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Abstract—Wireless Capsule Endoscopy (WCE) is a device
that allows the direct visualization of gastrointestinal tract with
minimal discomfort for the patient, but at the price of a large
amount of time for screening. In order to reduce this time,
several works have proposed to automatically remove all the
frames showing intestinal content. These methods label frames as
{intestinal content - clear} without discriminating between types
of content (with different physiological meaning) or the portion
of image covered. In addition, since the presence of intestinal
content has been identified as an indicator of intestinal motility,
its accurate quantification can show a potential clinical relevance.
In this paper, we present a method for the robust detection and
segmentation of intestinal content in WCE images, together with
its further discrimination between turbid liquid and bubbles. Our
proposal is based on a twofold system. First, frames presenting
intestinal content are detected by a SVM classifier using color
and textural information. Secondly, intestinal content frames are
segmented into {turbid, bubbles and clear} regions. We show a
detailed validation using a large dataset. Our system outperforms
previous methods and, for a first time, discriminates between
turbid from bubbles media.

Index Terms—Wireless Capsule Endoscopy, Machine Learn-
ing, Informative Frames, Intestinal Content, Image Segmentation.

I. INTRODUCTION

Since the appearance of the capsule endoscopy technology
in 2000 [1], and due to its numerous clinical advantages,
Wireless Capsule Endoscopy (WCE) has rapidly become a
wide-spread clinical routine and its use has been proposed for
the categorization of diverse intestinal pathologies, such as
Crohn’s disease [2], tract bleeding [3] and polyp search [4].
The wireless capsule device consists of an ingestible pill which
contains a camera and a full electronic set which allows
the radio frequency emission, of a video movie. This video,
showing the whole trip of the capsule along the gastrointestinal
tract, is stored into an external hard disc which is carried by
the patient. The clinical protocol consists of the a posteriori
screening of the video by a specialist in search of those
features associated to intestinal pathologies.
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The wireless device, named PillCam SB2, measures
11mm x 26mm and weights less than 4 grams, it has a camera
with 156° field of view, a battery, a wireless system and 3
optical lens. The frame rate is 2 frames per second and its
image resolution is 256 x 256 pixels [5].

The capsule has rapidly gained recognition within the gas-
troenterology community thanks to its two main advantages:
1) it offers the inner visualization of the entire gastrointestinal
tract and 2) it obtains the images of the gastrointestinal
tract in a minimally invasive manner reducing to the patient
preparation and discomfort. In contrast, standard techniques of
gastrointestinal tract examination like manometry or gastroen-
doscopy are more invasive and produce patient discomfort or
even the need of patients hospitalization.

However, procedures based on the capsule present several
limitations [6]. First, the time needed by the physician to
analyze the entire video: the capsule emits images at a rate
of two frames per second for over 8 hours, that can result
with 57.600 images for a single study. Second, the device has
no therapeutic capability: it means that if any lesion that needs
treatment is discovered some additional investigation must be
done with standard procedures as endoscopy, radiology or
surgical techniques. Finally, there is a difficulty in discerning
the exact location of the visualized lesion.

Nevertheless, capsule endoscopy has undertaken a relevant
boost in recent years and technological advances have been
proposed both in the hardware and software areas [7] making
the WCE a widely spread clinical routine [8]. This growth
has been generally caused by the interest of the community
in developing computer aided systems, where researchers
have focused their efforts on trying to tackle the inherent
drawbacks associated to the video screening stage of capsule
endoscopy videos: the long time needed for visualization, the
potential subjectivity of the observer due to fatigue, and finally,
the presence of intestinal contents which hinders the proper
visualization of the intestinal walls or lumen.

In the recent literature, we can distinguish four general
research lines regarding the aim of each proposed system,
namely:

1) Reduction of the needed time visualization, or adaptive

control systems for video display [9], [10], [11], [12];
2) Characterisation of intestinal abnormalities such as
polyps [13], [14], blood [15], [16], tumours [17], ulcers
[3] or other lesions [18], [19], [20];
3) Differentiation of the diverse organs of the intesti-
nal tract like esophagus, stomach, duodenum, jejunum-
ileum and cecum [21], [22], [23].

4) Study and characterization of specific



events/dysfunctions of intestinal motility, such as
intestinal contractions or motor activity [24], [25], [26].

Additionally, the detection of intestinal content frames has
been identified as an important problem in this research field
for three main reasons: a) it can reduce the number of false
alarm ratio for several detection methods as for example
polyps, ulcers or contractions [25]; b) it can also reduce
the evaluation time required by physicians for video analysis
when eliminating the frames completely covered by intestinal
content [27]; and c) it has been identified as an indicator of
motility dysfunction [28].

A. Physiological origin of intestinal content

Previous studies with endoluminal image analysis [27], [29]
have shown that intestinal contents my exhibit two appearance
paradigms, namely: bubbles or turbid material. Bubble forma-
tion depends on the presence of agents that reduce surface
tension, analogous to a detergent. In normal conditions this
activity is due to the presence of biliopancreatic secretions,
responsible of the solubilization and subsequent digestion of
fat. By contrast, turbid appearance reflects the presence of
chyme, that is, the meal transformed by the processes of gastric
and partial intestinal digestion. In this context, the type of
content depends in normal conditions of the characteristics
and the time elapsed since the last meal [30].

During fasting the small bowel exhibits a cyclic activity
pattern, alternating phases of quiescence with phases of intense
biliopancreatic secretion into the duodenum associated with
forceful propagating contractions, that pushes the content in
caudad direction, clearing residues from the gut. These phases
of intense motor and secretory activity occur on average
every 100min [31]. The association of high concentration
of biliopancreatic secretion with wall contractions results on
a foamy appearance of contents, visually recognized by the
presence of abundant bubbles. Ingestion of a meal interrupts
this fasting cyclic activity pattern and induces a more homoge-
neous secretory and motor activity in order to digest the meal.
Regardless of the characteristics and amount of food ingested,
the stomach delivers into the small intestine a homogeneous
liquefied chime with particles of less than 1mm, at a steady
rate adjusted to the intestinal processing capability. In fact,
the small bowel controls gastric emptying and biliopancreatic
secretion by a complex net of feedback mechanisms. As a con-
sequence, postprandial intestinal content consists of a mixture
of homogenized nutrients and biliopancreatic secretion in a
proportion related to the types of foodstuffs in the meal. Since
surfactive agents are diluted into the mixture, the appearance
of chime is turbid without bubbles [30].

The presence of these types of content patterns along
the small bowel reflects the relative proportion nutrients and
secretions, as well as the degree of digestion, which differ at
various levels of the intestine as a function of the progress of
digestion. Furthermore, abnormal digestive function may affect
this process and modify the pattern distribution of intestinal
contents.

Despite their physiological importance and differences,
these two kinds of intestinal contents have always been
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Fig. 1: Images from WCE: (a) Image partially covered by
intestinal content presenting a polyp (dashed circle). (b) image
where lumen (indicated by the arrow) is visualized surrounded
by intestinal wall.

quantified together. In this paper we propose a system for
the categorization and segmentation of frames with different
classes of intestinal content.

B. State-of-the-art method of intestinal content detection

In the recent literature, several methods have been proposed
to detect intestinal content frames. In [29] Vilarifio et al. pre-
sented a method for detecting bubble-like shape of intestinal
juices based on Gabor filters. Another method was proposed
by Vilarifio et al. in [25] based on SVM classifier which uses
125-bin color histogram as a feature vector. The most recent
work by Bashar et al. [27] presented a method for informative
frame detection. In this method the highly contaminated by
turbid fluid, fecal materials and/or residual fluids frames are
named non-informative and all other frames are considered
informative. The method was a two-stage cascade: in the first
stage color information was used to characterize turbid, and
in second stage, texture descriptor was applied to characterize
bubbles images.

The main contributions introduced in this paper can be
summarized as follows:

1) The development and validation of a fast automatic
method for the detection of WCE frames with intestinal
content. Obtained results, using a very large dataset,
shows that the presented method, which uses color
and textural frame information, outperforms the results
obtained by other reported methods [27].

2) The development of a segmentation method for detecting
bubbles and turbid media in WCE images. The proposed
method is two fold: on the one hand turbid parts of the
image are segmented using color information, and on the
other hand, bubble regions are segmented using textural
information. Finally, the output of the proposed method
is an image segmentation using 3 different labels { clear,
turbid and bubbles}.

3) The definition of a new characteristic, based on the
image area covered by each kind of intestinal content, to
characterize WCE videos. This information can be used
as a new physiologically-based feature for automatic
systems in diverse areas, such as intestinal motility,
where it could add further support for motility disorder
when turbid liquid secretions are present in the proximal
small bowel.



4) Finally, we carry out the validation of our proposals in a
large database with more than 95.000 frames, addressing
in this way one of the main drawback present in previous
literature: lack of statistical support of the results re-
ported in [27], [29]. All these images were obtained from
the set of 50 studies from different subjects including
healthy volunteers and patients with motility disorders.

This paper is organized as follows: Section 2 describes the

endoluminal scene; Section 3 presents the proposed system
for detection and characterization of frames with intestinal
content; Section 4 presents the experimental results; and
finally, Section 5 presents a discussion and conclusions about
the presented method.

II. ENDOLUMINAL SCENE: FRAMES WITH INTESTINAL
CONTENT

The different parts of the intestinal tract (stomach, duode-
num, jejunum-ileum and cecum) presents a variety of appear-
ances with multiple textures and colors. In addition to that,
video frames can be described in three different component of
the inner gut: intestinal wall, intestinal content and intestinal
lumen (see Fig. 1(a) and 1(b)).

When a capsule is centered in the intestinal tube, a perspec-
tive of the lumen is obtained. However, both the free motion
of the camera and the contractions that the gut undertakes
produces a variety of orientations and perspectives of the
scene (see Fig.2(a)). This provides a high variability in the
resulting images: The contraction of the lumen is visualized
with a wrinkle pattern that is usually centered in the middle
of the images, but which can also present an offset or even
lay out from the field of view of the camera. In this case,
only the intestinal wall is shown and the lumen is lost for a
sequence of frames. Additionally, lesions such ulcers, polyps,
etc., are visualized in the endoluminal scene when present (see
Fig. 2(b)).

Intestinal content is usually transparent and allows a nitid,
clear view of the intestinal walls. However, some images are
blurred by intestinal content. In this case, content is visualized
as a turbid liquid secretion or as bubbles. Moreover, the
intestinal content may hinder the proper visualization of the
scene (see Fig. 2(c) and 2(d)). In a normal video, with standard
clinical patient preparation, between 5% and 40% of video
frames contain intestinal content. The degree of intestinal
content in a single frame can vary from covering a small
area of the image to completely occluding the intestinal wall
and lumen. Intestinal content frames are presented in a high
variability of colors and textures within a video. The colors
and the textures are highly correlated with the ingested food
by the patients. Generally, according to the visual appearance
of these images, the turbid (food in digestion and intestinal
Jjuices) can be easily differentiated from bubbles.

o Turbid is usually presented in the frame as an homoge-

neous texture with a wide range of colors (see Fig.2(c)).
The predominant colors presented in turbid frames varies
from brown to yellow, however, sometimes can also be
presented in less common colors like green or red.

o Bubbles are presented in the image as well-defined texture

(see Fig.2(d)). This texture is characterized by several
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Fig. 2: Example of images from WCE videos. (a) Clear images
without pathologies. (b) Images presenting some pathologies:
bleeding, celiac, polyps and chron. (c) Images with turbid
content. (d) Images with bubbles.

ellipsoidal blobs that can vary in the size. The most
predominant colors of the bubbles are: white, yellow
and green. However, sometimes bubbles are practically
transparent and the only visible part of the bubble is the
contour.

III. SYSTEM FOR AUTOMATIC DETECTION AND
CHARACTERIZATION OF FRAMES WITH INTESTINAL
CONTENT.

The proposed system is divided into two consecutive steps:
1) detection and 2) segmentation. The aim of the detection
step is to target the segmentation of the intestinal content only
in the frames where the intestinal content, reducing in this
way the computation cost. The advantage of the second step
is three-fold: 1) it provides information about the percentage
of the image covered by intestinal content (this parameter
can be used to automatically remove these sequences for
visualization in order to reduce the screening time); 2) an
accurate segmentation of intestinal content allows to maximize
the area of intestine visualized (in Figl(a) we can observe
a frame which is mostly covered by intestinal content but
showing a relevant pathology in the clean tissue) and 3) the
accurate measurement of the amount of turbid and bubbles can
be used as indicators associated to motility dysfunctions [28],
[18]. The complete system scheme is presented in Fig. 3.
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Fig. 3: System Architecture for detection and segmentation of
intestinal content.

A. Image Classification

The first step of the system finds those frames with intestinal
content. As explained in Section 2, there are two different
types of intestinal content: turbid, which is characterized by
color information, and bubbles, which are characterized by
texture. In order to detect both types of intestinal content,
two feature descriptors are used: color histograms and texture
descriptor. These both image features are merged to learn a
SVM Classifier [32].

1) Color Features: Color Features: Experts recognition of
the turbid frames relies more on color information than on
texture information. Color variability of intestinal content is
very high and depends on: the patient, the clinical preparation,
the food ingested by the patient as well as on the camera type,
the light source, the reflections and the distance of the content
to the capsule.

In order to reduce the image information a color quantiza-
tion is perform from 16 million colors to 64 colors. Typically,
color image quantization is performed dividing the original
color space into smaller subregions of equal size [27]. It is well
known that in WCE videos only a subset of colors is observed.
For instance there are colors which practically does not appear
in WCE frames like blue or violet colors. Furthermore, most of
the observed colors in WCE are concentrated in small region
of the RGB space. This information can be used to reduce the
dimensionality of color representation with minimum loss to
the 64 colors. This set of 64 selected colors defines the color
map, will be referred along the article as Intes Color Map.

The Intes Color Map was created using all the frames
from 80 WCE external studies (not included in our database).
The three-dimensional RGB data representing all observed
colors in these videos was clustered into 64 clusters using
k-means technique [33]. Using this learned color map the
mean quantization error is 10.02 (std = 9.98) while using
an uniform partition of the original rgb color map the mean
quantization error is 33.33 (std = 19.23). The measure to
evaluate the quantization error for each pixel is the Euclidean
distance between the original RGB color and the assigned
color centroid from the used colormap.

2) Textural Features: Visually the bubbles are described
by the presence of several circular blobs. The opacity of the
bubbles is very variable and it is directly correlated with the
color of intestinal liquid. However, sometimes the opacity
of the bubbles is very low and its appearance is nearly
transparent. These set of images are presented as a blurred
image with similar colors to the intestinal wall and only
characteristic that describes these frames is the contour of the
circular bubbles.

In [29] and [27] the authors presented a method to detect
bubble images based on Gabor filters [34] and the Gauss
Laguerre function [35]. These methods achieve satisfactory
results, but both methods suffer from a high computational
cost. Additionally, the correct choice of the filter parameters
is a critical step in these methods since bubble size can vary
not only between different frames but also in single image. In
this paper, we propose to use the Speeded-Up Robust Feature
(SURF) detector [36]. The SURF method is a scale- and
rotation-invariant interest point detector and descriptor. The
method uses an integer approximation of the determinant of
Hessian blob detector in order to detect points of interest.
Given a point X = (z,y) in an image I, the Hessian matrix
H(x,s) in x at scale s is defined as:

H(z,s) =

X, s
oy(X,8)  Lyy(x,s)

where L, (x,s) is the convolution of the Gaussian second
order derivative %G(s) with the image [ in point x, and
similarly for L,,(x,s) and L, (X, s). The determinant of the
Hessian-Matrix is the blob detector response. If the response is
lower than given threshold thr_surf the response is rejected
and not considered as point of interest. Thus, the SURF
detector can be seen as a blob detector, and SURF method
can be applied to the problem of bubble detection because of
the fact that one bubble can be considered as one blob. Our
assumption is that the more points of interest are detected the
more bubbles are in the frame. One of the advantages of SURF
method in comparison to the Gabor filter is the computational
cost, being 50 times faster.

3) Classification: In order to classify the frames in the
classes {intestinal content, clear}, both color and textural
features are merged. This is done by simply expanding the
color histogram by one extra bin representing the number
of points of interest. In this way a 65 bin feature vector is
obtained. Afterwards each frame is classified using the Support
Vector Machine (SVM) classifier [32].



The classical implementation of SVM classifier looks for
the hyperplane which separates the data into two subspaces
(positive and negatives samples) while maximizing margin.
Originally, the algorithm proposed by V. Vapnik was a linear
classifier, however it can be easily enhanced to non-linear clas-
sifier applying the kernel trick [37]. The margin which defines
the classifier is defined as the distance between hyperplane and
instances of positive and negative samples. Given a training set
X, ..y containing N training labeled samples and coefficients
a1, learned in training step, the decision function of SVM
takes the following form:

y(z) = Z%K(Xu x)+b 2)

where K () is a kernel function and x the input vector. In our
system, as our features are represented by histograms, we use
the Histogram Intersection Kernel [38] defined as follows:

Kint(z,2') = Zmin(zj,z;-) 3)
J

where z = {z1,.,2m} and 2’ = {z{,.., 2, } are the his-
tograms with m — 1 bins representing color information and
one bin representing number of points of interest.

B. Image Segmentation

A frame classified as intestinal content frame can be either
completely or partially covered by turbid or bubbles. In the
former case these frames are usually filtered by the system,
without further processing. However, in the latter case it can
be important to identify the image region not hindered by
intestinal content, since it can potentially convey relevant
information (polyps, ulcers, bleeding, etc.). Additionally, while
the physiological meaning of bubbles and turbid is completely
different the output of the proposed segmentation method is
based on three labels: {clear, turbid and bubbles}. Regarding
the visual difference between bubbles and turbid two methods
are proposed.

1) Intestinal Content Segmentation based on color: In order
to obtain the exact area covered by intestinal content in the
image (which includes both turbid and bubbles) each pixel
should be labeled as intestinal content/clear. However, a single
pixel is not enough descriptive about the frame content. Many
existing algorithms in computer vision use the pixel-grid as
the underlying the image representation. However, this pixel-
grid is not a natural representation of visual scenes and
could contain pixels from both classes intestinal content/clear.
In order to overcome this problem we propose to detect
and classify homogeneous regions in the images. We refer
homogeneous regions as a group of pixels with a perceptually
consistent information (color and texture).

The homogeneous regions are obtained using the “super-
pixel” method proposed by Ren and Malik in [39]. ’Superpix-
els” are obtained using the Normalized Cuts method (NCuts)
[40]. NCuts is a the classical region segmentation method
which uses spectral clustering to exploit pairwise brightness,
color and texture affinities between pixels. Rather than focus-
ing on local features and their consistencies in the images, the

aim of NCuts consist of extracting the global impression of an
image. The number of “superpixels” depends on the entrance
parameter and can be set using cross-validation.

In the proposed system the only frames being superpixelized
are the frames previously detected (step 1) as intestinal content
frames. In order to classify each superpixel as intestinal
content/clear region the linear SVM classifier is used. In order
to classify each “’superpixel” we used the mean intensity of the
pixels (for each channel R,G and B) inside the “superpixel”
region as a feature descriptor.

Algorithm 1 Algorithm for intestinal content segmentation

Input: image I and number of regions N
Compute N regions Ry using NCuts method.
for i =1to N do
Compute feature vector f; = [f7, f7, f’] as the mean
values of each rgb channel of pixels in R;
Classify R; using Linear SVM classifier and feature
vector f;
Based on the classification result assign boolean value
{intestinal content, clear} to all pixels in R;
end for
QOutput: Binary image representing
{intestinal content, clear}.

segmented regions

2) Bubble Frame Segmentation: Bubble image area is es-
timated by analyzing the spatial distribution of the interest
points of SURF method. SURF method detects blobs which
are correlated with the number of bubbles in the image,
and hence the segmentation of bubble area can be done by
analyzing the density of interest points. The area of the image
with high point density is considered to be a bubble region,
otherwise it is considered to be a clear region. The density is
estimated using a kernel density method. Let s be a location
in the image I and p; ., are the locations of the interest points
detected by SURF. The estimation of the intensity using the
kernel method is given by:

A 1 "1 S — i
= — —k| —— 4
)= e () @
where oy(s) is the correction for edge effects for location s,
k is the kernel and h is the bandwidth. We use the quadratic
kernel proposed by Bailey and Gatrell in [41]:
3
k() = =(1 — u'u)? vu<i1 ®)
s
When this kernel function is substituted into Equation 4 and
or(s) if fixed to 1 the following estimate function of the
intensity is obtained:

R 3 d2\?
= —(1-= 6
R =3 o (1-58) ®
di<h
where d; is the distance between location s and interest points
locations p;. Finally, given the bubble density image, the
bubble area is defined as the region where the density value
is higher than a threshold thry,.



C. Final labeling

According to the output from two proposed segmentation

methods the system output is defined as:

e Bubbles: All image pixels that belong to the bubble area
estimated by the bubble segmentation method.

o Turbid: The set of image pixels in the area estimated by
intestinal content segmentation based on color and not
considered as bubbles.

e Clear: All other image pixels (not bubbles and not
turbid).

IV. EXPERIMENTAL RESULTS

In this Section, we present the experimental results of
the proposed system for automatic characterization of intesti-
nal content frames. First, we describe the data set and the
evaluation procedure, and then, we show the qualitative and
quantitative results of all parts of the proposed system. In detail
we will present the validation of:

e SUREF detector;

¢ Intestinal content detector;

« Intestinal content segmentation.

A. Database

The data set was obtained using the SB2 capsule endoscopy
camera developed by Given Imaging, Ltd., Israel [42]. All
cases were conducted in the same conditions at Digestive
Diseases Department, Hospital General ”Vall d’Hebron” in
Barcelona, Spain [28].

For the experimental setup a set of 50 studies from different
subjects has been used. For every video the duodenum and
cecum entrance was marked by medical experts, and the video
was analyzed only inside those thresholds. A random set of
frames from each video was selected and then labeled as
intestinal content, clear by a medical expert. The number of
frames per video is a number between 1000 and 2000 and
depends on video length. These frames represents between
5% to 10% of the video frames from the duodenum until
the the cecum. Table I shows the list of videos used in the
experiments, indicating the number of frames from each class.
As it can be observed, there is a high variability in terms
of percentage of intestinal content in videos: there are some
videos which practically does not present intestinal content
(video 36 and 37) and there are some which intestinal content
is present in more than 80% of the frames of the video (video
29).

B. SURF detector validation

In this experiment we compare the obtained results using
the SURF method with those obtained by the proposed method
in [29], which estimates the bubble area using Gabor filters.
Threshold thr_surf has been fixed by cross-validation to
65.000.

In Fig. 4 we present a scatter plot showing the correlation
graph between the output of both methods: the number of
interest points detected by SURF method and the surface area
estimated by Gabor filters. Pearson correlation coefficient r

# SURF Points

(a)

Original
Image

SURF
Points

(d)

Fig. 4: This figure shows the correlation between Gabor and
SURF methods, both applied to the detection and segmentation
of bubble frames. Figure a) shows the correlation graph
(r = 0.95) between Gabor surface and Surf points in bubble
detection problem. Each point in the graph represents one
single frame. Ordinate axis represents the % of frame surface
covered by bubbles following the Gabor method. Abscise axis
represents the number of SURF points detected in that frame.
With numbers 1, 2, 3 and 4 some outliers have been marked.
The outliers and the output of SURF and Gabor methods for
these frames are shown in Figure b).

is used in order to evaluate the output of both methods. The
obtained value (r = 0.95) indicates that the methods are highly
correlated. As it can be seen, there are only some samples
which present a significant difference between methods. In the
same figure we show four images (marked with blue square)
where the methods present a low correlation. As it can be seen,
the qualitative analysis of these outliers show that the proposed
method performs better than the Gabor filter for the case of
blurred bubbles, and with an extremely low computational
cost.



TABLE I: Database: List of 50 used videos indicating the number of clear and turbid frames used from each video.

Video #clear/IC frames Video #clear/IC frames Video #clear/IC frames | Video #clear/IC frames Video #clear/IC frames
Videol 13277672 Videol 1 993 /1006 Video21 61571225 | Videodl 18577 143 VideoAT 1788 7 212
Video2 1451 / 549 Videol2 992 /353 Video22 1815/ 140 | Video32 1766 / 234 Videod2 988 /1012
Video3 1205 / 795 Videol3 1369 / 470 Video23 200/ 1453 | Video33 1892 / 108 Video3 1769 /232
Videod 1008 / 992 Videol4 1184 / 499 Video24  457/1535 | Video34 1921 /79 Videod4 1886 / 114
Video$ 1135 / 865 Videol5 434/ 1389 Video25 1383 /298 | Video3s 1517 / 483 Videod5 1406 / 594
Video6 1530 / 434 Videol6 502/ 1375 Video26 1904 / 85 Video36 1993 /7 Videod6 1307/ 693
Video? 1346 / 453 Videol7 1418 / 192 Video27 ~ 1390/527 | Video37 1998 /2 Videod7 1041 /959
Video8 1203 / 797 Videol8 750 /738 Video28 709 / 847 Video38 1631/ 369 Video48 1120 / 880
Video9 1337/ 613 Video19 1556 / 302 Video2d  223/1763 | Video39 1974 / 26 Video49 1743 / 257
Videol0 624 /1261 Video20 1288 / 476 Video30 828 / 867 Videod0 1762 / 238 Video50 1714 / 286
C. Intestinal Content Classification 200% = - - - —
. . 95% —
In this Section we evaluate the proposed system for de- oo E EI i‘
tecting frames with intestinal content. In order to assess the s i |
s L _
method a leave one video out validation method is used. The o e | 1 4 ]
parameters used to evaluate a classifier are: S Ly L } 1 R =
TP4TN S omoE M N
o Accuracy (A) = 751 P TN TEN o .
CPC — TP 60% |~ —
o Sensitivity (S) = TPIFN
55% [— —
o _ TN 5 -
o Specificity (K) = 75775 so% | -
.. _ TP a) b) c) d)
o Precision (P) = TPiFP Method

where TP = true positive, TN = true negative, FP = false
positive and FN = false negative. The frames with intestinal
content are considered the positive samples and clear frames
the negative cases.

We compare the results of our system with two previously
proposed methods by Bashar et al. in [27]: 1) SVM classifier
using Color Moment Features and, 2) SVM classifier using
HSV 64 bin color Histogram features. Additionally, we test a
simplified version of our proposed system that uses only 64 bin
color histogram (without texture information). The results are
presented in Table IT where the mean value and the standard
deviation of different methods are presented. We can see that
the proposed method that uses color and textural information
achieves the best result outperforming others methods in all
measurements (accuracy, sensitivity, specificity and precision).
The box plots of accuracy are presented in the Fig. 5, where
it can be seen that the proposed method have the smallest
variance.

TABLE II: Accuracy of intestinal content detection methods

Accuracy Sensitivity Specificity Precision
Color Moments 83.6 £ 109% 544 £24.1% 923 £ 105% 73.4 £ 269%
HSV 64bin 899 +7.8% 737 £226% 931 +95% 838 £ 21.8%
IntesColorMap 64bin 912 £69% 783 £17.7% 928 £8.1%  82.5 £ 18.4%
IntesColorMap 64bin + Bubbles  91.6 £ 6.6%  80.1 £ 16.7% 93.1 £7.9% 83.0 & 18.2%

D. Study of reliability

Classifier is reliable when the training data used in the
model construction process well represents the data that are to
come in test process. In order to ensure that our approach is
accurate and consistent with respect to new videos an analysis
of the training set is done. In this analysis the 50 (labeled as
{intestinal content, clear} frames) WCE videos are used ( for
details see Table I).

In the experiments presented in this section two questions
are tackled. In the first one, we would like to answer the

Fig. 5: Box plots of intestinal content classification results
using different sets of features: a) Color Moment Features b)
HSV histogram with 64 bins c) Intes Color Map histogram
with 64 bins and d) Intes Color Map histogram with 64 bins
+ bubbles. On each box, the central mark is the median, the
edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers,
and outliers are plotted individually.

question of the turbid variability between different subjects.
In the second one, we would like to determine the minimum
number of videos that builds a reliable classifier.

The results on turbid variability between different subjects
are presented on Fig. 6 and Fig. 7. Fig. 6 represents the
results of training the classifiers with one video and testing the
classifier accuracy with remaining 49 videos. The experiment
is repeated 50 times (once for each video in training set).
As it can be seen, the variability of the accuracy is quite
high. For instance there are some videos (#10, #21 and
#38) that, when used for training the classifier, give good
and generalizable models for remaining 49 videos. For these
videos the median accuracy is high and the variance is small.
These videos contain high variability of both intestinal content
and clear frames that well represents the images in remaining
videos. On the other hand, some models obtained by using
videos #36, #37 or #39 are not able to generalize the
results in the remaining set of videos, the median accuracy
is low and the variance is high. There are two possible
justifications to this observation: 1) those videos are very
homogenous and they do not offer enough information to learn
a good classifier, or 2) these videos contain information (e.g.
strange turbid color) that is not seen in other videos (they
can be outlier videos). Those videos are interesting because
they can provide new information about data distribution that
might be helpful in discriminative model construction. Second
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Fig. 6: Each boxplot represents the accuracy obtained by testing a classifier learned by the video of x-axis with all other 49

videos in our dataset.
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Fig. 7: Each boxplot represents the accuracy obtained by testing the video represented by x-axis using using 49 different
classifiers which are learned using one different video in each case.

experiment, designed to study the variability between different
subjects, shows how good a video is represented by the set
of videos (see Fig. 7). Here each video were classified using
49 classifiers trained with the data from remaining videos,
the experiment was repeated 50 times once for each video.
As it can be seen, there are some videos (#33 and #37)
that are well classified by all trained models, they have high
median accuracy and small variance. These are homogenous
videos with frequently appearing images in other videos. On
the other hand, there are some videos (#23 and #29) where
the majority of the learned classifiers have problem to correctly
classify them. These videos contain frames with color and
texture that are not frequently observed in WCE video.

Usually, the larger training set the better classification
results. However it is important to remember that the data
acquisition and labeling have an associated cost limiting the
size of the training data set. To evaluate the influence of the
training set size on the classifier accuracy a set of 10 test
videos was randomly selected from a pool of 50 videos. Then
these videos were classified using different size training data
sets (from 1 to 40 videos). At each iteration of the test one
video was added to the training set. The results are presented
on Fig. 8, where a learning curve for each video is presented.
We can observe that when training set contains 30 or more
videos the classifier accuracy stabilizes. Moreover, we see that
for some videos a high accuracy is achieved using small size
training set. These results show an asymptotically convergent
learning curve which appears to assess the validity of the size
of our dataset.

E. Segmentation

In this section the intestinal content segmentation is eval-
uated. Note that our segmentation tasks are performed by
using two methods: 1) intestinal content segmentation based
on color information of the regions, and 2) bubble regions
segmentation based on textural information. The turbid area
can be defined as the difference between intestinal content
region and bubble region. Finally, the output of the proposed
method is an image segmentation using 3 different labels
{clear, turbid and bubbles}.

In order to evaluate the methods a set of 350 images
from the big dataset of Intestinal Content Frames (see Table
I) was tested. These images were manually selected by an
expert with the purpose of selecting a set of frames with
high variability in terms of content percentage, texture and
color. However in case of frames segmentation, the manual
annotation was done by three different experts using {clear,
turbid and bubbles} labels. To measure the performance of the
segmentation algorithm we use the % of the image correctly
labeled based on the ground-truth provided by the experts. The
manual segmentation of intestinal content is a complex task.
This complexity sometimes leads to an ambiguity between
annotations from same/different experts. The uncertainty of
the experts arises from the variability of intestinal content.
Frequently the limits between the intestinal content and in-
testinal wall or lumen are questionable while a clear contour
is not preserved. Moreover, the variability is higher in case of
semi-transparent intestinal content.

In order to evaluate intra-user variability the overlapping
area between the annotations of the three experts was cal-
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Fig. 8: System accuracy for 10 videos from different subjects. X-axis represents the number of videos in the training data set.

culated. The results are presented in Table III where the
mean intra-user variability is presented. As it can be observed,
the user variability on bubbles regions is low, presenting an
overlap regions higher that 99% between the experts. However,
turbid regions presents a user-variability between annotations
of 10%.

TABLE III: Intestinal Content Segmentation: User-variability

Overlap Area

Expert 1&2 Expert 1&3 Expert 2&3
Turbid 91.86% 89.71% 92.63%
Bubbles 99.04% 99.41% 98.30%
Intestinal Content (Bubbles + Turbid) 91.22% 89.39% 91.99%

In the second experiment we evaluated both segmentation
methods. In order to evaluate the methods we present qual-
itative and quantitative results. The first evaluated method is
the turbid segmentation method. As it was commented in the
methodology, this method has two steps: 1) divide the image
in N ”superpixels” regions using NCut Method, and 2) the
regions are classified using a Linear SVM classifier. The N
parameter which defines the number of regions was set to 60
and the regularization constant parameter C' of SVM classifier
was set to 1 after cross-validation. In order to evaluate the
system all tests was performed using the leave-one-image-out
validation method.

In Fig. 9, qualitative results for the intestinal content
segmentation method based on color are presented using 9
different images containing bubbles and turbid. The second
column in the mosaic shows the “superpixel” regions, and the
third column shows the regions classified as intestinal content.
As it can be observed, both turbid and bubble regions are
classified as intestinal content regions in most of the images.
The bubble segmentation method has two parameters which
were fixed by cross-validation: the kernel bandwidth A = 50
and the threshold thr, = 0.1. The qualitative results of the
method are presented in Fig. 10. For each evaluated sample
the original image, the output of the density estimation method
and the final binary output are presented. As it can be seen,
only the image regions containing bubbles are detected.

In Fig. 11 we present the overall qualitative results. A set of
20 random images from the test set is shown. For each image
we present the segmentation output with the associated labels

{clear, turbid and bubble}. The labels are represented with
the following colors {black, gray and white}. In this mosaic
we can observe that using both segmentation systems we are
able to differentiate the physiological meaning of the intestinal
content.

Finally, in Table IV the quantitative results are presented.
This table shows the overlap area between the annotations of
the 3 experts and output area from each method (turbid, bub-
bles and intestinal content segmentation). We can appreciate
that the bubble segmentation method outperforms the result on
the turbid segmentation. This result is supported by the results
obtained in the intra-user variability experiment.

TABLE IV: Segmentation results

Overlap Area

Expert 1 Expert 2 Expert 3

Turbid 78.04% 81.60% 79.16%

Bubbles 92.43% 92.25% 92.60%

Intestinal Content (Turbid + Bubbles) 81.71% 85.28% 82.88%

V. CONCLUSION

In this paper, we propose and evaluate an automatic sys-
tem for categorization and segmentation of intestinal content
frames for WCE. The three main contributions of this paper
are: 1) development and validation of an automatic system for
intestinal content detector; 2) development and validation of a
segmentation method for detection bubbles and turbid media
in WCE images; and 3) definition of a new image feature of
WCE: area covered by each kind of intestinal content.

The presented method is divided in two steps. In the first
step the frames with intestinal content are detected using a
color and textural feature and a Linear SVM classifier. In the
second step of the system, those detected frames are segmented
obtaining the image regions of bubbles and turbid media.

The evaluation of the proposed system, using a large data
set, shows that the presented method for detecting intestinal
content frames outperforms the results of the state-of-the-art
methods. Moreover, we observe that, regarding the intestinal
content variability in terms of color and texture, a large data
set is needed to ensure the generalization of the method, and
in this sense, our experiments confirm the statistical robustness



Fig. 10: Qualitative results obtained from 12 random images by using the proposed bubble segmentation method.

of the presented outcomes. Finally, qualitative and quantitative
results of segmentation method present good performance
when discriminating intestinal content in bubbles and turbid.

As a future work, an analysis of the presence and dynamic
distribution of different kinds of intestinal content (turbid and
bubbles) along the intestinal tract will be studied. Regarding
physiological meaning of different kinds of intestinal content,
the analysis of the proposed feature could be useful for the
evaluation of disorders of intestinal motility.
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