toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arjan Gijsenij; R. Lu; Theo Gevers; De Xu edit  doi
openurl 
  Title Color Constancy for Multiple Light Source Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 2 Pages 697-707  
  Keywords  
  Abstract Impact factor 2010: 2.92
Impact factor 2011/2012?: 3.32
Color constancy algorithms are generally based on the simplifying assumption that the spectral distribution of a light source is uniform across scenes. However, in reality, this assumption is often violated due to the presence of multiple light sources. In this paper, we will address more realistic scenarios where the uniform light-source assumption is too restrictive. First, a methodology is proposed to extend existing algorithms by applying color constancy locally to image patches, rather than globally to the entire image. After local (patch-based) illuminant estimation, these estimates are combined into more robust estimations, and a local correction is applied based on a modified diagonal model. Quantitative and qualitative experiments on spectral and real images show that the proposed methodology reduces the influence of two light sources simultaneously present in one scene. If the chromatic difference between these two illuminants is more than 1° , the proposed framework outperforms algorithms based on the uniform light-source assumption (with error-reduction up to approximately 30%). Otherwise, when the chromatic difference is less than 1° and the scene can be considered to contain one (approximately) uniform light source, the performance of the proposed method framework is similar to global color constancy methods.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ GLG2012a Serial 1852  
Permanent link to this record
 

 
Author Hamdi Dibeklioglu; Albert Ali Salah; Theo Gevers edit  doi
openurl 
  Title A Statistical Method for 2D Facial Landmarking Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 2 Pages 844-858  
  Keywords  
  Abstract IF = 3.32
Many facial-analysis approaches rely on robust and accurate automatic facial landmarking to correctly function. In this paper, we describe a statistical method for automatic facial-landmark localization. Our landmarking relies on a parsimonious mixture model of Gabor wavelet features, computed in coarse-to-fine fashion and complemented with a shape prior. We assess the accuracy and the robustness of the proposed approach in extensive cross-database conditions conducted on four face data sets (Face Recognition Grand Challenge, Cohn-Kanade, Bosphorus, and BioID). Our method has 99.33% accuracy on the Bosphorus database and 97.62% accuracy on the BioID database on the average, which improves the state of the art. We show that the method is not significantly affected by low-resolution images, small rotations, facial expressions, and natural occlusions such as beard and mustache. We further test the goodness of the landmarks in a facial expression recognition application and report landmarking-induced improvement over baseline on two separate databases for video-based expression recognition (Cohn-Kanade and BU-4DFE).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ DSG 2012 Serial 1853  
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Ramon Baldrich; Francesc Tous edit  url
doi  openurl
  Title Color Constancy by Category Correlation Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 4 Pages 1997-2007  
  Keywords  
  Abstract Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ VVB2012 Serial 1999  
Permanent link to this record
 

 
Author Antonio Hernandez; Nadezhda Zlateva; Alexander Marinov; Miguel Reyes; Petia Radeva; Dimo Dimov; Sergio Escalera edit   pdf
doi  isbn
openurl 
  Title Graph Cuts Optimization for Multi-Limb Human Segmentation in Depth Maps Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 726-732  
  Keywords  
  Abstract We present a generic framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs in depth maps. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α-β swap Graph-cuts algorithm. Moreover, depth of spatio-temporal neighboring data points are used as boundary potentials. Results on a new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology compared to classical approaches.  
  Address Portland; Oregon; June 2013  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ HZM2012b Serial 2046  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell; Antonio Lopez edit   pdf
url  doi
isbn  openurl
  Title Color Attributes for Object Detection Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3306-3313  
  Keywords pedestrian detection  
  Abstract State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
 
  Address Providence; Rhode Island; USA;  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS; CIC; Approved no  
  Call Number Admin @ si @ KRW2012 Serial 1935  
Permanent link to this record
 

 
Author Naila Murray; Luca Marchesotti; Florent Perronnin edit   pdf
url  doi
isbn  openurl
  Title AVA: A Large-Scale Database for Aesthetic Visual Analysis Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2408-2415  
  Keywords  
  Abstract With the ever-expanding volume of visual content available, the ability to organize and navigate such content by aesthetic preference is becoming increasingly important. While still in its nascent stage, research into computational models of aesthetic preference already shows great potential. However, to advance research, realistic, diverse and challenging databases are needed. To this end, we introduce a new large-scale database for conducting Aesthetic Visual Analysis: AVA. It contains over 250,000 images along with a rich variety of meta-data including a large number of aesthetic scores for each image, semantic labels for over 60 categories as well as labels related to photographic style. We show the advantages of AVA with respect to existing databases in terms of scale, diversity, and heterogeneity of annotations. We then describe several key insights into aesthetic preference afforded by AVA. Finally, we demonstrate, through three applications, how the large scale of AVA can be leveraged to improve performance on existing preference tasks  
  Address Providence, Rhode Islan  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes CIC Approved no  
  Call Number Admin @ si @ MMP2012a Serial 2025  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell edit   pdf
url  doi
isbn  openurl
  Title Names and Shades of Color for Intrinsic Image Estimation Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 278-285  
  Keywords  
  Abstract In the last years, intrinsic image decomposition has gained attention. Most of the state-of-the-art methods are based on the assumption that reflectance changes come along with strong image edges. Recently, user intervention in the recovery problem has proved to be a remarkable source of improvement. In this paper, we propose a novel approach that aims to overcome the shortcomings of pure edge-based methods by introducing strong surface descriptors, such as the color-name descriptor which introduces high-level considerations resembling top-down intervention. We also use a second surface descriptor, termed color-shade, which allows us to include physical considerations derived from the image formation model capturing gradual color surface variations. Both color cues are combined by means of a Markov Random Field. The method is quantitatively tested on the MIT ground truth dataset using different error metrics, achieving state-of-the-art performance.  
  Address Providence, Rhode Island  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes CIC Approved no  
  Call Number Admin @ si @ SPB2012 Serial 2026  
Permanent link to this record
 

 
Author Murad Al Haj; Jordi Gonzalez; Larry S. Davis edit  doi
isbn  openurl
  Title On Partial Least Squares in Head Pose Estimation: How to simultaneously deal with misalignment Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2602-2609  
  Keywords  
  Abstract Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.  
  Address Providence, Rhode Island  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes ISE Approved no  
  Call Number Admin @ si @ HGD2012 Serial 2029  
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Unsupervised co-segmentation through region matching Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 749-756  
  Keywords  
  Abstract Co-segmentation is defined as jointly partitioning multiple images depicting the same or similar object, into foreground and background. Our method consists of a multiple-scale multiple-image generative model, which jointly estimates the foreground and background appearance distributions from several images, in a non-supervised manner. In contrast to other co-segmentation methods, our approach does not require the images to have similar foregrounds and different backgrounds to function properly. Region matching is applied to exploit inter-image information by establishing correspondences between the common objects that appear in the scene. Moreover, computing many-to-many associations of regions allow further applications, like recognition of object parts across images. We report results on iCoseg, a challenging dataset that presents extreme variability in camera viewpoint, illumination and object deformations and poses. We also show that our method is robust against large intra-class variability in the MSRC database.  
  Address Providence, Rhode Island  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RSL2012b; ADAS @ adas @ Serial 2033  
Permanent link to this record
 

 
Author Albert Gordo; Jose Antonio Rodriguez; Florent Perronnin; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title Leveraging category-level labels for instance-level image retrieval Type Conference Article
  Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3045-3052  
  Keywords  
  Abstract In this article, we focus on the problem of large-scale instance-level image retrieval. For efficiency reasons, it is common to represent an image by a fixed-length descriptor which is subsequently encoded into a small number of bits. We note that most encoding techniques include an unsupervised dimensionality reduction step. Our goal in this work is to learn a better subspace in a supervised manner. We especially raise the following question: “can category-level labels be used to learn such a subspace?” To answer this question, we experiment with four learning techniques: the first one is based on a metric learning framework, the second one on attribute representations, the third one on Canonical Correlation Analysis (CCA) and the fourth one on Joint Subspace and Classifier Learning (JSCL). While the first three approaches have been applied in the past to the image retrieval problem, we believe we are the first to show the usefulness of JSCL in this context. In our experiments, we use ImageNet as a source of category-level labels and report retrieval results on two standard dataseis: INRIA Holidays and the University of Kentucky benchmark. Our experimental study shows that metric learning and attributes do not lead to any significant improvement in retrieval accuracy, as opposed to CCA and JSCL. As an example, we report on Holidays an increase in accuracy from 39.3% to 48.6% with 32-dimensional representations. Overall JSCL is shown to yield the best results.  
  Address Providence, Rhode Island  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
  Area Expedition Conference CVPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GRP2012 Serial 2050  
Permanent link to this record
 

 
Author Bhaskar Chakraborty; Michael Holte; Thomas B. Moeslund; Jordi Gonzalez edit   pdf
doi  openurl
  Title Selective Spatio-Temporal Interest Points Type Journal Article
  Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 116 Issue 3 Pages 396-410  
  Keywords  
  Abstract Recent progress in the field of human action recognition points towards the use of Spatio-TemporalInterestPoints (STIPs) for local descriptor-based recognition strategies. In this paper, we present a novel approach for robust and selective STIP detection, by applying surround suppression combined with local and temporal constraints. This new method is significantly different from existing STIP detection techniques and improves the performance by detecting more repeatable, stable and distinctive STIPs for human actors, while suppressing unwanted background STIPs. For action representation we use a bag-of-video words (BoV) model of local N-jet features to build a vocabulary of visual-words. To this end, we introduce a novel vocabulary building strategy by combining spatial pyramid and vocabulary compression techniques, resulting in improved performance and efficiency. Action class specific Support Vector Machine (SVM) classifiers are trained for categorization of human actions. A comprehensive set of experiments on popular benchmark datasets (KTH and Weizmann), more challenging datasets of complex scenes with background clutter and camera motion (CVC and CMU), movie and YouTube video clips (Hollywood 2 and YouTube), and complex scenes with multiple actors (MSR I and Multi-KTH), validates our approach and show state-of-the-art performance. Due to the unavailability of ground truth action annotation data for the Multi-KTH dataset, we introduce an actor specific spatio-temporal clustering of STIPs to address the problem of automatic action annotation of multiple simultaneous actors. Additionally, we perform cross-data action recognition by training on source datasets (KTH and Weizmann) and testing on completely different and more challenging target datasets (CVC, CMU, MSR I and Multi-KTH). This documents the robustness of our proposed approach in the realistic scenario, using separate training and test datasets, which in general has been a shortcoming in the performance evaluation of human action recognition techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ CHM2012 Serial 1806  
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu edit   pdf
url  doi
openurl 
  Title Low-dimensional and Comprehensive Color Texture Description Type Journal Article
  Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 116 Issue I Pages 54-67  
  Keywords  
  Abstract Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges).
A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; and (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes CAT;CIC Approved no  
  Call Number Admin @ si @ ASV2012 Serial 1827  
Permanent link to this record
 

 
Author Jordi Gonzalez; Thomas B. Moeslund; Liang Wang edit   pdf
doi  openurl
  Title Semantic Understanding of Human Behaviors in Image Sequences: From video-surveillance to video-hermeneutics Type Journal Article
  Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 116 Issue 3 Pages 305–306  
  Keywords  
  Abstract Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries.Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound (IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations.Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall.Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ GMW2012 Serial 2005  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell edit   pdf
url  doi
openurl 
  Title Spectral sharpening by spherical sampling Type Journal Article
  Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 29 Issue 7 Pages 1199-1210  
  Keywords  
  Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1084-7529 ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ FVS2012 Serial 2000  
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Fernando Vilariño; Carolina Malagelada; Fernando Azpiroz; Petia Radeva; Jordi Vitria edit   pdf
doi  openurl
  Title Categorization and Segmentation of Intestinal Content Frames for Wireless Capsule Endoscopy Type Journal Article
  Year 2012 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB  
  Volume 16 Issue 6 Pages 1341-1352  
  Keywords  
  Abstract Wireless capsule endoscopy (WCE) is a device that allows the direct visualization of gastrointestinal tract with minimal discomfort for the patient, but at the price of a large amount of time for screening. In order to reduce this time, several works have proposed to automatically remove all the frames showing intestinal content. These methods label frames as {intestinal content – clear} without discriminating between types of content (with different physiological meaning) or the portion of image covered. In addition, since the presence of intestinal content has been identified as an indicator of intestinal motility, its accurate quantification can show a potential clinical relevance. In this paper, we present a method for the robust detection and segmentation of intestinal content in WCE images, together with its further discrimination between turbid liquid and bubbles. Our proposal is based on a twofold system. First, frames presenting intestinal content are detected by a support vector machine classifier using color and textural information. Second, intestinal content frames are segmented into {turbid, bubbles, and clear} regions. We show a detailed validation using a large dataset. Our system outperforms previous methods and, for the first time, discriminates between turbid from bubbles media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1089-7771 ISBN Medium  
  Area 800 Expedition Conference  
  Notes MILAB; MV; OR;SIAI Approved no  
  Call Number Admin @ si @ SDV2012 Serial 2124  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: