tracking failure and semistationary motion [10].

formance of the proposed method is demonstrated. Last section concludes the paper
and shows future lines of research.

2 Scenario model learning

Our method learns from large recording datasets without previous manual selection
of trajectories. Therefore, the initial dataset can contain spurious data, see Fig. 1(a).
The most relevant noise issues are due to:

1. Failure of the motion-tracking algorithm. Errors may appear in form of false
trajectories, where the motion history of multiple targets are mixed, or split tra-
jectories that represent only a portion of the history.

2. Semistationary motion noise, e.g., trees, curtains, or window reflections. Appar-
ent activity is detected in the vicinity of the noise source.

3. Non-smooth trajectories caused by inaccurate tracking or severe scenario condi-
tions, causing irrealistic representations of motion in the scene.

The two first problems are solved by applying a multistep learning algorithm of
Entry and Exit zones [10]. Fig. 1(c) shows the detected entry areas of the scenario.
The sets S and E allow to obtain a subset T ′ ⊆ T of trajectories that start in some
entry of S and end in some exit of E, see Fig. 1.(d):
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T ′ = {t ∈ T |∃s∈S,e∈E : begin(t,s) ∧ end(t,e)} (1)

The third problem is solved by representing each T ′ with a continuous function
model that solves tracking inaccuracies. We use a sequence of cubic splines [4],
denoting as S(t) the spline representation of trajectory t. The required number of
cubic splines is automatically decided by computing the error between the original
trajectory and the computed spline sequence:

error(t, S(t)) = ∑
(x,y)∈t

d((x,y), S(t)) (2)

Inner points are sampled with any required precision, maintaining the original tem-
poral consistency. Moreover, it only requires storing intermediate control points and
derivatives, thus reducing disk storage demand in large datasets.

2.1 Scenario model

Next we detail the creation of route models from T ′. A route Rs,e between areas
(s,e) ∈ S×E is defined using GMM as a normal way to go from s to e. Due to
scene constraints or speed variations, there could be more than one route assigned
to a pair (s,e). A path Ps,e contains the routes from s to e. The final scene model
includes all possible paths for each pair (s,e).

Rs,e = {G1, . . . ,Gk} (3)

Ps,e = {R1
s,e, . . . ,R

U
s,e} (4)

M = {Ps,e|s ∈ S,e ∈ E} (5)

2.2 Learning algorithm

The following procedure is applied to each pair (s,e)∈ S×E. Let Ts,e = {t1, . . . , tN}⊆
T ′ be the set of trajectories starting at s and ending at e. Each trajectory tn is repre-
sented by a sequence r(tn) of K equally spaced control points, obtained by sampling
from s(tn), r(tn) = {pn

1, . . . , pn
K}, where pn

k corresponds to the sample point k/K of
s(tn).

The learning algorithm is sketched in 2(a): the input is a matrix of K ∗N points,
where each row k is the list of k−th control points of each trajectory in Ts,e. The path
Ps,e is initialized considering that all trajectories follow a single route. The algorithm
traverses the lists of control points from 1 to K. At each step, the algorithm fits one-
and two-component GMMs into the current point list, formed by the k–th control
point of each trajectory, {p1

k , . . . , pn
k}. The representativity of the model is evaluated

through a density criterion:
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Initialize Ps,e with a single route R1

for k = 1 to K do
nc← |Ps,e|
for c = 1 to nc do

list← points(k,c)
G← GMM(list,1)
(G1,G2)← GMM(list,2)
if δ (G)> (δ (G1)+δ (G2))∗α/2 then

create Rc1 ,Rc2 from Rc

add G1 to Rc1

add G2 to Rc2

split points(k,c) according to G1 and G2
substitute Rc with Rc1 ,Rc2 in Ps,e

else
add G to Rc

end if
end for

end for
(a)

(b)

(c)

Fig. 2 (a) Route Modeling Algorithm for a pair (s,e) ∈ S×E. It considers two possible situations:
(b) the density of a single gaussian is enough to represent the k-th set of control points; or (c) two
gaussians represent it better, so the route model splits.

δ (G) =
w

π ·
√
|Σ |

(6)

where w is the prior probability of G and Σ is its covariance matrix. If the mean
density of the two-component GMM is higher than the single one, current route
Rc splits into subroutes Rc1 and Rc2 , see Fig. 2(c). Once the algorithm has been
applied to each pair (s,e), M contains the set of paths associated to normality. A
trajectory deviating from M will be considered an anomaly. This result is enriched
by considering the type of anomaly observed, as explained next.

3 Online anomaly detection

We distinguish three types of anomaly, see Fig. 3: (i) soft anomaly, SA: a modeled
path is followed, i.e., the value of p(Ps,e|Θ ,ω) remains stable, but certain speed
or orientation values differ from learned parameters; (ii) intermediate anomaly, IA:
the most probable path Ps,e changes during the development, for a whole window ω;
and (iii) hard anomaly, HA: a completely unobserved path is followed, which can
be caused by e′ /∈ E or because the probability of having started from s is too low
for the whole window ω .

This hierarchy provides degrees of deviations between new observations and the
model. Indeed, a SA can be considered as a route deviation inside a path; a IA detects
path deviations within M; and a HA complete deviates from M. The prior probability



6 Baiget et al.

Fig. 3 Types of anomalies: ta incurs in SA by partially falling out of a route. tb shows IA because
of changing paths. tc deviates from all routes, thus producing HA.

that a pixel location (x,y) is a part of a modeled path, p(Ps,e|(x,y)), is obtained by
computing a probabilistic map of the image plane. These probabilities are stored in
a h×w×|M| matrix Θ , where h,w are the dimensions of the image and |M| is the
number of paths:

Θx,y = p(Ps,e|(x,y)) = max(p(G j|(x,y)) (7)

where G j belongs to some route Ru
s,e ∈ Ps,e.

Anomaly detection is performed online as new trajectories are available. Given
the current observation, we maintain a temporal window ω with the last |ω| observa-
tions. We compute the probability of being in a given path by assuming correlation
with previous frame steps:

p(Ps,e|Θ ,ω,(x,y)) = α ∗Θx,y +(1−α)∗ ∑|w|i p(Ps,e|Θ ,wi)

|w|
(8)

where wi is the i–th observation in ω , and the update factor α is set to 0.5.
The anomaly detection algorithm labels trajectories as new tracking observations

arrive. A new trajectory t is associated to one of the learned entries s ∈ S. If no entry
is close enough, t is labeled as HA. Otherwise, the probabilities of being in each
path containing s are computed using Eq. 8, for each new observation (x,y). In case
of similar probabilities, t is not assumed to follow any concrete path.

When the probability of path Ps,e is higher than the others, the trajectory is as-
sumed to be following it for the next frames. If a different path becomes more prob-
able t starts being labeled as IA until the initial path becomes the most probable
again; if t finally ends in e′, then the IA period is that in which Ps,e was less prob-
able. Finally, if all paths are improbable for a given ω , t is marked as HA until
a probable path is assigned. Assuming a path Ps,e, we select the gaussian G∗ that
better represents the current observation:

j∗ = argmax
j

p(G j|(x,y)) (9)
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Fig. 4 (a) Learned routes, (b) their Θ maps, and (c) the final model.

To know if path Ps,e is being followed normally, we compute the sum of proba-
bility increments that ω is between Gaussians G j∗−1 and G j∗+1, previous and next
on the path. This is encoded into a normality factor F(ω):

F(ω) =

{
∑|ω|i −∆ p(G j∗−1|ωi) if h(G j∗ ,ω)> 0

∑|ω|i ∆ p(G j∗+1|ωi)) otherwise
(10)

where ∆ p(G|ωi)= p(G|ωi)− p(G|ωi−1), and h(G j∗ ,ω)= p(G j∗ |ω|ω|)− p(G j∗ |ω1)
measures the direction of ω towards G j∗ . Positive values of F(ω) certify that the last
ω observations are normal according to M. Otherwise, the trajectory deviates from
M, so we annotate subsequent frames as SA until the deviation is over. Note that
F(ω) is only representative when a path is followed, i.e., the path has been the most
probable during ω . Thus, when labeling as IA or a HA, the value of F(ω) does not
provide any extra information.

4 Results

We evaluate the method using a real database from [2]. The dataset was cleaned
as detailed in the text, to avoid the three sources of noise described. A wide range
of values were tested for K –number of control points per path– and ω –length of
temporal window–. Here we use K = 10 and |ω|= 20. Fig. 4 shows results for two
paths, their probabilistic maps Θ , and the resulting model M.

Path P1 is more probable than P2 if p(P1|Θ ,ω,(x,y))> 1.5∗ p(P1|Θ ,ω,(x,y)). A
trajectory is considered HA if all paths have probability below 0.5. Fig. 5 shows four
results: the first row are trajectories in the image plane. The second and third rows
show the temporal evolution of p(Ps,e|Θ ,ω,(x,y)) and F(ω), respectively. Case (a)
represents a normal trajectory –single probable path, F(ω)> 0–. Case (b) also has a
single assignment, but F(ω)< 0 when the target goes backwards –interval marked
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Fig. 5 Top: examples of (a) normal trajectory, (b) SA, (c) IA, and (d) HA.

as SA–. Case (c) shows an IA, since the assignment changes and stabilizes; it is un-
clear which part is the anomalous one. Finally, case (d) is a HA, since the trajectory
differs from any path having entry (2).

5 Conclusions

We provided a trajectory-based definition of anomaly in video surveillance. Our hi-
erarchy classifies anomalies regarding the extent and nature of the deviations from
a learned model. A novel GMM representation of observed common routes creates
probabilistic maps that typify abnormality in real-time. The characteristics of our
method overcomes limitations of similar existing approaches, and performs well in
spite of noisy tracking conditions. This technique has direct applications in the area
of intelligent video surveillance, by providing a richer semantic explanation of ob-
served abnormality than existing approaches. However, there is still a gap between
the notion of anomaly in terms of attentional interest and its statistical definition;
future work will refine the proposal with a conceptual layer exploiting common
knowledge about suspicious behaviors.

Acknowledgments

This work was originally supported by EC grant IST-027110 HERMES project; and by the Spanish
projects Avanza I+D ViCoMo (TSI-020400-2009-133), TIN2009-14501-C02 and CONSOLIDER-
INGENIO 2010 MIPRCV (CSD2007-00018).



Title Suppressed Due to Excessive Length 9

References

1. A. Basharat, A. Gritai, and M. Shah. Learning object motion patterns for anomaly detection
and improved object detection. In CVPR, Anchorage, USA, 2008.

2. J. Black, D. Makris, and T. Ellis. Hierarchical database for a multi-camera surveillance system.
Pattern Analysis and Applications, 7(4):430–446, 2004.

3. F. Bremond, M. Thonnat, and M. Zuniga. Video understanding framework for automatic
behavior recognition. Behavior Research Methods, 3(38):416–426, 2006.

4. C. de Boor. A practical guide to splines. Springer-Verlag, New York, USA, 1978.
5. C. Fernández, P Baiget, F.X Roca, and J Gonzàlez. Interpretation of Complex Situations in a
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