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Abstract

Recent progress in the field of human action recognition points towards the use of Spatio-Temporal Interest Points (STIPs) for
local descriptor-based recognition strategies. In this paper, we present a novel approach for robust and selective STIP detection,
by applying surround suppression combined with local and temporal constraints. This new method is significantly different from
existing STIP detection techniques and improves the performance by detecting more repeatable, stable and distinctiveSTIPs for
human actors, while suppressing unwanted background STIPs. For action representation we use a bag-of-video words (BoV)
model of localN-jet features to build a vocabulary of visual-words. To thisend, we introduce a novel vocabulary building strategy
by combining spatial pyramid and vocabulary compression techniques, resulting in improved performance and efficiency. Action
class specific Support Vector Machine (SVM) classifiers are trained for categorization of human actions. A comprehensive set of
experiments on popular benchmark datasets (KTH and Weizmann), more challenging datasets of complex scenes with background
clutter and camera motion (CVC and CMU), movie and YouTube video clips (Hollywood 2 and YouTube), and complex scenes with
multiple actors (MSR I and Multi-KTH), validates our approach and show state-of-the-art performance. Due to the unavailability of
ground truth action annotation data for the Multi-KTH dataset, we introduce an actor specific spatio-temporal clustering of STIPs
to address the problem of automatic action annotation of multiple simultaneous actors. Additionally, we perform cross-data action
recognition by training on source datasets (KTH and Weizmann) and testing on completely different and more challenging target
datasets (CVC, CMU, MSR I and Multi-KTH). This documents therobustness of our proposed approach in the realistic scenario,
using separate training and test datasets, which in generalhas been a shortcoming in the performance evaluation of human action
recognition techniques.

Keywords: action recognition, complex scenes, multiple actors, spatio-temporal interest points, local descriptors, bag-of-words,
support vector machines

1. Introduction

1.1. Human action recognition

In this paper, we address the task of human action recognition
in complex scenes in diverse and realistic settings (background
clutter, camera motion, occlusions and illumination variations).
During the last decade action recognition has been an important
topic in the “looking at people” domain [1–3]. A large number
of methods for human action recognition have been proposed,
stretching from human model and trajectory-based methods to-
wards holistic and local descriptor-based methods.

Most of these previous approaches for human action recog-
nition are constrained to well-controlled environments. Among
the proposed action recognition techniques, one type of ap-
proach uses motion trajectories to represent actions and itre-
quires target tracking [4, 5]. However, due to the difficulty
in building robust object tracker only limited success has been
achieved. Another type of approach uses sequences of silhou-
ettes or body contours to model actions [1, 6] and it requires
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background subtraction. Boiman and Irani [7] extract densely
sampled local video patches for detecting irregular actions in
videos with simple background. Rodriguez et al. [8] designed a
novel method to analyze the filtering responses of different ac-
tions. This approach has difficulties in aligning non-repetitive
actions in complex scenes. Moreover, some researchers model
the configuration of the human body and its evolution in the
time domain [9, 10], and others solely perform action recogni-
tion from still images by computing pose primitives [11, 12].

The research trend in the field of action recognition has, re-
cently, led to more robust techniques [13–22], which to some
extent are applicable for action recognition in complex scenes.
Action recognition in complex scenes is an extremely difficult
task, due to several challenges, like background clutter, cam-
era motion, occlusions and illumination variations. To address
these challenges, several methods, like tree-based template
matching [14], tensor canonical correlation [15], prototype
based action matching [16], a hierarchical approach [18], incre-
mental discriminant analysis of canonical correlation [20], la-
tent pose estimation [21] and generalized Hough transform [22]
have been proposed. Most of these methods are very complex
and require preprocessing, like segmentation, tree data structure
building, target tracking, background subtraction or a human
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(a) KTH (b) Weizmann (c) CVC (d) CMU

(a) YouTube (b) Hollywood 2 (c) MSR I (d) Multi-KTH

Figure 1: Example images with superimposed STIPs from the eightaction datasets applied for evaluation of our approach: KTH, Weizmann, CVC, CMU, YouTube,
Hollywood 2, MSR I and Multi-KTH. The examples give an indication of the described challenges and differences in the datasets: simple scenes (KTH and
Weizmann), semi-complex (CVC), and scenes of high complexity (CMU, YouTube, Hollywood 2, MSR I and Multi-KTH).

body model. Other methods [23–44] for action recognition in
complex scenes, which demand less or no preprocessing, apply
STIP detectors and local descriptors to characterize and encode
the video data, and thereby perform action classification.

1.2. Spatio-temporal interest points

The extraction of appropriate features is critical to action
recognition. Ideally, visual features are able to handle the fol-
lowing challenges for robust performance: (i) scale, rotation
and viewpoint variations of the camera, (ii) performance speed
variations for different people, (iii) different anthropometry of
the actors and their movement style variations, and (iv) clut-
tered backgrounds and camera motion. The ultimate goal is
to be able to perform reliable action recognition applicable for
video indexing and search, intelligent human computer inter-
action, video surveillance, automatic activity analysis and be-
havior understanding. Recently, the use of STIPs has received
increasing interest for local descriptor-based action recognition
strategies. STIP-based methods avoid the temporal alignment
problem, are exceptionally invariant to geometric transforma-
tions, and therefore distorted less by changes in scale, rotation
and viewpoint than image data. Features are locally detected,
thus inherently robust to occlusion and do not suffer from con-
ventional figure-ground segmentation problems (impreciseseg-
mentation, object splitting and merging etc.). Additionally, par-
tial robustness to illumination variations and backgroundclutter
are incorporated.

Laptev and Lindeberg first proposed STIPs for action recog-
nition [45], by introducing a space-time extension of the popu-
lar Harris detector [46]. They detect regions having high inten-
sity variation in both space and time as spatio-temporal corners.
The STIP detector of [45] usually suffers from sparse STIP de-
tection. Later several other methods for detecting STIPs have
been reported [47–51]. Dollar et al. [47] improved the sparse

STIP detector by applying temporal Gabor filters and select
regions of high responses. Dense and scale-invariant spatio-
temporal interest points were proposed by Willems et al. [50],
as a spatio-temporal extension of the Hessian saliency measure,
previously applied for object detection [52, 53]. Instead of ap-
plying local information for STIP detection Wong et al. [51]
propose a global information-based approach. They use global
structural information of moving points and select STIPs ac-
cording to their probability of belonging to the relevant motion.
Although promising results have been reported, these meth-
ods are quite vulnerable to camera motion and cluttered back-
ground, since they detect interest points directly in a spatio-
temporal space.

Hence, STIP-based methods have some shortcomings. First
of all, (i) STIPs focus on local spatio-temporal information in-
stead of global motion, thus the detection of STIPs on human
actors in complex scenes might fall on cluttered backgrounds,
especially if the camera is not fixed. Secondly, (ii) the stability
of STIPs varies due to the local properties of the detector, and
therefore some STIPs can be unstable and imprecise, as a result
they have low repeatability or the local descriptors can become
ambiguous. Thirdly, (iii) redundancy can occur in the localde-
scriptors extracted from the surrounding image region of two
adjacent STIPs. According to Schmid et al. [54] robust interest
points should have high repeatability (geometric stability) and
information content (distinctiveness of features). Furthermore,
Turcot and Lowe [55] investigate and report that it is betterto
select a small subset of useful features for recognition prob-
lems, than a larger set of unreliable features which represent
irrelevant clutter. We address these three shortcomings, by first
(i) detecting Spatial Interest Points (SIPs), then (ii) suppressing
unwanted background points, and finally (iii) imposeing local
and (iv) temporal constraints, achieving a set of selectiveSTIPs
which are more robust to these challenges.
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Figure 2: A schematic overview of the system structure and data flow pipeline of our approach.

1.3. Local descriptors

Several local descriptors have been proposed in the past few
years [30, 47, 50, 56–59]. Local feature descriptors extract
shape and motion in the neighborhoods of selected STIPs using
image measurements, such as spatial or spatio-temporal image
gradients or optical flow. Laptev et al. [30] introduced a com-
bined descriptor to characterize local motion and appearance by
computing histograms of spatial gradient (HOG) and optic flow
(HOF) accumulated in space-time neighborhoods of detected
interest points. Willems et al. [50] proposed the Extended
SURF (ESURF) descriptor, which extends the image SURF de-
scriptor [60] to videos. The authors divide 3D patches into cells,
where each cell is represented by a vector of weighted sums of
uniformly sampled responses of the Haar-wavelets along the
three axes. Dollar et al. [47] proposed a descriptor along with
their detector. The authors concatenate the gradients computed
for each pixel in the neighborhood into a single vector and ap-
ply Principal Component Analysis (PCA) to project the fea-
ture vector onto a low dimensional space. Compared to the
HOG-HOF descriptor proposed by Laptev et al. [30], it does
not distinguish the appearance and motion features. The 3D-
SIFT descriptor was developed by Scovanner et al. [59]. This
descriptor is similar to the Scale Invariant Feature Transforma-
tion (SIFT) descriptor [61], except that it is extended to video
sequences by computing the gradient direction for each pixel
spatio-temporally in three-dimensions. Another extension of
the popular SIFT descriptor was proposed by Kläser et al. [56].
It is based on histograms of 3D gradient orientations, where
gradients are computed using an integral video representation.
Another popular descriptor is theN-jets [57, 62]. AnN-jet is
the set of partial derivatives of a function up to orderN, and
is usually computed from a scale-space representation. TheN-
jets is an inherently strong local motion descriptor, wherethe
two first levels implicitly represent velocity and acceleration.

1.4. Vocabulary building strategies

Bag-of-video words (BoV) models have become popular for
generic action recognition [32, 33, 45, 47, 51, 63], whereas
other techniques based on co-occurrence of STIP based motion
features are also used [64]. The basic BoV model computes and
quantizes the feature vectors, extracted at the detected STIPs

in the video, into video-words. Finally, the entire video se-
quence is represented by a statistical distribution of those video-
words. For classification, discriminative learning modelssuch
as SVM [47] and generative models, e.g. pLSA [51], have
achieved excellent performance for action recognition. Since
the BoV model does not provide a spatio-temporal distribu-
tion of features, the spatial correlogram and spatio-temporal
pyramid matching are applied [33, 34] to capture the spatio-
temporal relationship between local features. Additionally, vo-
cabulary compression techniques are used to reduce the final
feature space [32, 33]. We introduce a novel vocabulary build-
ing strategy by first applying a spatial pyramid and then com-
press the vocabulary at each pyramid level, achieving a compact
and efficient pyramid representation of actions. This is different
from [33], where first a vocabulary is computed, then it is com-
pressed, and finally a spatial correlogram and a spatio-temporal
pyramid are applied.

1.5. Complex scenes

While reliable human action recognition in simple scenes
(KTH [65] and Weizmann [66]) has been achieved [15, 16,
20, 23, 26, 28], the task remains unsolved for complex scenes.
These datasets have been recorded in well-controlled environ-
ments with clean or simple background, controlled lighting
conditions, and no camera motion nor occlusions. In con-
trast, Real world human actions are often recorded in scenes
of high complexity, with cluttered background, illumination
variations, camera motion and occluded bodies. Hence, these
datasets do not correspond very well to real world scenarios.
The mentioned properties make action recognition in complex
scenes much more challenging. New datasets for the purpose
of evaluation of action recognition algorithms in complex and
semi-complex scenes have therefore been produced (CMU [67],
CVC [68], YouTube [32], Hollywood 2 [34], MSR I [63] and
Multi-KTH [41]). We utilize all these datasets for evaluation of
our approach (see Figure 1).

1.6. Cross-data evaluation

Conventional approaches usually build a classifier from la-
beled examples and assume the test samples are generated from
the same distribution, which is rarely the case in realisticsce-
narios. In contrast, cross-data evaluation is highly necessary for
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commercial systems, where the classifier is trained on a spe-
cific dataset during a learning phase and then set up for oper-
ation in the field. Additionally, it also prevents the algorithm
to benefit from the internal data correlation during the evalua-
tion. Cross-data evaluation is more challenging, since thetwo
dataset have usually been recorded in two different occasions.
Only a few authors have recently reported cross-data evalua-
tion [23, 26, 41]. The problem is related to transfer learning
known from machine learning, which attempts to develop meth-
ods to transfer knowledge learned in one or more source tasks
and use it to improve learning in a related target task [69, 70].
We conduct a comprehensive set of cross-data experiments to
carry out a more realistic evaluation of our approach.

1.7. Our approach and contributions

In this work we follow the recent progress and employ a STIP
and local descriptor-based recognition strategy. A schematic
overview of our approach is outlined in Figure 2. (1) We in-
troduce a novel approach for selective STIP detection, by ap-
plying surround suppression combined with local and temporal
constraints, achieving robustness to camera motion and back-
ground clutter. For action representation we use a BoV model
of local N-jet features, extracted at the detected STIPs, to build
a vocabulary of visual-words. (2) To this end, we introduce
a novel vocabulary building strategy by combining (i) a pyra-
mid structure to capture spatial information, and (ii) vocabulary
compression to reduce the dimensionality of the feature space,
resulting in improved performance and efficiency. Action class-
specific SVM classifiers are trained and applied for categoriza-
tion of natural human actions. (3) We evaluate our approach
on both popular benchmark datasets (KTH and Weizmann),
more challenging datasets (CVC, CMU), movie and YouTube
video clips (Hollywood 2 and YouTube) and perform an ex-
haustive cross-data evaluation, trained on source dataset(KTH
and Weizmann) and tested on more challenging target datasets
(CVC, CMU, MSR I and Multi-KTH). Due to the unavailabil-
ity of ground truth action annotation data for the Multi-KTH
dataset, we introduce an actor specific spatio-temporal cluster-
ing of STIPs to address the problem of automatic action an-
notation of multiple simultaneous actors. To observe the per-
formance our automatic STIP clustering-based annotation,we
manually annotate the ground truth actions and compare the ac-
tion recognition accuracies. Finally, we compare our approach
to the most popular action recognition techniques and show be-
yond state-of-the-art performance.

1.8. Paper structure

The remainder of the paper is organized as follows. We
describe our STIP detector and local descriptor-based action
representation in section 2. Section 3 outlines our vocabulary
building strategy and narrates the applied classifier for action
categorization. Experimental results and comparisons, along
with our technique for spatio-temporal clustering of STIPsfor
automatic action annotation of Multi-KTH, are reported in sec-
tion 4, followed up by concluding remarks in section 5.

2. Selective spatio-temporal interest points

Figure 3: A schematic overview of the spatio-temporal interest point detection
module and the associated data flow pipeline.

2.1. Detection of spatial interest points.

Existing STIP detectors [45, 47, 48, 50, 51] are vulnerable to
camera motion and moving background in videos, and therefore
detect unwanted STIPs in the background (see Figure 4). Cao et
al. [23] have recently reported, that of all the STIPs detected by
Laptev’s STIP detector [45], only about 18% correspond to the
three actions performed by the actors in the MSR I dataset [63],
while the rest of the STIPs (82%) belong to the background. To
overcome this problem, we first detect the spatial interest points
(SIPs), then perform background suppression and impose local
and temporal constraints (see Figure 3). We apply the basic
Harris corner detector [46] and compute the first set of interest
points with corner strengthCσ, whereσ is the spatial scale.
Apart from the detected SIPs on the human actors, the obtained
spatial cornersCσ contain a significant amount of unwanted
background SIPs (see Figure 3).

2.2. Suppressing background interest points

The main idea of our spatial interest point suppression orig-
inates in the fact that most corner points detected in the back-
ground texture or on non-human objects follow some particu-
lar geometric pattern, while those on humans do not have this
property. For suppression we use a surround suppression mask
(SSM) for each interest point, taking the current point under
evaluation as the center of the mask. We then estimate the influ-
ence of all surrounding points of the mask on the central point,
and accordingly, a suppression decision is taken. The idea is
motivated by [71], where surround suppression is used for tex-
ture edges to improve object contour and boundary detection
in natural scenes. The similar concept of surround suppression
based on center surround saliency measure is been adopted in
tracking [72], spatio-temporal saliency algorithm [73] and de-
tection of suspicious coincidences in visual recognition [74].
We implement surround suppression by computing an inhibi-
tion term for each point ofCσ. For this purpose we introduce a
gradient weighting factor4Θ,σ(x, y, x−u, y−v), which is defined
as:

4Θ,σ(x, y, x− u, y− v) = (1)

|cos(Θσ(x, y) − Θσ(x− u, y− v))|

whereΘσ(x, y) andΘσ(x − u, y − v) are the gradients at point
(x, y) and (x−u, y− v), respectively;u andv define the horizon-
tal and vertical range of the SSM. If the gradient orientations at
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(a) (b) (c) (d)

Figure 4: STIP detection results for the Multi-KTH dataset.(a) Laptev et al. [45], (b) Dollar et al. [47] (c) Willems et al.[50] and (d) Our approach. Due to
background clutter and camera motion (a), (b) and (c) detect quite a large number of STIPs in the background compared to our approach.

point (x, y) and (x− u, y− v) are identical, the weighting factor
attains its maximum (4Θ,σ = 1), while the value of the fac-
tor decreases with the angle difference and reaches a minimum
(4Θ,σ = 0), when the two gradient orientations are orthogonal.
Hence, the surrounding interest points which have the same ori-
entation, as that of (x, y), will have a maximal inhibitory effect.

For each interest pointCσ(x, y), we define a suppression term
tσ(x, y) as the weighted sum of gradient weights in the suppres-
sion surround of that point:

tσ(x, y) =

∫ ∫

Ω

Cσ(x− u, y− v) (2)

× 4Θ,σ (x, y, x− u, y− u)dudv

whereΩ is the image coordinate domain. We now introduce an
operatorCα,σ(x, y), which takes its inputs: the corner magnitude
Cσ(x, y) and the suppression termtσ(x, y):

Cα,σ(x, y) = H(Cσ(x, y) − αtσ(x, y)) (3)

whereH(z) = z whenz≥ 0 andzerofor negativez values. The
factor α controls the strength of the surround suppression. If
no interest points have been detected in the surrounding texture
of a given point, the response of the operator retains the origi-
nal corner magnitudeCσ(x, y). However, if a large number of
interest points are detected in the surrounding backgroundtex-
ture, the suppression termtσ(x, y) will be higher, resulting in a
suppression of the current interest point under evaluation.

2.3. Imposing local constraints
We select a final set of interest points from the surround sup-

pression responsesCα,σ (Equation 3) by applying non-maxima
suppression, similar to Grigorescu et al.’s method for suppress-
ing gradients [71]. Non-maxima suppression thins the areas
in which Cα,σ is non-zero to one-pixel wide candidate con-
tours as follows: for each position (x, y), the two responses
Cα,σ(x′, y′) andCα,σ(x′′, y′′) in adjacent positions (x′, y′) and
(x′′, y′′), which are intersection points of a line passing through
(x, y) with orientationΘσ(x, y) and a square defined by the di-
agonal points of an 8-neighbourhood, are computed by linear
interpolation (see Figure 5). A point is kept, if the response
Cα,σ(x, y) is greater than that of the two adjacent points, i.e., it
is a local maximum of the neighbourhood. Otherwise its value
is set to zero. Figure 6 shows an example of the performance of
our inhibitive SIP detector. As can be seen in Figure 6.b some
background SIPs might remain inCα,σ. However, these static
SIPs can be removed by imposing temporal constraints.

Figure 5: Responses at position (x′, y′) and (x′′, y′′) along the line passing
through (x, y) [71]. Non-maxima suppression retains the value in the central
position (x, y), if it is greater than the values at (x′, y′) and (x′′, y′′).

2.4. Scale adaptive SIPs
Scale selection plays an important role in the detection

of spatial interest points. Automatic scale selection can be
achieved based on the maximization of normalized derivatives
expressed over scale, or by the behavior of entropy or error
measures evaluated over scale [53, 75]. Instead of applyingan
automatic scale selection, as in [76], we apply a multi-scale ap-
proach [30] and compute suppressed SIPs infivedifferent scales
Sσ = {σ4 ,

σ
2 , σ,2σ,4σ}. We follow the idea of scale selection

presented by Lindeberg [53] to keep the best set of SIPs ob-
tained for each scale. The best scales are selected by maximiz-
ing the normalized differential invariant,

κ̃norm = σ
2γ
0 LyLxx. (4)

whereL = g(·;σ0, τ0) ⊗ I , i.e. the imageI is convoluted with
the Gaussian kernelg; Ly is the first ordery derivative andLxx

is the second orderx derivative ofL. Lindeberg [53] report that
γ = 7

8 performs well in practice to achieve the maximum value
of (κ̃norm)2 for spatial interest point detected at multiple scales.
After computing the suppressed SIPs in the scale-space inSσ,
we apply this scale selection procedure based on the normalized
differential invariant (Equation 4), and keep then best SIPs as
our final set of suppressed SIPs.

2.5. Imposing temporal constraints
After obtaining the final set of spatial interest points we im-

pose temporal constraints to neglect static SIPs. We consider
two consecutive frames at a time and remove the common in-
terest points, since static interest points do not contribute any
motion information:

PT
α,σ = CT

α,σ\{C
T
α,σ ∩CT−1

α,σ } (5)

whereCT
α,σ is the set of interest points in theT th frame. To

avoid the camera motion we have used an interest point match-
ing algorithm along with a temporal Gabor filter response to
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(a) (b)

Figure 6: Performance of our SIP detector withα = 1.5. Detected SIPs (a)
before suppression and (b) after suppression.

remove the static interest points (Equation 5). The remaining
points are the final set of detected STIPs, which are used to ex-
tract local features. The pseudo code for the full STIP detection
is described in Algorithm 1. Parallelization can be adoptedfor
speed optimization by parallel computation of thefor loops in
each algorithm (Algorithm 1,3,2,4 and 5).

Algorithm 1 STIP detection from an image stack.
Require: An image stack (H×W × N): iS;

(contains all the video frames)
Array containing spatial scales:sA;
Alpha: α;
Mask: m;

Ensure: Detected STIPs:stip
1: sip= {}; stip= {};
2: N = size(iS,3); (Total no. of frames)
3: for i = 1→ N do
4: for j = 1→ size(sA) do
5: sip← sip∪ {SCD(iS(:, :, i), sA( j), α,m), sA( j)};
6: end for
7: stip← stip∪ blobDetector(iS(:, :, i), sip);
8: end for
9: stip= temporalConstraint(iS, stip);

10: Return(stip);

2.6. Local feature descriptors

We use localN-jet features [57] extracted at the detected
STIPs. We extractN-jet features of order-2 in five different tem-
poral scales. Consequently, we end up with a 10-dimensional
feature vector,

Fnorm(g(·;σ0, τ0) · I ) = {L, σLx, σLy, . . . , τ
2Ltt} (6)

at locally adopted scale level (σ0, τ0) for the image sequence
I ; whereg(·;σ0, τ0) is the Gaussian kernel at spatio-temporal
scale (σ0, τ0) andσ0 is identical to the scale of the STIP detec-
tor; L = g(·;σ0, τ0) ⊗ I , i.e. the imageI is convoluted with the
Gaussian kernelg; Lx is the first orderx derivative andLxx is
the second orderx derivative ofL etc.

These features are computed with a fixed spatial scaleσ0 but
with five different temporal scales (τ4 ,

τ
2 , τ,2τ,4τ). We do not

increase the order ofN-jet, like Laptev et al. [62], since the
two first levels represent velocityLxt and accelerationLtt infor-
mation, while higher order spatial or temporal derivativesare

Algorithm 2 SCD: Selective STIP detection.
Require: An image (H×W): image;

Spatial scale:σ;
Alpha: α;
Mask: mask;

Ensure: Detected selective spatial interest points:sip
1: cp= harrisCorner(image, σ);
2: cornerPoints= f ind(cp> 0);
3: cp= cp(cornerPoints);
4: Θ = gradient(image);
5: sip= {};
6: for Each point (x, y, σ) ∈ cornerPointsdo
7: 4Θmask = |cos(Θmask− Θmask(x,y) )|;
8: t(x, y) = cpmask⊗ 4Θmask;
9: cp(x, y) = H(cp(x,y) − αt(x,y));

10: (x′, y′) = round(line(x, x+ 1, y,Θ(x, y)));
11: (x′′, y′′) = round(line(x, x− 1, y,Θ(x, y)));
12: if (cp(x, y) > cp(x′, y′))∧(cp(x, y) > cp(x′′, y′′)) then
13: sip← sip∪ (x, y, σ);
14: end if
15: end for
16: Return(sip);

Algorithm 3 blobDetector: Corner strength detection using
Gaussian blob.
Require: An image (H×W): im;

Corner points:corners;
Ensure: Detected selective spatial interest points based on

Gaussian blob strength:cornerPoints
1: cornerPoints= {};
2: for Each point (X,Y, σ) ∈ cornersdo
3: bS = σ1.75 ∗ Ly,im(X,Y) ∗ Lxx,im(X,Y);
4: if (bS > τ) then
5: cornerPoints← cornerPoints∪ (X,Y, σ);
6: end if
7: end for
8: Return(cornerPoints);

sensitive to noise and do not bring significant additional mo-
tion information. The experimental results reported in section 4
document our feature selection by showing state-of-the-art per-
formance.

3. Vocabulary building and classification

We apply a BoV model to learn the visual vocabularies of the
extracted local motion features. We extend the idea of [32] by
introducing pyramid levels in the feature space, but instead of
applying a pyramid at feature level, as in [33], we apply it at
STIP level. This makes the problem of grouping the local fea-
tures much simpler yet robust, since our STIPs are detected in a
selective and robust manner. Finally, we apply vocabulary com-
pression, at each pyramid level, to reduce the dimensionality of
the feature space (see Figure 7).
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Algorithm 4 temporalConstraint: Imposed temporal constraint
on the selected spatial corner points
Require: An image stack (H×W × N): iS;

Spatial corner points:cp;
Ensure: Detected STIPs:stip

1: for i = 1→ H do
2: for j = 1→W do
3: gabor(i, j, :) = gaborFiler1D(iS(i, j, :));
4: end for
5: end for
6: for i = N→ 2 do
7: f1 = iS(:, :, i); f2 = iS(:, :, i − 1);
8: g1 = gabor(:, :, i); g2 = gabor(:, :, i − 1);
9: im1 = iS(:, :, i); im2 = iS(:, :, i − 1);

10: cpf1 ← cpf1\pointMatch(cpf1 , cpf2,g1,g2, im1, im2);
11: end for
12: Return(cp)

Algorithm 5 pointMatch: Detect the set of matching corner
points in two consecutive frames.
Require: Image frames:im1, im2;

Corner strengths:cp1, cp2;
Gabor strength:g1,g2;

Ensure: Detected matching STIPs:mS
1: mP= {};
2: cornerPoints1 = f ind(cp1 > 0);
3: cornerPoints2 = f ind(cp2 > 0);
4: for Each point (x1, y1, σ1) ∈ cornerPoints1 do
5: H = σ1;
6: for Each point (x2, y2, σ2) ∈ cornerPoints2 do
7: similarity = min(cp1(x1,y1),cp2(x2,y2))

min(cp1(x1,y1),cp2(x2,y2)) ;
8: W = σ2;
9: if similarity > τsim then

10: a1 = cropRect(im1, x1, y1,H,W);
11: a2 = cropRect(im2, x2, y2,H,W);
12: sC= crossCorrelation(a1,a2);
13: if (sC> τcorr) ∧ (g1(x1, y1) > τgabor) then
14: mP← mP∪ (x1, y1, σ1);
15: end if
16: end if
17: end for
18: end for
19: Return(mS);

3.1. Pyramid structure

Let IT be theT th frame of the image sequenceI and PT
α,σ

(Equation 5) the set of detected STIPs in this frame. We then
quantize this set of STIPs intoq levels,S = {s0, s1, . . . , sq−1}

[34]. For each of these levels, the STIPs are divided based on
center of mass information. Accordingly, we group the mo-
tion features into different levels of the pyramid. The structure
of our 2-level pyramid is illustrated in Figure 8. The horizon-
tal division helps to capture the distinguishing characteristics
of arm and leg-based actions, whereas the vertical divisiondis-
tinguishes the actions within each of these arm and leg-based

Figure 7: A schematic overview of the vocabulary building module and the
associated data flow pipeline.

action classes.

Figure 8: Spatial pyramid of level 2.

3.2. Vocabulary compression

After dividing the motion features into the described pyramid
levels, we create initial vocabularies of a relatively large size
(about 400 words). To reduce the final feature dimensionality,
we use vocabulary compression, as in [32], but at each level
of the pyramid to achieve a compact yet discriminative visual-
word representation of actions.

Let A be a discrete random variable which takes the value
of a set of action classesA = {a1,a2, . . . ,an}, and Ws be
a random variable which range over the set of video-words
Ws = {w1,w2, . . . ,wm} at pyramid levels. Then the informa-
tion aboutA captured byWs can be expressed by the Mutual
Information (MI), I (A,Ws). Now, letŴs = {ŵ1, ŵ2, . . . , ŵk} for
k < m, be the compressed video-word cluster ofWs. We can
measure the loss of quality of the resulting compressed vocab-
ularyŴs, as the loss of MI:

Q(Ŵs) = I (A,Ws) − I (A, Ŵs) (7)

To find the optimal compression̂Ws we use an Agglomerative
Information Bottleneck (AIB) approach.

3.3. AIB compression

AIB [77] iteratively compresses the vocabularyWs by merg-
ing the visual-wordswi and w j which cause the smallest de-
crease in MI,I (A,Ws). The algorithm can be summarized as
follows:

• InitiateŴs ≡Ws, i.e., by taking each video-word

of Ws as a singleton cluster.
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• Pair-wise distance computation: for every{wi ,w j} ∈ Ŵs,
i < j, the distancedi j (which is a measure of MI) is com-
puted:

di j = (p(wi) + p(w j)) · JSΠ[p(a|wi), p(a|w j)] (8)

whereJSΠ[p(a|wi), p(a|w j)] is the Jensen-Shannon diver-
gence for aM class distribution,pi(x), each with a prior
πi , and is defined as:

JSΠ[p1, p2, . . . , pM] ≡ H[
M∑

i=1

πi pi(x)]−
M∑

i=1

πiH[pi(x)](9)

whereH[p(x)] is Shannon’s entropy:

H[p(x)] = −
∑

x

p(x) log p(x) (10)

• Merging: select the pair of video-words{wα,wβ} for which
the distancedαβ is minimum and merge them. Hence, we
merge the video-words which result in the minimum MI
loss by optimizing the global criterion in Equation 7.

AIB is a greedy algorithm in nature and optimizes the merg-
ing of only two word clusters at every step (local optimization).
Hence, it optimizes the global criteria defined in Equation 7.
We use the described vocabulary compression at each level of
the pyramid per class, and obtain a final class-specific compact
pyramid representation of video-words.

We use AIB for the vocabulary compression instead of Prin-
cipal Component Analysis (PCA) based dimensionality reduc-
tion, since PCA is a linear model, whereas the relationship
among the video words are highly non-linear in nature. Besides,
PCA based dimensionality reduction will work on the first level
cluster (k-means) of the bag-of-words model to reduce the final
bag-of-words histogram dimensionality. Hence, it will nottake
inter and intra cluster similarities into account. Unlike PCA, the
agglomerative information bottleneck (AIB) method presented
in the article, is non-linear and it yields a set of compressed
clusters from the first level clusters, such that the set of result-
ing compressed clusters maximally preserves the original infor-
mation among them. Additionally, AIB based compression ex-
plores the mutual information present among video words and
apply compression based on this information. Hence, in this
case, AIB based compression is analytically more appropriate
than PCA.

To empirically support our selection of AIB based compres-
sion, we have conducted experiments on the Weizmann dataset
using PCA based dimensionality reduction. The obtained av-
erage accuracy is quite low ( 40% in the range of 30%− 70%
compression) compared to the recognition rate of AIB ( 99% in
the same range of compression), which documents that AIB is
a far better choice.

3.4. Action classification

After compression of the video-words at each pyramid level
we compute a histograms of the video-words, using the ex-
tracted local motion features, and concatenate them to a final

Table 1: Average recognition accuracy for the Weizmann dataset using different
SVM kernels. We have used a Polynomial kernel of degree 3.

SVM Kernel Recognition rate (%)

χ-square 99.50
Intersection 97.78
Radial basis function 87.77
Polynomial 78.67
Linear 58.89

feature set for SVM learning. We design a class specificχ-
square kernel-based SVM, SVMai (k,h

ai
Wai

) [78], whereai is the

ith action classA, k is the SVM kernel andhai
Wai

is the his-
togram of action classai , computed using the class-specific
video-wordsWai . For a test setaTest we detect its action class:

i∗aTest
= argmaxjSVMa j (k,h

aTest

Waj
),∀a j ∈ A (11)

We conduct experiments using different SVM kernels, and
observe that theχ-square and intersection kernel are the best
perfoming SVM kernels for all the datasets. Hence, we apply
the χ-square kernel for all our experiments on human action
recognition in section 4. Table 1 shows the average recognition
accuracy for the Weizmann dataset using a number of different
SVM kernels.

4. Experimental results

4.1. Human action datasets

To test our proposed approach for action recognition we con-
duct a comprehensive set of experiments using a number of
publicly available human action datasets (see Figure 1), which
are categorized as follows.

4.1.1. Single actor benchmark
To conduct benchmark testing we choose the two most popu-

lar human action datasets: KTH [65] and Weizmann [66]. Both
of these datasets contain single actors and clean backgrounds.
The KTH dataset consists of 6 different actions:walking, jog-
ging, running, boxing, clappingandwaving. These actions are
performed in 4 different but well-controlled environments by
25 different actors, resulting in a total of 600 action instances.
The Weizmann dataset contains 90 videos separated into 10 ac-
tions performed by 9 persons. The actions are:bend, jumping-
jacks, jump, jump-in-place, run, gallop-sideways, skip, walk,
one-hand-wavingandtwo-hands-waving.

4.1.2. Single actor with complex background
In this category we choose the CVC action dataset [68] and

the CMU action dataset [67]. The CVC dataset consists of 5 ac-
tors performing 7 actions:walking, jogging, running(with hor-
izontal and vertical two-way paths),hand-waving, two-hands-
waving, jump-in-placeandbending. The dataset is rated “semi-
complex” and is interesting, since it has a textured background.
The CMU dataset is composed of 48 video sequences of five
action classes:jumping-jacks, pick-up, push-button, one-hand-
waving and two-hands-waving. The test data contains 110
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videos (events) which are down-scaled to 160× 120 in resolu-
tion. This dataset has been recorded by a hand-held camera with
moving people and vehicles in the background, and is known to
be very challenging.

4.1.3. Movie and YouTube video clips
To evaluate our approach in different challenging stettings,

we conduct experiments on movie and YouTube video clips.
Concretely, we use the Hollywood 2 human actions and scenes
dataset [34] and the YouTube action dataset [32]. The Holly-
wood 2 dataset is composed of video clips extracted from 69
Hollywood movies, and contains 12 classes of human actions:
AnswerPhone, DriveCar, Eat, FightPerson, GetOutCar, Hand-
Shake, HugPerson, Kiss, Run, SitDown, SitUp and StandUp.
In total, there are 1707 action samples divided into a train-
ing set (823 sequences) and a test set (884 sequences), where
train and test sequences are obtained from different movies.
The dataset intends to provide a comprehensive benchmark
for human action recognition in realistic and challenging set-
tings. The YouTube dataset is a collection of 1168 complex and
challenging YouTube videos of 11 human actions categories:
basketball shooting, volleyball spiking, trampoline jumping,
soccer juggling, horseback riding, cycling, diving, swinging,
golf swinging, tennis swingingandwalking (with a dog). The
dataset has the following properties: a mix of steady cameras
and shaky cameras, cluttered background, low resolution, and
variation in object scale, viewpoint and illumination. Thefirst
four actions are easily confused with jumping, the next two may
have similar camera motion, and all the swing actions share
some common motions. Some actions are also performed with
objects such as a horse, bike or dog.

4.1.4. Multiple actors with complex background
We use two multiple actor datasets: the Microsoft research

action dataset I (MSR I) [63] and the Multi-KTH dataset [41].
MSR I consists of 16 video sequences and a total of 63 actions:
14 hand-clapping, 24 hand-wavingand 25boxing, performed
by 10 subjects. The sequences contain multiple types of ac-
tion recorded in indoor and outdoor scenes with cluttered and
moving backgrounds. Some sequences contain multiple actions
performed by different people. Each video is of low resolution
320× 240 with a frame rate of 15 frames per second, and their
lengths are between 32 to 76 seconds. The Multi-KTH dataset
is a more challenging version of the KTH dataset. It contains
5 (exceptrunning) of the 6 KTH-actions, which have been
recorded by a hand-held camera, with multiple simultaneous
actors, a significant amount of camera motion, scale changes
and a more realistic cluttered background.

4.2. Automatic action annotation for Multi-KTH

When multiple actors appear simultaneously in a scene, it is
necessary to group the detected STIPs into actor-specific clus-
ters. An excellent example is the Multi-KTH dataset, where five
actors are present in the scene. Based on this dataset we intro-
duce a spatio-temporal clustering technique for actor-specific
STIP grouping and evaluate its performance in section 4.8. This

Figure 9: A schematic overview of the spatio-temporal clustering module and
the associated data flow pipeline.

spatio-temporal clustering is only a part of Multi-KTH dataset
for automatic annotation.

4.2.1. Actor-specific STIP clustering
The actions present in the Multi-KTH dataset can be divided

into two main groups: the actions with moving actors, like
walkingandjogging, and the actions with static actors, likebox-
ing, wavingandclapping. These two different nature of actions
can be analyzed in the 2D spatio-temporal XT-space (see Fig-
ure 10.b). The actor-specific STIP clustering exploits the 2D
spatio-temporal XT-space and consist of two main steps:

i) detection of lines in the XT-space and cluster STIPs ac-
cordingly,

ii) after the first set of STIP clusters have been estimated,
the associated STIPs are excluded and the resulting subset
is clustered using morphological operations and a spatio-
temporal distance measurement.

The surround suppression effect of our STIP detector, resulting
in a low detection rate of unwanted background STIPs, facili-
tates STIP clustering in the XT-space. This will simply not be
possible with a high number of background STIPs. Figure 9
illustrates the concept of the spatio-temporal clustering.

4.2.2. The spatio-temporal XT-space
A plot of the detected STIPs in 3D spatio-temporal XYT-

space for the Multi-KTH sequence is shown in Figure 10.a.
As can be seen, actor-specific clustering of the STIPs is non-
trivial due to camera motion and occlusions. Hence, successful
clustering cannot be accomplished by commonly used meth-
ods, e.g.,k-means or Mean Shift clustering. Instead, we project
the 3D spatio-temporal STIPs onto a 2D spatio-temporal XT-
space, as shown in Figure 10.b, which reveals some interesting
and useful patterns. The XT-space can be seen as the top-down
view of the 3D spatio-temporal XYT-space (Figure 10.a), with
the horizontal and vertical axes representing the X-position and
the time T, respectively. Hence, the T-axis demonstrates the
evolution of STIPs in time.

4.2.3. Detection of lines in XT-space
Actions like walking, jogging or running create lines in the

XT-space. Hence, we detect line segments in XT-space to clus-
ter STIPs detected for the actors. This is valid, since actors
with a certain target destination move in a linear pattern for
those actions. Hough transform [79] is applied for the detection
of these linear patterns (i.e., line segments) and the candidates
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(a) (b) (c)

(d) (e) (f)

Figure 10: Plots of the detected STIPs for the Multi-KTH dataset, and detection of linear patterns in the XT-space. (a)k-means clustered STIPs in the 3D spatio-
temporal XYT-space and (b) ungrouped STIPs in the 2D spatio-temporal XT-space; (c) line segments in XT-space caused by actions like walking, jogging or
running; (d) candidates with high responses in the Hough space; (e) detected line segment using the Hough transfrom and (f) blobsobtained by morphological
operations.

(a) Frame 24 (b) Frame 123 (c) Frame 138 (d) Frame 208

(e) Frame 217 (f) Frame 234 (g) Frame 296 (h) Frame 333

Figure 12: Automatic annotation of STIPs detected for multiple simultaneously actors for a number of frames from the Multi KTHdataset.

with high response in the Hough Space are kept. Furthermore,
a post candidate approval is applied based on the slope of the
lines. Figure 10 shows this process and the intermediate results.
As can been seen, the erroneously detected (magenta colored)
line can be discarded according to its steep slope. Furthermore,
Line segments for the crossing actors are detected but due toa
high amount of camera motion, it is not possible to detect good
candidates for the other actors performing upper body acations,
like boxing, clappingandwaving.

4.2.4. STIP clustering in XT-space
We use the detected lines to cluster the STIPs by applying a

point-line distance measured(x, t), and threshold according to
a maximum distancedmax for each line segment:

d(x, t) =
|(p − q1) × (p − q2)|

|q2 − q1|
< dmax (12)

wherep is the current STIP under evaluation, andq1 andq2

are two points lying on a detected line. The maximum distance
dmax is set according to the size of the actors appearing in the
dataset. After clustering the first set of STIPs, we exclude them
and use the remaining STIPs for further clustering. We merge

10



Figure 11: Actor-specific STIP clustering in the XT-space.

Table 2: STIP detection ratios (%): the number of STIPs detected on the actors
with respect to the total number of detected STIPs, estimated for the MSR I and
Multi-KTH datasets using our approach and state-of-the-art methods.

Method MSR I Multi-KTH

Our approach 76.21 90.34
Laptev el al. [45] 18.73 48.16
Dollár et al. [47] 21.36 16.03
Willems et al. [50] 24.02 20.24

the new subset of STIPs by morphological operations (see Fig-
ure 10.f) and use the resultingblobs to cluster the STIPs, by
considering the spatio-temporal distance between a STIP and
the contours. Figure 11 shows the resulting actor-specific STIP
clustering in the XT-space, and in figure 12 the grouped STIPs
are superimposed on a number of frames from the Multi-KTH
dataset.

4.3. Evaluation of STIP detector

We evaluate our STIP detector by estimating a score for the
number of detected STIPs for the actors in comparison to those
detected in the background. Cao et al. [23] have recently re-
ported that of all the STIPs detected by Laptev’s STIP detector
[45], only 18.73% correspond to the three actions performed by
the actors in the MSR I, while the rest of the STIPs (81.27%)
belong to the background. Ground truth bounding boxes are
used to determine if a STIP belongs to an action instance. We
evaluate our STIP detector on MSR I in a similar way, and de-
tect76.21% STIPs for the actors. We observe that our detector
tends to detect more points in the background, when applied
to the sequences of MSR I with several moving people in the
background. Our STIP detector is designed to detect interest
point for people, hence it will also consider moving people in
the background as candidates. We also conduct this experiment
for the Multi-KTH dataset by manually annotating ground truth
bounding boxes, and find that89.35% STIPs belong to the ac-
tors (see Figure 4). This is consistent with the concept of our
STIP detector, and documents the effectiveness of our incorpo-
rated surround suppression followed up by imposing local and
temporal constraints. Table 2 shows STIP detection ratios of
the state-of-the-art methods, and clearly documents the supe-
rior performance of our STIP detector.

Table 3: State-of-the-art recognition accuracies (%) for the KTH, Weizmann
and YouTube datasets. *Liu et al. [31] test on 8 out of the 11 YouTube actions.

Method KTH Weiz. YouTube

Our approach 96.35 99.50 86.98
Lui et al. [17] 96.00 - -
Yu et al. [44] 95.67 - -
Kim et al. [15] 95.33 - -
Wu et al. [20] 95.10 98.90 -
Cao et al. [23] 95.02 - -
Kaâniche et al. [28] 94.67 - -
Kovashka et al. [29] 94.53 - -
Gilbert et al. [26] 94.50 - -
Sadek et al. [37] 94.30 - -
Liu & Shah [33] 94.16 - -
Sun et al. [40] 94.00 97.80 -
Saghafi et al. [38] 93.94 - -
Shao et al. [39] 93.89 - -
Liu et al. [32] 93.80 - 71.20
Uemura et al. [41] 93.70 - -
Lin et al. [16] 93.43 100.00 -
Yuan et al. [63] 93.30 - -
Liu et al. [31] 92.30 - 76.10*
Yao et al. [22] 93.00 92.20 -
Schindler et al. [19] 92.70 100.00 -
Laptev et al. [62] 91.80 - -
Jhuang et al. [48] 91.70 98.80 -
kläser et al. [56] 91.40 84.30 -
Yang et al. [12] 87.30 99.40 -
Wong et al. [51] 86.62 - -
Willems et al. [50] 84.26 - -
Niebles et al. [35] 81.50 - -
Dollár et al. [47] 81.17 - -
Scḧuldt et al. [65] 71.72 - -
Gorelick et al. [66] - 99.64 -
Thurau et al. [11] - 94.40 -
Ali et al. [4] - 92.60 -
bregonzio et al. [13] - - 64.00

The time complexity of our STIP computation highly de-
pends on the size of the input video. For a video of size (160×

120× 550), the STIP computation, executed on a standard dual
core Desktop PC (Intel(R) Core(TM)2 CPU 6400@2.13GHz
6GB RAM) using MATLAB R2010, takes approximately 10
mins.

Figure 13 shows the perfomance of the STIP detector in com-
plex scenarios. Despite of the camera movement, the STIP de-
tector performs well (Figure 13(a) and (b)). However, in some
cases, due to the combination of complex backgorund, low res-
olution and large background motion, the STIP detector loses
focus and detects a larger number of background STIPs (Figure
13(c)) or an insufficient number of actor STIPs (Figure 13(d)).

4.4. Vocabulary building

The purpose of this experiment is to reveal the optimal initial
vocabulary size and compression rate for our vocabulary build-
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(a) (b) (c) (d)

Figure 13: Performance of the STIP detector in sequences withcomplex scenarios. Successful STIP detection is shown for frames of the (a) YouTube and
(b) Hollywood 2 dataset, respectively. Additionally, the failure frames of (c) YouTube and (d) Hollywood 2 are also shown. In (a) and (b) our STIP detector
successfully handles camera motion and the STIPs are detectedonly in the motion of interest. On the contrary, in the frames of(c) and (d), due to high background
motion and difference in scene resolution the STIP detector loses the focuson the motion of the human actors.

(a) (b)

Figure 14: Revealing the influence of the vocabulary size andcompression on the average action recognition rates. (a) A 3DPlot of the recognition rate, as a
function of the initial vocabulary size and the compression rate, for the KTH dataset. (b) Recognition rates, as a function of the initial vocabulary size, for the three
single actor datasets: CMU, CVC and Weizmann. The compressionrate is fixed to 65%, i.e., 35% of the initial vocabulary size is used.

(a) KTH boxing (b) KTH running (c) KTH waving (d) Weizmannskip (e) Weizmannwalking

Figure 15: Error-frames of the videos that are miss-classifiedfor the KTH and Weizmann datasets. The first three frames depictmiss-classifiedboxing, runningand
wavingactions from the KTH dataset, respectively. The last two error-frames areskipandwalkingactions from the Weizmann dataset. These frames show cases
which result in miss-classification. Due to low resolution only a limited number of STIPs are detected for the important body parts (arms and legs), which are taking
major part in these actions.

ing strategy. We divide each dataset into 50% training, 20%
validation and 30% testing partitions. The final training ofthe
SVMs uses both the training and validation sets. The recogni-
tion rates are computed by averaging over 50 random instances
of these sets. We conduct experiments using a similar vocabu-
lary size range as Liu et al. [32], with an initial vocabularysize

of 50 video-words and incrementing it up to 400. We weight the
initial vocabulary size according to the pyramid level using a
weight factor 2−s, wheres is the pyramid level. The vocabulary
size is weighted to avoid the empty/singleton cluster creation
in finer levels of the pyramid. We reduce the dimensionality
of the final feature vectors for the SVM classifiers by apply-
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ing vocabulary compression at each pyramid level. To choose
the optimal vocabulary size and compression rate, we vary the
initial vocabulary size range [50-400] with an increment of20,
and for each of these vocabularies we vary the compression rate
from 0% to 95% with an increment of 5%. Figure 14.a shows
the resulting 3D plot of the recognition rate as a function ofthe
initial vocabulary size and the compression rate, for the KTH
dataset. The maximum recognition rate indicates the optimal
vocabulary size and compression rate. We observe that the best
result is obtained at a compression rate upto65%, and the per-
formance starts to degrade rapidly above80%. In Figure 14.b
the recognition rate, as a function of the initial vocabulary size
for the three other single actor datasets: CMU, CVC and Weiz-
mann, is shown. We obtain approximately 100% recognition
rate in the initial vocabulary size range [230-300] for the Weiz-
mann, CMU and CVC datasets, which is similar to the the mid-
dle peak in Figure 14.a for KTH.

4.5. Benchmark testing

We use the KTH and Weizmann datasets for benchmark test-
ing, and achieve an accuracy of96.35% for KTH and99.50%
for Weizmann. Table 3 shows a comparison of the recognition
rates of our approach and several other state-of-the-art methods
for these two datasets. It should be noted that we achieve state-
of-the-art recognition rate for KTH. We obtained this recogni-
tion with an initial vocabulary size of 350 and a 60% compres-
sion rate. The main reasons for this improvement are the selec-
tive STIP detection and the spatial pyramids, which capturethe
local characteristics of actions, and thereby reduce interclass
confusion. The accuracy for Weizmann is approximately 100%,
which is comparable to the state-of-the-art. Lin et al. [16]re-
port a clear 100% recognition rate for Weizmann. However,
this work applies a template matching technique, using holis-
tic features extracted from global boundary box-based interest
regions. Furthermore, it requires background subtractionand
target tracking. In contrast, our approach uses local features
and does not require any preprocessing. Since, Weizmann is a
simple datasets without any further challenges, it favors global
and holistic methods. In contrast, our approach is applicable
for all types of scenes, including very challenging scenes of
high complexity, which we will validate in the following.

We analyze the error-frames of the 0.50% videos of the Weiz-
mann dataset, which are miss-classified. Similarly, we analyse
the miss-classified frames from the confusion matrix for KTH.
Figure 15 shows some example error-frames. Due to low reso-
lution only a limited number of STIPs are detected for the im-
portant body parts (arms and legs), which are taking major part
in actions likeboxingandrunning. In these few cases this re-
sults in miss-classification.

4.6. Evaluation on complex scene

The main objective of this evaluation is to test the capability
of our method to handle background clutter. For this purpose
we choose the CMU action dataset and the CVC Action dataset
with textured background. Despite the presence of strong back-
ground texture and clutter, we achieve a100.0% accuracy rate

for CVC and 99.42% for CMU (see Table 5). The high perfor-
mance for both of these dataset is consistence with the theoret-
ical foundation of our proposed STIP detector. The detector’s
selective behavior, achieved by incorporating surround suppres-
sion and imposing local and temporal constraints, results in ro-
bustness to background texture and clutter.

4.7. Action recognition in movie and YouTube video clips

Next, we conduct experiments on movie and YouTube video
clips, using the YouTube and Hollywood 2 action datasets. We
achieve 99.13% recognition rate for the YouTube actions. Ta-
ble 3 shows the comparison with other state-of-the-art method
for this dataset. Our approach is far superior compared to the
other reported methods, due to our STIP detector’s capability
to handle complex and challenging scenes with camera motion,
cluttered background, and variation in scale, viewpoint and il-
lumination.

For the Hollywood 2 dataset, the performance is evaluated as
suggested in [34], i.e., by computing the average precision(AP)
for each of the action classes and reporting the mean AP over all
classes (MAP). Table 4 shows the AP for the actions in compar-
ison to other state-of-the-art methods. The Hollywood 2 dataset
contains very complex scenes from movies with no ground truth
information available, and moreover the different instances of
an action are sometimes viewed from different camera angles.

Notes: “AnswerphoneandHandshakeare quite small, and
therefore need a very complex set of compound features in or-
der to classify the action over the background noise. In contrast,
FightPersonandDriveCar use more global contextual features
and therefore they work with lower level features.”

4.8. Cross-data experiments

We perform exhaustive cross-data evaluation to test our pro-
posed method in more realistic scenarios and use the KTH and
Weizmann datasets for training data. We observe that the Weiz-
mann dataset is not appropriate for training, and results ina
poor 40% and 45% recognition rate for CVC and CMU, respec-
tively. This is due to inadequate training data since Weizmann
contains a very limited number of action instances per category
compared to KTH. Table 5 shows the accuracy rates obtained
using KTH as training. These cross-data results validate that
our approach is applicable for more practical scenarios, where
training and test data are coming from different sources.

The KTH dataset has only one common action,two-hands-
waving, with the CMU action dataset. We use the KTHrunning
sequence as negative data and obtain a91.94% recognition rate.
It is noticeable, that the accuracy is actually higher for Weiz-
mann (100%) and CMU (99.42%), than when training and test-
ing on the same dataset, due to the sufficient action instances for
training. Additionally, for CMU we only recognize one action,
two-hands-waving, compared to five actions when both training
and testing on CMU. On the contrary, the accuracy decreases
by 3% for CVC, due to its lower inter-dataset correlation with
KTH. For the Multi-KTH dataset we manually annotate the ac-
tion labels as ground truth, using bounding boxes, and obtain
98.40% accuracy. We perform another test using our automatic
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Table 4: The average precision (%) and mean average precision(MAP) for the actions of Hollywood 2, using our apporach in comparison to the state-of-the-art.

Action Marszalek [34] Han [27] Wang [43] Gilbert [26] Ullah [42] Our approach
AnswerPhone 13.10 15.57 - 40.20 26.30 41.60
DriveCar 81.00 87.01 - 75.00 86.50 88.49
Eat 30.60 50.93 - 51.50 59.20 56.50
FightPerson 62.50 73.08 - 77.10 76.20 78.20
GetOutCar 8.60 27.19 - 45.60 45.70 47.37
HandShake 19.10 17.17 - 28.90 49.70 52.50
HugPerson 17.00 27.22 - 49.40 45.40 50.30
Kiss 57.60 42.91 - 56.60 59.00 57.35
Run 55.50 66.94 - 47.50 72.00 76.73
SitDown 30.00 41.61 - 62.00 62.40 62.50
SitUp 17.80 7.19 - 26.80 27.50 30.00
StandUp 33.50 48.61 - 50.70 58.80 60.00
MAP results 35.50 42.12 47.70 50.90 55.70 58.46

Table 5: Recognition accuracies (%) for cross-data evaluation trained on KTH and tested on other datasets: Weizmann, CVC, CMU, MSR I and Multi-KTH. The
first row presents results when training and testing on the same dataset for Weizmann, CVC and CMU.

Method Weizmann CVC CMU MSR I Multi-KTH

Our approach (without cross-data) 99.50 100.00 99.42 - -

Our approach 100.0 96.95 91.94 84.77 98.40
Yuan et al. [63] - - 70.00 - -
Cao et al. [23] - - - 60.00 -
Gilbert et al. [25] - - - - 75.20
Gilbert et al. [26] - - - - 68.80
Uemura et al. [41] - - - - 65.40

action annotation described in section 4.2, and obtain a 94.20%
recognition rate, which is comparable to the results of the man-
ual annotation. For the MSR I dataset we achieve84.77% accu-
racy. The difficult part of MSR I is that some sequences contain
moving people in the background depicted by the bounding box
of the agent performing the action, which result in unwanted
STIP in the background, and thereby a lower recognition rate
compared to the other datasets. In conclusion, these results
outperform the state-of-the-art significantly (see Table 5) and
hereby validate the robustness of our method in more realistic
action recognition scenarios. Although these datasets arevery
complex and contain several practical challenges: cluttered and
moving backgrounds (including people and vehicles), camera
motion and multiple actors, our approach performs robustly.

5. Conclusion

In this paper we have presented a novel approach for human
action recognition in complex scenes. Our approach is basedon
selective STIPs which are detected by suppressing background
SIPs and imposing local and temporal constraints, resulting in
more robust STIPs for actors and less unwanted background
STIPs. We apply a BoV model of local N-jet descriptors ex-
tracted at the detected STIPs and introduce a novel vocabulary
building strategy by combining a spatial pyramid and vocab-
ulary compression. Action class-specific SVM classifiers are
trained to finally identify human actions.

The strong aspect of our proposed STIP detection method is,
it can detect dense STIPs at the motion region without affected

by the complex background. This is an important property to
detect actions in complex scenarios. Regarding the weak as-
pect, our method suffers in the presence of other motion (pres-
ence of multiple actors) together with the region of action.In
this scenario we detect several STIPs from different motion re-
gion results in poor classification.

In the current system, we use greedy approach for vocabulary
compression. Sometimes, the time complexity is higher with
this approach. A non-greedy method for vocabulary compres-
sion might be an interesting inclusion for the future work. Our
automatic action annotation using STIP clustering works well
for the multi-KTH dataset, yet it is not generalized for other
multi-actor action datasets. The automatic action annotation for
multi-actor datasets is a very difficult and challenging task. We
could include more complex shape matching algorithm along
with a human model in the XT-space to minimize the overlap in
the STIP clusters of the moving and non-moving actors.

We have reported superior action recognition results in com-
parison to the state-of-the-art, when testing on benchmark
datasets of simple scenes (96.35% accuracy for KTH and
99.50% for Weizmann), and similar performance for complex
scenes (CVC and CMU). Additionally, we have shown state-
of-the-art performance and proven the applicability of ourap-
proach for action recognition in movie and YouTube video clips
by significantly outperforming other methods evaluated on the
YouTube action dataset, and showing the highest mean average
precision for the Hollywood 2 dataset. A comprehensive cross-
data evaluation has been performed by separating the training
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(KTH) and test datasets (CVC, CMU, MSR I and Multi-KTH).
To our best knowledge we are the first to report exhaustive
cross-data evaluation. Compared to state-of-the-art we have
reported superior results by raising the recognition ratesfrom
approximately 60-75% to 85-100%.
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