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Abstract

Recent progress in the field of human action recognitiontpdimwards the use of Spatio-Temporal Interest Points (§Tié
local descriptor-based recognition strategies. In thjgepawe present a novel approach for robust and selective 8dtection,
by applying surround suppression combined with local antptral constraints. This new method is significantlffetient from
existing STIP detection techniques and improves the padace by detecting more repeatable, stable and distinfives for
human actors, while suppressing unwanted background STHBs action representation we use a bag-of-video words JBoV
model of localN-jet features to build a vocabulary of visual-words. To #sl, we introduce a novel vocabulary building strategy
by combining spatial pyramid and vocabulary compressichnigues, resulting in improved performance afittiency. Action
class specific Support Vector Machine (SVM) classifiers eameéd for categorization of human actions. A comprehenset of
experiments on popular benchmark datasets (KTH and Wezmarore challenging datasets of complex scenes with baakgr
clutter and camera motion (CVC and CMU), movie and YouTublewiclips (Hollywood 2 and YouTube), and complex scenes with
multiple actors (MSR | and Multi-KTH), validates our appobeand show state-of-the-art performance. Due to the uladiféty of
ground truth action annotation data for the Multi-KTH d&tasve introduce an actor specific spatio-temporal clusgeof STIPs

to address the problem of automatic action annotation ofiphelsimultaneous actors. Additionally, we perform crdsga action
recognition by training on source datasets (KTH and Weizmhand testing on completelyftirent and more challenging target
datasets (CVC, CMU, MSR | and Multi-KTH). This documents tbbustness of our proposed approach in the realistic scenar
using separate training and test datasets, which in genasabeen a shortcoming in the performance evaluation of hawizon
recognition techniques.

Keywords: action recognition, complex scenes, multiple actors,iggamporal interest points, local descriptors, bag-ofds,
support vector machines

1. Introduction background subtraction. Boiman and Irani [7] extract dgnse
_ - sampled local video patches for detecting irregular astion
1.1. Human action recognition videos with simple background. Rodriguez et al. [8] desibae

In this paper, we address the task of human action recognitionovel method to analyze the filtering responses iedent ac-
in complex scenes in diverse and realistic settings (backgt ~ tions. This approach hasfliculties in aligning non-repetitive
clutter, camera motion, occlusions and illumination véoias). ~ actions in complex scenes. Moreover, some researchers mode
During the last decade action recognition has been an import the configuration of the human body and its evolution in the
topic in the “looking at people” domain [1-3]. A large number time domain [9, 10], and others solely perform action recogn
of methods for human action recognition have been proposedon from still images by computing pose primitives [11, 12]
stretchlng_frpm human model_and trajectory-based mettwds t g research trend in the field of action recognition has, re-
wards holistic and local descriptor-based methods. cently, led to more robust techniques [13-22], which to some
_Most of these previous approaches for human action recogsyent are applicable for action recognition in complexnsse
nition are constrained to well-controlled environmentsidag A tion recognition in complex scenes is an extremeRidlilt
the proposed action recognition techniques, one type of afaqy gue to several challenges, like background cluttem-c
prqach uses motiop trajectories to represent actions amr:i it era motion, occlusions and illumination variations. To rasd
quires target tracking [4, 5]. However, due to théfidulty 056 challenges, several methods, like tree-based templa
in building robust object tracker only limited success hasrb matching [14], tensor canonical correlation [15], profy
achieved. Another type of approach_uses sequences of Sil_hoHased action matching [16], a hierarchical approach [Bé}e-
ettes or body contours to model actions [1, 6] and it requirégyanta) discriminant analysis of canonical correlation]{26-
tent pose estimation [21] and generalized Hough transfagh [
Email addressesbhaskar@cvc.uab.es (Bhaskar Chakraborty), have bee_n proposed. MOSt .Of these meth.OdS are very complex
mbhOcreate . aau. dk (Michael B. Holte) tbmecreate . aau.dk (Thomas B.  @nd require preprocessing, like segmentation, tree daiztste
Moeslund),jordi . gonzalez@cvc.uab. cat (Jordi Gonzlez) building, target tracking, background subtraction or a Aom
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Figure 1: Example images with superimposed STIPs from the aemtun datasets applied for evaluation of our approach: Kieizmann, CVC, CMU, YouTube,
Hollywood 2, MSR | and Multi-KTH. The examples give an indicet of the described challenges andfeliences in the datasets: simple scenes (KTH and
Weizmann), semi-complex (CVC), and scenes of high complexigyCYouTube, Hollywood 2, MSR | and Multi-KTH).

body model. Other methods [23-44] for action recognition inSTIP detector by applying temporal Gabor filters and select
complex scenes, which demand less or no preprocessing, appkgions of high responses. Dense and scale-invariantospati
STIP detectors and local descriptors to characterize atoden  temporal interest points were proposed by Willems et all,[50

the video data, and thereby perform action classification. as a spatio-temporal extension of the Hessian saliencyureas
previously applied for object detection [52, 53]. Instedcp-
1.2. Spatio-temporal interest points plying local information for STIP detection Wong et al. [51]

propose a global information-based approach. They useblob
structural information of moving points and select STIPs ac
cording to their probability of belonging to the relevanttioa.

X . - " Although promising results have been reported, these meth-
nd viewpoint variations of th mera, (ii rformanceesh . . '
and viewpoint variations of the camera, (if) performa ods are quite vulnerable to camera motion and cluttered-back

variations for diterent people, (iii) dferent anthropometry of ) . . . o
the actors and their movement style variations, and (i} clu ground, since they detect interest points directly in aispat
’ .tsemporal space.

tered backgrounds and camera motion. The ultimate goal i

to be able to perform reliable action recognition appliesfolr Hence, STIP-based methods have some shortcomings. First

video indexing and search, intelligent human computerrdinte of all, (i) STIPs focus on local spatio-temporal informatio-

action, video surveillance, automatic activity analysisl de-  stead of global motion, thus the detection of STIPs on human

havior understanding. Recently, the use of STIPs has mdeiv actors in complex scenes might fall on cluttered backgreund

increasing interest for local descriptor-based actiongaedion  especially if the camera is not fixed. Secondly, (ii) the #itstb

strategies. STIP-based methods avoid the temporal alighmeof STIPs varies due to the local properties of the detectut, a

problem, are exceptionally invariant to geometric transf@  therefore some STIPs can be unstable and imprecise, adia resu

tions, and therefore distorted less by changes in scalgjont they have low repeatability or the local descriptors carohee

and viewpoint than image data. Features are locally detecteambiguous. Thirdly, (iii) redundancy can occur in the lodel

thus inherently robust to occlusion and do ndfeufrom con-  scriptors extracted from the surrounding image region af tw

ventional figure-ground segmentation problems (impres#ge  adjacent STIPs. According to Schmid et al. [54] robust &der

mentation, object splitting and merging etc.). Additidngbar-  points should have high repeatability (geometric stabikind

tial robustness to illumination variations and backgrooluter  information content (distinctiveness of features). Femthore,

are incorporated. Turcot and Lowe [55] investigate and report that it is better
Laptev and Lindeberg first proposed STIPs for action recogselect a small subset of useful features for recognitiompro

nition [45], by introducing a space-time extension of thepo lems, than a larger set of unreliable features which reptese

lar Harris detector [46]. They detect regions having higeima  irrelevant clutter. We address these three shortcomingfirdh

sity variation in both space and time as spatio-temporalerst (i) detecting Spatial Interest Points (SIPs), then (ii)messing

The STIP detector of [45] usually fars from sparse STIP de- unwanted background points, and finally (iii) imposeingaloc

tection. Later several other methods for detecting STIR® ha and (iv) temporal constraints, achieving a set of sele&iViPs

been reported [47-51]. Dollar et al. [47] improved the spars which are more robust to these challenges.

2

The extraction of appropriate features is critical to atctio
recognition. Ideally, visual features are able to handéefti
lowing challenges for robust performance: (i) scale, fotat
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Figure 2: A schematic overview of the system structure and fila pipeline of our approach.

1.3. Local descriptors in the video, into video-words. Finally, the entire video se
. . uence is represented by a statistical distribution ofdivideo-
Several local descriptors have been proposed in the past f

) ords. For classification, discriminative learning modalish
years [30, 47, 50, 56-59]. Local feature descriptors elxtra_cas SVM [47] and generative models, e.g. pLSA [51], have

_shape and motion mtthe ne;]ghborhot(_)dls of Sel?‘:tﬁd STIPg USINchieved excellent performance for action recognitiomcé&i
IMage measurements, such as spaial or spatio- emporgdnma_the BoV model does not provide a spatio-temporal distribu-
gradients or optical flow. Laptev et al. [30] introduced a eom tion of features, the spatial correlogram and spatio-temipo

bined descriptor to characterize local motion and appearbn pyramid matching are applied [33, 34] to capture the spatio-

computing histograms of spatial gradient (HOG) and opti flo qE?amporal relationship between local features. Additibnab-

(HOF) accumulated in space-time neighborhoods of detecte bulary compression techniques are used to reduce the final

interest points. Willems et al. [50] proposed the Extende eature s : .
. X . pace [32, 33]. We introduce a novel vocabulangdbuil
SURF (ESURF) descriptor, which extends the image SURF delhg strategy by first applying a spatial pyramid and then com-

scriptor [60] to viQeos. The authors divide 3D patqhes Iredse ess the vocabulary at each pyramid level, achieving a aotnp
where each cell is represented by a vector of weighted sums g d eficient pyramid representation of actions. This iSatient
uniformly sampled responses of the Haar-wavelets along thﬁom [33], where first a vocabulary is computed, then it is eom

three axes. Dollar et al. [47] proposed a descriptor alorif wi : ; ;
. ) pressed, and finally a spatial correlogram and a spatiodeahp
their detector. The authors concatenate the gradients weehp pyramid are applied.

for each pixel in the neighborhood into a single vector and ap
ply Principal Component Analysis (PCA) to project the fea—1 5. Complex scenes

ture vector onto a low dimensional space. Compared to the i ) , o
HOG-HOF descriptor proposed by Laptev et al. [30], it does While reliable human action recognition in simple scenes

not distinguish the appearance and motion features. The 3BXTH [65] and Weizmann [66]) has been achieved [15, 16,
SIFT descriptor was developed by Scovanner et al. [59]. Thi€0: 23, 26, 28], the task remains unsolved for complex scenes
descriptor is similar to the Scale Invariant Feature Tramsé- These datasets have been recorded in well-controlledamvir
tion (SIFT) descriptor [61], except that it is extended tdeg ~ MeNts with clean or simple background, controlled lighting
sequences by computing the gradient direction for each pix¢°nditions, and no camera motion nor occlusions. In con-
spatio-temporally in three-dimensions. Another extemsb  aSt Real world human actions are often recorded in scenes
the popular SIFT descriptor was proposed bgser et al. [56].  ©f high complexity, with cluttered background, illumirai

It is based on histograms of 3D gradient orientations, wherd@riations, camera motion and occluded bodies. Hencegthes

gradients are computed using an integral video represemtat datasets do not correspond very well to real world scenarios
Another popular descriptor is tHe-jets [57, 62]. AnN-jet is The mentioned properties make action recognition in corple

the set of partial derivatives of a function up to ordérand ~ SC€Nes much more challenging. New datasets for the purpose
is usually computed from a scale-space representationNThe of eyaluatlon of action recognition algorithms in complexda
jets is an inherently strong local motion descriptor, whiaee ~ S€Mi-complex scenes have therefore been produced (CMU [67]

two first levels implicitly represent velocity and accelia. CVC [68], YouTube [32], Hollywood 2 [34], MSR 1 [63] and
Multi-KTH [41]). We utilize all these datasets for evaluatiof

- . our approach (see Figure 1).
1.4. Vocabulary building strategies

Bag-of-video words (BoV) models have become popular forl-6. Cross-data evaluation
generic action recognition [32, 33, 45, 47, 51, 63], whereas Conventional approaches usually build a classifier from la-
other techniques based on co-occurrence of STIP basedmmotibeled examples and assume the test samples are generated fro
features are also used [64]. The basic BoV model computes arile same distribution, which is rarely the case in realistie-
quantizes the feature vectors, extracted at the detecté#®sST narios. In contrast, cross-data evaluation is highly resgsfor
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commercial systems, where the classifier is trained on a sp@ Selective spatio-temporal interest points
cific dataset during a learning phase and then set up for oper-

ation in the field. Additionally, it also prevents the algbm

to benefit from the internal data correlation during the eaal
tion. Cross-data evaluation is more challenging, sincewioe
dataset have usually been recorded in twifedént occasions.
Only a few authors have recently reported cross-data evaluj| . @S g |/ &= 7l >
tion [23, 26, 41]. The problem is related to transfer leagnin == ' == o '
known from machine learning, which attempts to develop meth---
ods to transfer knowledge learned in one or more source tasks

and use it to improve learning in a related target task [69, 70 Figure 3: A schematic overview of the spatio-temporal intepent detection
We conduct a comprehensive set of cross-data experiments #@dule and the associated data flow pipeline.

carry out a more realistic evaluation of our approach.

o 2.1. Detection of spatial interest points.
1.7. Our approach and contributions Existing STIP detectors [45, 47, 48, 50, 51] are vulnerable t
pcamera motion and moving background in videos, and thezefor

In this work we follow the recent progress and employ a ST | :
detect unwanted STIPs in the background (see Figure 4).Cao e

and local descriptor-based recognition strategy. A scliema
overview of our approach is outlined in Figure 2. (1) We in- &l [23] have recently reported, that of all the STIPs dewtly

troduce a novel approach for selective STIP detection, by ag-aPtev's STIP detector [45], only about 18% correspond & th
plying surround suppression combined with local and teripor thrge actions performed by the actors in the MSR | datasét [63
constraints, achieving robustness to camera motion arkt bacWhile the rest of the STIPs (82%) belong to the background. To
ground clutter. For action representation we use a BoV modéjVercome this problem, we first detect the SPa“a' lnt.erelsltp

of local N-jet features, extracted at the detected STIPs, to buil¢S!PS). then perform background suppression and imposé loc
a vocabulary of visual-words. (2) To this end, we introduce®d temporal constraints (see Figure 3). \We apply the basic
a novel vocabulary building strategy by combining (i) a pyra Harris corner detector [46] and compute the first set of eder

mid structure to capture spatial information, and (ii) vagiary points with corner strengtl,, whereo is the spatial scale._
compression to reduce the dimensionality of the featureespa APart from the detected SIPs on the human actors, the oltaine
resulting in improved performance andieiency. Action class- spatial cornersC, contam a significant amount of unwanted
specific SVM classifiers are trained and applied for categeri P2ckground SIPs (see Figure 3).

tion of natural human actions. (3) We evaluate our approac
on both popular benchmark datasets (KTH and Weizmanny, h o ] ) )
more challenging datasets (CVC, CMU), movie and YouTube The main idea of our spatial mteres_t point suppression-orig
video clips (Hollywood 2 and YouTube) and perform an ex-inates in the fact that most corner pgmts detected in thk—bgc
haustive cross-data evaluation, trained on source d4t&set ~ 9round texture or on non-human objects follow some particu-
and Weizmann) and tested on more challenging target datasd@” 9eometric pattern, while those on humans do not have this
(CVC, CMU, MSR | and Multi-KTH). Due to the unavailabil- ProPerty. For Suppression we use a surround suppre§S|dn mas
ity of ground truth action annotation data for the Multi-kTH (SSM) for each interest point, taking the current point unde
dataset, we introduce an actor specific spatio-temporateru evaluation as the cepter of.the mask. We then estimate tle |an
ing of STIPs to address the problem of automatic action an€"¢€ of all §urround|ng points of the lmlask_on the CentraI'Fpom'
notation of multiple simultaneous actors. To observe the pe @nd accordingly, a suppression decision is taken. The Elea i
formance our automatic STIP clustering-based annotatien, Motivated by [71], where surround suppression is used for te
manually annotate the ground truth actions and comparecthe aluré €dges to improve object contour and boundary detection
tion recognition accuracies. Finally, we compare our aggho N natural scenes. The S|m|Iar_concept of surrpund suppress
to the most popular action recognition techniques and sheew b Paséd on center surround saliency measure is been adopted in
yond state-of-the-art performance. tracking [72], spatio-temporal saliency algorithm [73[ase-
tection of suspicious coincidences in visual recognitica][

We implement surround suppression by computing an inhibi-
tion term for each point of,.. For this purpose we introduce a

The remainder of the paper is organized as follows. Wedradientweighting factate . (x,y, x-u,y-v), which is defined
describe our STIP detector and local descriptor-basedracti 5
representation in section 2. Section 3 outlines our voeapul Lo (XY, X—UY—V) = (1)
building strategy and narrates the applied classifier ftinac 1C0S@,(X.Y) — O (X = Uy — V)
categorization. Experimental results and comparisors)cal T v ’
with our technique for spatio-temporal clustering of STi&®%s  where®,(x,y) and®,(x — u,y — v) are the gradients at point
automatic action annotation of Multi-KTH, are reportedéts (X, y) and k- u,y— V), respectivelyu andv define the horizon-
tion 4, followed up by concluding remarks in section 5. tal and vertical range of the SSM. If the gradient orientaiat

.2. Suppressing background interest points

1.8. Paper structure



Figure 4: STIP detection results for the Multi-KTH datasét) Laptev et al. [45], (b) Dollar et al. [47] (c) Willems et §0] and (d) Our approach. Due to
background clutter and camera motion (a), (b) and (c) detét guarge number of STIPs in the background compared to oupaphp.

point (x,y) and & — u,y — v) are identical, the weighting factor 0,(xy)
attains its maximum4e, = 1), while the value of the fac-

tor decreases with the angleférence and reaches a minimum x\y")
(20 = 0), when the two gradient orientations are orthogonal.

Hence, the surrounding interest points which have the saime o

enlt:atlon’ E;]s.that ot Y)_,IQ\;W” have a rga;qmal mhlbltory.ﬁeCt' Figure 5: Responses at positior’,f’) and ”,y”) along the line passing
or éac mter?St poi;(x,y), we _e Ine a_supp_ressmn term through & y) [71]. Non-maxima suppression retains the value in the centra

t-(X, y) as the weighted sum of gradient weights in the suppresposition . y), if it is greater than the values at (y') and ", y").

sion surround of that point;

~
"y’

L(xy) = ff ColX— Uy —V) (2) 2.4 Scale adaptive SIPs
Q Scale selection plays an important role in the detection
X Ago (%Y, X— U,y —u)dudv of spatial interest points. Automatic scale selection can b

whereQ is the image coordinate domain. We now introduce arfchieved based on the maximization of normalized derieativ
operatoC, (%, y), which takes its inputs: the corner magnitude expressed over scale, or by the behavior of entropy or error

C.(x,y) and the suppression tey(x, y): measures evaluated over sca_le [53, 75]. Instead of Qppdying
automatic scale selection, as in [76], we apply a multieseg-
Cor(Xy) = H(Co (X, Y) — ats(X.Y)) (3 proach [30] and compute suppressed SIRwatifferent scales

whereH(2) = zwhenz > 0 andzerofor negativez values. The So = {%. 5.0, 20, 40}. We follow the idea of scale selection
factor & controls the strength of the surround suppression. IPPresented by Lindeberg [53] to keep the best set of SIPs ob-
no interest points have been detected in the surroundingreex tained for each scale. The best scales are selected by nzaximi
of a given point, the response of the operator retains thg-ori iNg the normalized dierential invariant,

nal corner magnitud€,(x,y). However, if a large number of Rnorm = o-gyLnyx. ()
interest points are detected in the surrounding backgreemd

ture, the suppression tery(x, y) will be higher, resulting ina WhereL = g(-;00,70) ® I, i.e. the imaged is convoluted with

suppression of the current interest point under evaluation ~ the Gaussian kernet Ly is the first ordety derivative and.x
is the second ordetderivative ofL. Lindeberg [53] report that

2.3. Imposing local constraints v = % performs well in practice to achieve the maximum value
We select a final set of interest points from the surround sup®f (knorm)? for spatial interest point detected at multiple scales.

pression respons&, . (Equation 3) by applying non-maxima After computing the suppressed SIPs in the scale-spaBg,in

suppression, similar to Grigorescu et al.’s method for s~ We apply this scale selection procedure based on the naedali

ing gradients [71]. Non-maxima suppression thins the areadifferential invariant (Equation 4), and keep theest SIPs as

in which C,, is non-zero to one-pixel wide candidate con- our final set of suppressed SIPs.

tours as follows: for each positiorx,), the two responses ] ]

Ca,o—(X',y') and Cw(X",y”) in adjacent positionsx(,y’) and 2.5. Imposing temporal constraints

(X”,y”), which are intersection points of aline passing through After Obtaining the final set of Spatial interest pOintS we im

(x,y) with orientation®,.(x,y) and a square defined by the di- Pose temporal constraints to neglect static SIPs. We censid

agonal points of an 8-neighbourhood, are computed by linedvo consecutive frames at a time and remove the common in-

interpolation (see Figure 5). A point is kept, if the respons terest points, since static interest points do not conteilauny

C..(x y) is greater than that of the two adjacent points, i.e., itmotion information:

is a local maximum of the neighbourhood. Otherwise its value T T\ nCT Y (5)

is set to zero. Figure 6 shows an example of the performance of Go TR R TEe e

our inhibitive SIP detector. As can be seen in Figure 6.b somavhereC] . is the set of interest points in tHE" frame. To

background SIPs might remain @), ,. However, these static avoid the camera motion we have used an interest point match-

SIPs can be removed by imposing temporal constraints. ing algorithm along with a temporal Gabor filter response to



Algorithm 2 SCD: Selective STIP detection.
Require: Animage (Hx W): image

Spatial scalev;

Alpha: «;

Mask: mask
Ensure: Detected selective spatial interest poirgip

1: cp = harrisCornelimage o);

2. cornerPoints= find(cp > 0);
3: cp = cp(cornerPoint$;
4. O = gradien(image;
5 sip={};
6
7
8
9

(b)

Figure 6: Performance of our SIP detector with= 1.5. Detected SIPs (a)
before suppression and (b) after suppression.

: for Each pointK,y, o) € cornerPointsdo
AOmask = |cOS@mask— ®maslgx\y))|;
t(X,¥) = CPmask® A0

cp(x,y) = H(CPxy) — @txy);

remove the static interest points (Equation 5). The remgini
points are the final set of detected STIPs, which are used-to exg:
tract local features. The pseudo code for the full STIP distec

is described in Algorithm 1. Parallelization can be adogted  10: (x,y) = round(line(x, x + 1,y, O(x, y)));
speed optimization by parallel computation of foe loops in  11: (x’,y") = round(line(x, x — 1, y, (X, y)));
each algorithm (Algorithm 1,3,2,4 and 5). 12: if (cp(x.y) > cp(X,y)A(cp(x.y) > cp(x”,y")) then
13: Sip« sipuU (XY, 0);
Algorithm 1 STIP detection from an image stack. 14 end if
Require: Animage stack (Hk W x N): iS; 15: end for
(contains all the video frames) 16: Return@ip);
Array containing spatial scalesA
legi r(; Algorithm 3 blobDetector: Corner strength detection using
Ensure: I.Det'ected STIPsstip Gaus_slan blo_b. :
RN Require: Animage (Hx W): im;
; SNAF)—_sfie(TgpS; {(}‘I"otal no. of frames) Corner pointscorners
L. N ' Ensure: Detected selective spatial interest points based on
3 fori= 1._) N do . Gaussian blob strengtieornerPoints
4 for j =1 sizgsA) do 1: cornerPoints= {};
> q fsip<— SIpU{SCIIS(. - 1), sA()). . m). SA())}; 2: for Each point ){(,,Y, o) € cornersdo
6: end for _ _ 175 _ _ .
7: stip « stipu blobDetectofiS(;, :, i), sip); i Es(b_si 7 thlg;]m(x’ ¥) # bocm(X, Y);
% er?d for . . 5: cornerPoints— cornerPointsu (X, Y, o);
9: stip = temporalConstrain{iS, stip); o end if
10: Returnétip); 7 end for

8: Return¢ornerPoint$;

2.6. Local feature descriptors

We use localN-jet features [57] extracted at the detectedsensitive to noise and do not bring significant additional mo
STIPs. We extradi-jet features of order-2 in five flerenttem-  tion information. The experimental results reported irtisec4
poral scales. Consequently, we end up with a 10-dimensionalocument our feature selection by showing state-of-thpear
feature vector, formance.

7'~norm(g('; ago, TO) ° I) = {L’ O-LX’ O'Ly, ey T2Ltt} (6)

at locally adopted scale level-¢, 7o) for the image sequence 3 Vocabulary building and classification
I; whereg(:; oo, 70) is the Gaussian kernel at spatio-temporal
scale ¢, 79) andor is identical to the scale of the STIP detec- We apply a BoV model to learn the visual vocabularies of the
tor; L = g(-; 00, 70) ® |, i.e. the imagéd is convoluted with the  extracted local motion features. We extend the idea of [$2] b
Gaussian kerned; Ly is the first orderx derivative and_yx is  introducing pyramid levels in the feature space, but irtsigfa
the second ordex derivative ofL etc. applying a pyramid at feature level, as in [33], we apply it at
These features are computed with a fixed spatial seglut ~ STIP level. This makes the problem of grouping the local fea-
with five different temporal scaleg (3, 7, 2r,47). We do not  tures much simpler yet robust, since our STIPs are detect@d i
increase the order dfl-jet, like Laptev et al. [62], since the selective and robust manner. Finally, we apply vocabulamy-c
two first levels represent velocity; and acceleratioby; infor- pression, at each pyramid level, to reduce the dimensigruli
mation, while higher order spatial or temporal derivatiees  the feature space (see Figure 7).



Algorithm 4 temporalConstraint: Imposed temporal constraint [ 2y V) I L
on the selected spatial corner points e e b KX i
Require: Animage stack (k W x N): iS; o || R & I .
Spatial corner pointp; SEalm 41 T 4 e T =
Ensure: Detected STIPsstip A || —— S—
1. fori=1—-Hdo Local features at STIPs Vocabulary Building Vocabulary Compression
2: for j=1—- Wdo | >| > >
3 gabox(i, j,:) = gaborFilerlD(iS(i, j, })); Figure 7: A schematic overview of the vocabulary building medand the
4: end for associated data flow pipeline.
5: end for
6: fori=N— 2do )
7 fr=iS(,5i): f = iSC, i — 1) action classes.
8: 01 = gabor(;, :,i); g2 = gabor(;,:,i — 1);
9: imy =iS(;,:,0);imy =iS(:, ;1 = 1);
10: cpr, < Cpy, \pointMatchcpy,, Cp,, G1, Gz, iMy, iMy);
11: end for
12: Return€p)

Algorithm 5 pointMatch: Detect the set of matching corner

points in two consecutive frames.

Require: Image framesimg, imy; Pyramid level 0 Pyramid level 1
Corner strengthscpy, Cpy; with two divisions
Gabor strengthg;, go;

Ensure: Detected matching STIPmS

Figure 8: Spatial pyramid of level 2.

1. mP={};

2: cornerPointg = find(cp, > 0);

3: cornerPoints = find(cp, > 0); 3.2. Vocabulary compression

4: for Each point k1, Y1, 01) € cornerPointg do After dividing the motion features into the described pyichm

5 H=oq; levels, we create initial vocabularies of a relatively &gjze

6: for Each point &, Y2, 02) € cornerPoints do (about 400 words). To reduce the final feature dimensignalit

7: similarity = mﬁﬁﬁihy@ﬁmf’””: we use vocabulary compression, as in [32], but at each level
1,Y1):CP2(X2.Y2)) y p ’ ’

8: W =02 of the pyramid to achieve a compact yet discriminative isua

9. if similarity > 7im then word representation of actions.

10: a, = cropRectimy, x, y1, H, W); Let A be a discrete random variable which takes the value

11: a = cropRectimy, X, Yz, H, W); of a set of action classeA = {aj,ap,...,an}, and Ws be

12: sC = crossCorrelatiofay, a); a random variable which range over the set of video-words

13; if (SC> Tcorr) A (91(Xa, Y1) > Tgavor) then Ws = {Wi,Wa,..., Wy} at pyramid levels. Then the informa-

14: MP « mPU (xq, Y1, 1); tion aboutA captured byws can be expressed by the Mutual

15: end if Information (MI), | (A, Ws). Now, letWs = {(\i1, i, . . ., Wi} for

16: end if k < m, be the compressed video-word clusteMdf. We can

17 end for measure the loss of quality of the resulting compressedbroca

18: end for ulary W, as the loss of M

19: Return(nsS);

Q(Ws) = I (A We) — I (A, W) ©)

To find the optimal compressid?\/; we use an Agglomerative

3.1. Pyramid structure .
Information Bottleneck (AIB) approach.

Let I+ be theT™ frame of the image sequenteand P]
(Equa_tion 5_) the set of dete_cted STIPs in this frame. We the%s_ AIB compression
quantize this set of STIPs intplevels,S = {sp, Sy, ..., S4-1) _ ]
[34]. For each of these levels, the STIPs are divided based on AlB [77] iteratively compresses the vocabulai by merg-
center of mass information. Accordingly, we group the mo-ing the visual-wordsy andw; which cause the smallest de-
tion features into dferent levels of the pyramid. The structure créase in MLI(A,Ws). The algorithm can be summarized as
of our 2-level pyramid is illustrated in Figure 8. The horizo follows:
tal division helps to capture the distinguishing charasties
of arm and leg-based actions, whereas the vertical dividi®n
tinguishes the actions within each of these arm and legebase  of W;s as a singleton cluster.

7

. InitiateV/\TS = W;, i.e., by taking each video-word



Pair-wise distance computation: for ev wil € W, L _ _
* . i the di el hp hi QYM% J} . S Table 1: Average recognition accuracy for the Weizmann eatasng diferent
I < J, the distanc ij (which is a measure of MI) is com- SVM kernels. We have used a Polynomial kernel of degree 3.

puted: | SVM Kernel | Recognition rate (%)
d: = : ) -JS ), . ) Xx-square 99.50
ij = (p(wi) + p(w;)) - ISn[p(awi), p(aw;)] (8) tersection 9778
whereJSp[ p(alw), p(alw;)] is the Jensen-Shannon diver- Radial basis function 87.77
gence for aM class distributionp;i(x), each with a prior Polynomial 7867
nii, and is defined as: Linear 58.89

M M feature set for SVM learning. We design a class spegific
ISalps, P2, pul = HLY mipi(¥)]- > mHIP()I(9) square kernel-based SVM, S\ik. b, ) [78], wherea is the
= =t i™" action classA, k is the SVM kernel andhj, is the his-

. . . a‘ .ge
whereH[p(x)] is Shannon’s entropy: togram of action class;, computed using the class-specific
video-wordsW;,. For a test setiresiWe detect its action class:

Hlp(X)] = - X) log p(X 10
[p(X)] Z p(x) log p(x) (10) o = argmaxSVMy (k b, va, € A (11)
B
e Merging: select the pair of video-word,, , wg} for which We conduct experiments usingffdirent SVM kernels, and

the distancel,s is minimum and merge them. Hence, we observe that thg-square and intersection kernel are the best
merge the video-words which result in the minimum MI perfoming SVM kernels for all the datasets. Hence, we apply
loss by optimizing the global criterion in Equation 7. the y-square kernel for all our experiments on human action
recognition in section 4. Table 1 shows the average redognit
“accuracy for the Weizmann dataset using a numberftereint
SVM kernels.

AIB is a greedy algorithm in nature and optimizes the merg
ing of only two word clusters at every step (local optimiaa)i.
Hence, it optimizes the global criteria defined in Equation 7
We use the described vocabulary compression at each level of
the pyramid per class, and obtain a final class-specific compa4. Experimental results
pyramid representation of video-words. .

We use AIB for the vocabulary compression instead of Prin4-1- Human action datasets
cipal Component Analysis (PCA) based dimensionality reduc  To test our proposed approach for action recognition we con-
tion, since PCA is a linear model, whereas the relationshigluct a comprehensive set of experiments using a number of
among the video words are highly non-linear in nature. Besid publicly available human action datasets (see Figure lictwh
PCA based dimensionality reduction will work on the firstdev  are categorized as follows.
cluster (k-means) of the bag-of-words model to reduce tta fin
bag-of-words histogram dimensionality. Hence, it will hake  4.1.1. Single actor benchmark
inter and intra cluster similarities into account. Unliké&, the To conduct benchmark testing we choose the two most popu-
agglomerative information bottleneck (AIB) method prasen lar human action datasets: KTH [65] and Weizmann [66]. Both
in the article, is non-linear and it yields a set of comprdsse of these datasets contain single actors and clean bacldgoun
clusters from the first level clusters, such that the setsiflte = The KTH dataset consists of 6ft#rent actionswalking jog-
ing compressed clusters maximally preserves the origifat-i  ging, running, boxing clappingandwaving These actions are
mation among them. Additionally, AIB based compression experformed in 4 dferent but well-controlled environments by
plores the mutual information present among video words an@5 different actors, resulting in a total of 600 action instances.
apply compression based on this information. Hence, in thi§he Weizmann dataset contains 90 videos separated intc 10 ac
case, AIB based compression is analytically more apprtepria tions performed by 9 persons. The actions é&end jumping-
than PCA. jacks jump, jump-in-place run, gallop-sidewaysskip, walk,

To empirically support our selection of AIB based compres-one-hand-wavingndtwo-hands-waving
sion, we have conducted experiments on the Weizmann dataset
using PCA based dimensionality reduction. The obtained av4.1.2. Single actor with complex background
erage accuracy is quite low ( 40% in the range of 30%0% In this category we choose the CVC action dataset [68] and
compression) compared to the recognition rate of AIB ( 99% inthe CMU action dataset [67]. The CVC dataset consists of 5 ac-
the same range of compression), which documents that AIB itors performing 7 actionsvalking jogging running (with hor-

a far better choice. izontal and vertical two-way pathshand-waving two-hands-
_ o waving jump-in-placeandbending The dataset is rated “semi-
3.4. Action classification complex” and is interesting, since it has a textured baakaggio

After compression of the video-words at each pyramid levelThe CMU dataset is composed of 48 video sequences of five
we compute a histograms of the video-words, using the exaction classegumping-jacks pick-up push-buttonone-hand-
tracted local motion features, and concatenate them to b finavaving and two-hands-waving The test data contains 110
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videos (events) which are down-scaled to 36020 in resolu-
tion. This dataset has been recorded by a hand-held canmtéra wi|§8
moving people and vehicles in the background, and is known t|E @
be very challenging. 3

4.1.3. Movie and YouTube video clips

To evaluate our approach inffirent challenging stettings,
we conduct experiments on movie and YouTube video clipsrigure 9: A schematic overview of the spatio-temporal clistemodule and
Concretely, we use the Hollywood 2 human actions and scenele associated data flow pipeline.
dataset [34] and the YouTube action dataset [32]. The Holly-
wood 2 dataset_ IS composed_of video clips extracted from 6S%patio-temporal clustering is only a part of Multi-KTH ds¢a
Hollywood movies, and contains 12 classes of human act|0n§br automatic annotation
AnswerPhongDriveCar, Eat, FightPerson GetOutCar Hand- '
Shake HugPerson Kiss, Run SitDown SitUp and StandUp 4.2.1. Actor-specific STIP clustering

In total, there are 1707 action samples divided into a train- ) . . .
ing set (823 sequences) and a test set (884 sequences), wherghe actions present in the Multi-KTH dataset can be divided

train and test sequences are obtained froffedint movies. Into two main groups: the actions with moving actors, like
malkingandjogging and the actions with static actors, ligex-

ing, wavingandclapping These two dterent nature of actions

for human action recognition in realistic and challengiedr s can be analyzed in the 2D spatio-temporal XT-space (see Fig
tings. The YouTube dataset is a collection of 1168 complek an o . T ) i
9 P ure 10.b). The actor-specific STIP clustering exploits tbe 2

challenging YouTube videos of 11 human actions categories: ~ . : ]
basketball shootingvolleyball spiking trampoline jumping spatio-temporal XT-space and consist of two main steps:

soccer juggling horseback riding cycling diving, swinging i) detection of lines in the XT-space and cluster STIPs ac-
golf swinging tennis swingingandwalking (with a dog) The cordingly,

dataset has the following properties: a mix of steady camera ij) after the first set of STIP clusters have been estimated,
and shaky cameras, cluttered background, low resolutioeh, a the associated STIPs are excluded and the resulting subset
variation in object scale, viewpoint and illumination. Tfirst is clustered using morphological operations and a spatio-
four actions are easily confused with jumping, the next tvaym temporal distance measurement.

have similar camera motion, and all the swing actions share

some common motions. Some actions are also performed with€ Surround suppressioffect of our STIP detector, resulting
objects such as a horse, bike or dog In a low detection rate of unwanted background STIPs, facili

tates STIP clustering in the XT-space. This will simply net b
possible with a high number of background STIPs. Figure 9

4.1.4. Multiple actors with complex background ; . .
_ . illustrates the concept of the spatio-temporal clustering
We use two multiple actor datasets: the Microsoft research

action dataset | (MSR ) [63] and the Multi-KTH dataset [41]. 4.2.2. The spatio-temporal XT-space
MSR I consists of 16 video sequences and a total of 63 actions: plot of the detected STIPs in 3D spatio-temporal XYT-

14 hand-clapping 24 hand-wavingand 25boxing performed space for the Multi-KTH sequence is shown in Figure 10.a.

by 10 SUb]eCtS' _The sequences contain mult_lple types of 4%s can be seen, actor-specific clustering of the STIPs is non-
tion recorded in indoor and outdoor scenes with clutteretl an

moving backgrounds. Some sequences contain multiplenactio clustering cannot be accomplished by commonly used meth-

performed by dierent people. Each video is of low resolution ) : i _
320x 240 with a frame rate of 15 frames per second, and theifds’ e.g-k-means or Mean Shift clustering. Instead, we project

X e 3D spatio-temporal STIPs onto a 2D spatio-temporal XT-
lengths are between 32 to 76 seconds. The Multi-KTH datasest;)ace’ as shown in Figure 10.b, which reveals some integesti

is a more challenging version of the KTH dataset. It contains
. . . and useful patterns. The XT-space can be seen as the top-down
5 (exceptrunning) of the 6 KTH-actions, which have been P b b

) X . view of the 3D spatio-temporal XYT-space (Figure 10.a) hwit
recorded by a hand-held camera, with multiple S|multaneou§ne horizontal anF()j verticaIF;xes represpenting(; tr?e X-mrm)'nd

actors, a signifipa_nt amount of camera motion, scale changgﬁe time T, respectively. Hence, the T-axis demonstrates th
and a more realistic cluttered background. evolution of STIPS in time.

trivial due to camera motion and occlusions. Hence, sufgess

4.2. Automatic action annotation for Multi-KTH 4.2.3. Detection of lines in XT-space

When multiple actors appear simultaneously in a scene, it is Actions like walking jogging or running create lines in the
necessary to group the detected STIPs into actor-spedifie cl XT-space. Hence, we detect line segments in XT-space te clus
ters. An excellent example is the Multi-KTH dataset, where fi ter STIPs detected for the actors. This is valid, since actor
actors are present in the scene. Based on this dataset we intwith a certain target destination move in a linear pattem fo
duce a spatio-temporal clustering technique for actocifipe those actions. Hough transform [79] is applied for the detac
STIP grouping and evaluate its performance in section q& T of these linear patterns (i.e., line segments) and the datei

9
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Figure 10: Plots of the detected STIPs for the Multi-KTH dataand detection of linear patterns in the XT-spacek-fagans clustered STIPs in th® 3patio-
temporal XYT-space and (b) ungrouped STIPs in tlespatio-temporal XT-space; (c) line segments in XT-spaceethby actions like walking, jogging or
running; (d) candidates with high responses in the Hougkesp@) detected line segment using the Hough transfrom arigotis obtained by morphological
operations.

"'-1!;

=

IM
w’

(b) Frame 123

| '.!@!..E

(e) Frame 217 (f) Frame 234 (g) Frame 296 (h) Frame 333

Figure 12: Automatic annotation of STIPs detected for mudtgimultaneously actors for a number of frames from the Multi Kigttaset.

with high response in the Hough Space are kept. Furthermord,2.4. STIP clustering in XT-space

a post candidate approval is applied based on the slope of theWe use the detected lines to cluster the STIPs by applying a
lines. Figure 10 shows this process and the intermediatéises point-line distance measutéx, t), and threshold according to
As can been seen, the erroneously detected (magenta goloredmaximum distancex for each line segment:

line can be discarded according to its steep slope. Furtirerm

Line segments for the crossing actors are detected but due to ., oy _ (P — 01) X (P — 92)I - (12)

high amount of camera motion, it is not possible to detectlgoo |92 — ]

candidates for the other actors performing upper body atsti
like boxing clappingandwaving

wherep is the current STIP under evaluation, andandq;
are two points lying on a detected line. The maximum distance
dmax IS set according to the size of the actors appearing in the
dataset. After clustering the first set of STIPs, we exclhéent
and use the remaining STIPs for further clustering. We merge

10



or . . o e
p . { t Table 3: State-of-the-art recognition accuracies (%) ffier KTH, Weizmann
50r N - . N and YouTube datasets. *Liu et al. [31] test on 8 out of the 1aTYte actions.
100l ' | Method | KTH | Weiz. | YouTube |
~ 150l L Our approach 96.35 99,50 86.98
% Luietal. [17] 96.00 - -
& 200 Yu et al. [44] 95.67 - -
F ol Kim et al. [15] 9533 - -
200l ) Wu et al. [20] 9510 | 9890 -
Cao et al. [23] 95.02 - -
350 M- Kaaniche et al. [28]|| 94.67 - -
0 100 200 500 ngashka etal. [29]| 9453 - -
X Gilbert et al. [26] 94.50 - -
) - o Sadek et al. [37] 94.30 - -
Figure 11: Actor-specific STIP clustering in the XT-space. Liu & Shah [33] 9416 . -
Sun et al. [40] 94.00 97.80 -
Table 2: STIP detection ratios (%): the number of STIPs detech the actors Saghafi et al. [38] 9394 - -
with respect to the total number of detected STIPs, estimaratié MSR | and _ -
Multi-KTH datasets using our approach and state-of-ther@thods. E.haot etl alé)£39] gggg 7120
[ Method [ MSR1 | Multi-KTH | ouetal [32] o | sazo -
Our approach 7621 | 9034 Lin et al. [16] 9343 | 10000 :
Laptev el al. [45] 1873 4816 Yuan et al. [63] 9330 - -
Dollar et al. [47] 21.36 16.03 Liu et al. [31] 9230 . 7610
Willems et al. [50] || 24.02 20.24 Yao et al. [22] 9300 9220 -

Schindler et al. [19]|| 9270 10000 -
Laptev et al. [62] 9180 - -
Jhuang et al. [48] 9170 98.80 -

the new subset of STIPs by morphological operations (see Fig
ure 10.f) and use the resultirigobsto cluster the STIPs, by
considering the spatio-temporal distance between a STdP an

the contours. Figure 11 shows the resulting actor-speciies | klaser et al. [S6] 9140 84.30 -
clustering in the XT-space, and in figure 12 the grouped STIPs Yang etal. [12] 8730 | 9940 -
are superimposed on a number of frames from the Multi-KTH__Wong et al. [51] 86.62 - -
dataset. Willems et al. [50] 84.26 - -

Niebles et al. [35] 8150 - -
4.3. Evaluation of STIP detector Dollar et al. [47] 8117 - -

Schildt et al. [65] 7172 - -

We evaluate our STIP detector by estimating a score for the"5 5ok et al [66] - 99.64 .
number of detected STIPs for the actors in comparison tethos : :
. Thurau et al. [11] - 94.40 -
detected in the background. Cao et al. [23] have recently r :
s Ali et al. [4] - 92.60 -
ported that of all the STIPs detected by Laptev's STIP detect bregonzio et al. [13] - - 6200

[45], only 1873% correspond to the three actions performed b
the actors in the MSR |, while the rest of the STIPs.29%)

. The time complexity of our STIP computation highly de-
belong to the pack_gromd. Ground truth bou.ndlr_lg boxes "ixﬁends on the size of the input video. For a video of size 60
used to determine if a STIP belongs to an action instance.

| q . i 44 F20x 550), the STIP computation, executed on a standard dual
evaluate our STIP detector on MSR | in a similar way, an €ore Desktop PC (Intel(R) Core(TM)2 CPU 6400@2.13GHz

tect76.21% STIPs for the actors. We observe that our detectO%GB RAM) using MATLAB R2010, takes approximately 10
tends to detect more points in the background, when appliepnins ’

to the sequences of MSR | with several moving people in the
background. Our STIP detector is designed to detect iritere
point for people, hence it will also consider moving peopie i
the background as candidates. We also conduct this exparim
for the Multi-KTH dataset by manually annotating groundtitru
bounding boxes, and find th&0.35% STIPs belong to the ac-
tors (see Figure 4). This is consistent with the concept of ou
STIP detector, and documents thEeetiveness of our incorpo-
rated surround suppression followed up by imposing locdl an -
temporal constraints. Table 2 shows STIP detection ratios 04'4' Vocabulary building
the state-of-the-art methods, and clearly documents the-su  The purpose of this experiment is to reveal the optimalahiti
rior performance of our STIP detector. vocabulary size and compression rate for our vocabuladg-bui
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Figure 13 shows the perfomance of the STIP detector in com-
f)lex scenarios. Despite of the camera movement, the STIP de-
tector performs well (Figure 13(a) and (b)). However, in som
€cases, due to the combination of complex backgorund, low res
olution and large background motion, the STIP detectorslose
focus and detects a larger number of background STIPs @igur
13(c)) or an insfficient number of actor STIPs (Figure 13(d)).



(b) (d)

Figure 13: Performance of the STIP detector in sequencesaaitiiplex scenarios. Successful STIP detection is shown éonds of the (a) YouTube and
(b) Hollywood 2 dataset, respectively. Additionally, thaldre frames of (c) YouTube and (d) Hollywood 2 are also shown(a) and (b) our STIP detector
successfully handles camera motion and the STIPs are detedtenh the motion of interest. On the contrary, in the frameé&dfand (d), due to high background
motion and diference in scene resolution the STIP detector loses the @octiee motion of the human actors.
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== CVC action dataset
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Compression rate (%) 0 Initial vocabulary size Initial vocabulary size
(a) (b)

Figure 14: Revealing the influence of the vocabulary size @rdpression on the average action recognition rates. (a) RI8Dof the recognition rate, as a
function of the initial vocabulary size and the compressate rfor the KTH dataset. (b) Recognition rates, as a funafdhe initial vocabulary size, for the three
single actor datasets: CMU, CVC and Weizmann. The compresaiers fixed to 65%, i.e., 35% of the initial vocabulary sizeised.

(a) KTH boxing (b) KTH running (c) KTH waving (d) Weizmanrskip (e) Weizmanrwalking

Figure 15: Error-frames of the videos that are miss-classifiethe KTH and Weizmann datasets. The first three frames deisst-classifiedboxing runningand
wavingactions from the KTH dataset, respectively. The last tworeftames areskip andwalking actions from the Weizmann dataset. These frames show cases

which result in miss-classification. Due to low resolutiofycmlimited number of STIPs are detected for the important badisgarms and legs), which are taking
major part in these actions.

ing strategy. We divide each dataset into 50% training, 20%f 50 video-words and incrementing it up to 400. We weight the
validation and 30% testing partitions. The final trainingted  initial vocabulary size according to the pyramid level gsm
SVMs uses both the training and validation sets. The reeogniweight factor 23, wheresis the pyramid level. The vocabulary
tion rates are computed by averaging over 50 random insgancsize is weighted to avoid the empdingleton cluster creation
of these sets. We conduct experiments using a similar vecabin finer levels of the pyramid. We reduce the dimensionality
lary size range as Liu et al. [32], with an initial vocabulaige  of the final feature vectors for the SVM classifiers by apply-
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ing vocabulary compression at each pyramid level. To choostr CVC and 9942% for CMU (see Table 5). The high perfor-
the optimal vocabulary size and compression rate, we vay thmance for both of these dataset is consistence with thedtieor
initial vocabulary size range [50-400] with an incremen6f ical foundation of our proposed STIP detector. The detéxctor
and for each of these vocabularies we vary the compresgi®n raselective behavior, achieved by incorporating surroumgses-
from 0% to 95% with an increment of 5%. Figure 14.a showssion and imposing local and temporal constraints, resuilte-i
the resulting 3D plot of the recognition rate as a functiothef  bustness to background texture and clutter.

initial vocabulary size and the compression rate, for thedKT

dataset. The maximum recognition rate indicates the optimas.7. Action recognition in movie and YouTube video clips
vocabulary size and compression rate. We observe that e be

frgrsrﬂgr:igztg:[g?oazjz crzr;eprrzs?gl)n ;‘;:gw' i Elr,1 T:ri]dutrheeleleg clips, using the YouTube and Hollywood 2 action datasets. We
9 pidly o 9 ) achieve 993% recognition rate for the YouTube actions. Ta-

the recognition rate,_ as a function of the. initial vocabylsize ._ble 3 shows the comparison with other state-of-the-art aueth
for the three other single actor datasets: CMU, CVC and Weiz; . : :

. ; ) ..._for this dataset. Our approach is far superior comparedeo th
mann, is shown. We obtain approximately 100% recognition

rate in the initial vocabulary size range [230-300] for theiyy otmer rdelported :nethogs,hdﬁe to' our STIP dgt(hectors cap,ab|'l|

mann, CMU and CVC datasets, which is similar to the the mid—tclJ an det():onllp ex ag ¢ 3 enhaging speneslwn _came_:g gnotlon

dle peak in Figure 14.a for KTH. ;:utFere_ ackground, and variation in scale, viewpoi
umination.

For the Hollywood 2 dataset, the performance is evaluated as
suggested in [34], i.e., by computing the average preci#é)

We use the KTH and Weizmann datasets for benchmark tesfer each of the action classes and reporting the mean AP tver a
ing, and achieve an accuracy @.35% for KTH and99.50%  classes (MAP). Table 4 shows the AP for the actions in compar-
for Weizmann. Table 3 shows a comparison of the recognitiorison to other state-of-the-art methods. The Hollywood 2skit
rates of our approach and several other state-of-the-dhtode  contains very complex scenes from movies with no ground trut
for these two datasets. It should be noted that we achiete sta information available, and moreover thefdrent instances of
of-the-art recognition rate for KTH. We obtained this regeg an action are sometimes viewed fronffeient camera angles.
tion with an initial vocabulary size of 350 and a 60% compres- Notes: ‘Answerphoneénd Handshakeare quite small, and
sion rate. The main reasons for this improvement are the-seletherefore need a very complex set of compound features in or-
tive STIP detection and the spatial pyramids, which captuge der to classify the action over the background noise. Inresht
local characteristics of actions, and thereby reducedt#es  FightPersonandDriveCar use more global contextual features
confusion. The accuracy for Weizmann is approximately 100%and therefore they work with lower level features.”
which is comparable to the state-of-the-art. Lin et al. [f5]
port a clear 100% recognition rate for Weizmann. However4.8. Cross-data experiments
this work applies a template matching technique, usingsholi
tic features extracted from global boundary box-basedéste

Next, we conduct experiments on movie and YouTube video

4.5. Benchmark testing

We perform exhaustive cross-data evaluation to test our pro
: : . . posed method in more realistic scenarios and use the KTH and
regions. Furthermore, it requires background subtraciua Weizmann datasets for training data. We observe that the-Wei

target tracking. In contrast, our approach uses local featu : ; . .
) . . : . mann dataset is not appropriate for training, and resul& in
and does not require any preprocessing. Since, Weizmann is a

. . . poor 40% and 45% recognition rate for CVC and CMU, respec-
simple datasets without any further challenges, it favioba) . g : L . .
- . X tively. This is due to inadequate training data since Weizma
and holistic methods. In contrast, our approach is appkcab

for all types of scenes. including very challending sceres 0contains a very limited number of action instances per cajeg
. YPEs ¢ L uding very 9ing compared to KTH. Table 5 shows the accuracy rates obtained
high complexity, which we will validate in the following.

We analyze the error-frames of th&0% videos of the Weiz- using KTH as.tramln_g. These cross-data} results va_Ildaie th
) . o e our approach is applicable for more practical scenariogravh
mann dataset, which are miss-classified. Similarly, weyeeal

the miss-classified frames from the confusion matrix for KTH training and test data are coming fronfferent sources.

: The KTH dataset has only one common actitmp-hands-
Figure 15 shows some example error-frames. Due to low resQr _vina with the CMU action dataset. We use the KTihnin
lution only a limited number of STIPs are detected for the im- 9 . 9

. 0 "
portant body parts (arms and legs), which are taking majar IOasequence as negative data and obt&ih 4% recognition rate.

in actions likeboxingandrunning In these few cases this re- Itis noticeable, that the accuracy is actually higher foriave
L gan 9 mann (00%) and CMU 09.42%), than when training and test-
sults in miss-classification.

ing on the same dataset, due to théisient action instances for
training. Additionally, for CMU we only recognize one aatio
two-hands-wavingcompared to five actions when both training
The main objective of this evaluation is to test the capgbili and testing on CMU. On the contrary, the accuracy decreases
of our method to handle background clutter. For this purposéy 3% for CVC, due to its lower inter-dataset correlationhwit
we choose the CMU action dataset and the CVC Action datas&TH. For the Multi-KTH dataset we manually annotate the ac-
with textured background. Despite the presence of stronk-ba tion labels as ground truth, using bounding boxes, and btai
ground texture and clutter, we achiev&@0.0% accuracy rate 9840% accuracy. We perform another test using our automatic
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Table 4: The average precision (%) and mean average pre¢iidR) for the actions of Hollywood 2, using our apporach imggarison to the state-of-the-art.

Action | Marszalek [34]] Han [27] [ Wang [43] | Gilbert [26] [ Ullah [42] [ Our approach |
AnswerPhone 1310 1557 - 40.20 26.30 4160
DriveCar 8100 87.01 - 75.00 86.50 88.49
Eat 30.60 5093 - 5150 5920 56.50
FightPerson 6250 73.08 - 77.10 76.20 78.20
GetOutCar 8.60 2719 - 45.60 4570 47.37
HandShake 19.10 17.17 - 28.90 4970 5250
HugPerson 17.00 2722 - 4940 4540 50.30
Kiss 57.60 4291 - 56.60 59.00 57.35
Run 5550 66.94 - 4750 72.00 76.73
SitDown 30.00 4161 - 62.00 62.40 6250
SitUp 17.80 7.19 - 26.80 27.50 30.00
StandUp 3350 4861 - 50.70 58.80 60.00

[ MAP results || 3550 | 4212 | 4770 | 5090 | 5570 | 5846 |

Table 5: Recognition accuracies (%) for cross-data evialudtained on KTH and tested on other datasets: Weizmann,, @X@J, MSR | and Multi-KTH. The
first row presents results when training and testing on theesdataset for Weizmann, CVC and CMU.

| Method | Weizmann| CVC [ CMU | MSR | [ Multi-KTH |

| Our approach (without cross-data) | 9950 | 10000 [ 9942 - | - \
Our approach 1000 96.95 | 9194 | 8477 9840
Yuan et al. [63] - - 70.00 - -
Cao etal. [23] - - - 60.00 -
Gilbert et al. [25] - - - - 75.20
Gilbert et al. [26] - - - - 68.80
Uemura et al. [41] - - - - 6540

action annotation described in section 4.2, and obtain2094 by the complex background. This is an important property to
recognition rate, which is comparable to the results of theim detect actions in complex scenarios. Regarding the weak as-
ual annotation. For the MSR | dataset we achi@d&7% accu-  pect, our method dters in the presence of other motion (pres-
racy. The dificult part of MSR | is that some sequences containence of multiple actors) together with the region of actitm.
moving people in the background depicted by the bounding boshis scenario we detect several STIPs froffieslent motion re-

of the agent performing the action, which result in unwantedgion results in poor classification.

STIP in the background, and thereby a lower recognition rate In the current svstem. we use areedy approach for vocabular
compared to the other datasets. In conclusion, these sesult y ’ g yapp y

outperform the state-of-the-art significantly (see Tabled frﬁg]gre?zlsgh iorrlnoertmreez dth(rengmi dc?:rm\)/lc?():(zlatgu:; :"%Z?Tr] V:gg
hereby validate the robustness of our method in more rigalist pp ’ 9 y y b

. o : sion might be an interesting inclusion for the future workurO
action recognition scenarios. Although these datasetseaye : . : . .
. . . automatic action annotation using STIP clustering work¥ we
complex and contain several practical challenges: ckdtend

; ; . : for the multi-KTH dataset, yet it is not generalized for athe
moving backgrounds (including people and vehicles), camer . : - ) .

: : multi-actor action datasets. The automatic action aniootéor
motion and multiple actors, our approach performs robustly

multi-actor datasets is a veryfficult and challenging task. We
_ could include more complex shape matching algorithm along
5. Conclusion with a human model in the XT-space to minimize the overlap in

. the STIP clusters of the moving and non-moving actors.
In this paper we have presented a novel approach for human

action recognition in complex scenes. Our approachis based We have reported superior action recognition results in-com
selective STIPs which are detected by suppressing badkdrou parison to the state-of-the-art, when testing on benchmark
SIPs and imposing local and temporal constraints, reguitin  datasets of simple scenes (3% accuracy for KTH and
more robust STIPs for actors and less unwanted backgrour2B.50% for Weizmann), and similar performance for complex
STIPs. We apply a BoV model of local N-jet descriptors ex-scenes (CVC and CMU). Additionally, we have shown state-
tracted at the detected STIPs and introduce a novel voagbulaof-the-art performance and proven the applicability of ap#
building strategy by combining a spatial pyramid and vocab-proach for action recognition in movie and YouTube videpli
ulary compression. Action class-specific SVM classifiels ar by significantly outperforming other methods evaluatedtn t
trained to finally identify human actions. YouTube action dataset, and showing the highest mean averag
The strong aspect of our proposed STIP detection method iprecision for the Hollywood 2 dataset. A comprehensivesros
it can detect dense STIPs at the motion region withffigicéeed  data evaluation has been performed by separating thertgaini
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(KTH) and test datasets (CVC, CMU, MSR | and Multi-KTH). [25] A. Gilbert, J. llingworth, R. Bowden, Action recogidn using mined
To our best knowledge we are the first to report exhaustive

cross-data evaluation. Compared to state-of-the-art we ha [26

reported superior results by raising the recognition r&tas
approximately 60-75% to 85-100%.
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