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Abstract

Co-segmentation is defined as jointly partitioning multi-
ple images depicting the same or similar object, into fore-
ground and background. Our method consists of a multiple-
scale multiple-image generative model, which jointly esti-
mates the foreground and background appearance distribu-
tions from several images, in a non-supervised manner. In
contrast to other co-segmentation methods, our approach
does not require the images to have similar foregrounds
and different backgrounds to function properly. Region
matching is applied to exploit inter-image information by
establishing correspondences between the common objects
that appear in the scene. Moreover, computing many-to-
many associations of regions allow further applications,
like recognition of object parts across images. We report
results on iCoseg, a challenging dataset that presents ex-
treme variability in camera viewpoint, illumination and ob-
ject deformations and poses. We also show that our method
is robust against large intra-class variability in the MSRC
database.

1. Introduction
Bottom-up segmentation of generic images is a long

standing goal in computer vision for its many potential ap-
plications. It is a highly unconstrained and ill-posed prob-
lem which has given rise to a multitude of approaches. Co-
segmentation is a recent approach to cope with this lack of
constraints. Given two or more images showing the same
object, or similar instances of the same object class, the
goal is to partition them into foreground (object) and back-
ground regions under the assumption that the background
changes significantly while the foreground does not. Co-
segmentation methods leverage this fact in order to deter-
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Figure 1: In (a) yellow lines show region matching results for the fore-
ground area of two images. In (b) the blue-colored pixels show the results
of the foreground objectness-based initialization. In (c), our results.

mine what is the foreground region. Note that this is a
chicken and egg problem: the aim is to compare something
—the two foregrounds— that is still unknown. As difficult
as it may appear, it is a especially appealing approach be-
cause, in its purest version, it only requires providing an ad-
ditional image containing the same or a similar instance of
the target object. Several applications of co-segmentation
have been explored in the literature. One consists of in-
creasing the performance of image retrieval by removing
the background from the image similarity metric, thus fo-
cusing on the object which is sought [15]. Also, automati-
cally segmenting the instances of an object in a collection of
pictures would allow to create visual summaries [2]. A few
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more specific applications are the segmentation of neuron
cells from electron microscopy images sequences [18], the
reconstruction of 3D models of individuals (with user in-
teraction) [12] and recognition of people wearing the same
clothes [7].

In this paper we describe a new approach to the co-
segmentation problem which has several unique character-
istics (see section 1.2). Based on matching superpixels
resulting from an oversegmentation algorithm, it not only
produces foreground/background partitions but also relates
their regions. We believe that this will allow to extend the
applications of co-segmentation to those needing the corre-
spondence between foreground pixels, contours or regions,
like parts-based recognition or 3D reconstruction. Another
distinctive feature is that we model both the hypothesized
foreground and background appearance distributions sep-
arately. Thus, the assumption of similar foreground and
changing background is replaced by image-specific distri-
butions of foreground and background. Provided that they
can be well estimated, the co-segmentation may succeed
even though the background does not change much.

1.1. Previous work

In the seminal work by Rother et al. [15], the prob-
lem was posed as labeling pixels as foreground or back-
ground through energy minimization. The energy included
a key term to measure the L1-norm dissimilarity between
the unnormalized foreground histograms and another pair-
wise term regularizing the solution in both images.

Subsequent methods [15, 16, 13] compared foreground
color histograms in different ways, succeeding on relatively
simple image pairs. However, color histograms are clearly
dependent on lighting conditions and also on the foreground
scale since they are not normalized. Non surprisingly, the
most recent works employ additional features, such as SIFT
and texture descriptors [14], saliency [4], and Gabor filters
[9].

Maybe the distinctive trait of each method is how does
it build the partition hypothesis and perform the foreground
comparison, that is, how to cast the co-segmentation prob-
lem into some solvable formalism. The dominant ap-
proach is minimization of an energy function equivalent to
MAP estimation on a MRF [15, 16, 4, 2] but other orig-
inal approaches have been tried like the minimization of a
quadratic pseudoboolean function [14] or max-flow min-cut
optimization [9]. More interesting, Vicente et al. [17] gen-
erate a large number of candidate segmentations for the two
images by means of a variation of Min-Cuts. Then a Ran-
dom forest regressor, trained with many pairs of ground-
truth segmentations, scores each pair of segmentations, one
for each image. An exact A∗ search finds the pair of seg-
mentation proposals with the highest score. This is one of
the few automatic methods reporting results on iCoseg, a

challenging benchmarking dataset.
Closely related to co-segmentation is the problem

dubbed as co-clustering. The goal is similar though the ap-
proach is not. Given two or more images and their overseg-
mentations, the aim is to group the regions in each image
into two or more clusters, each corresponding to an object
of interest. One difference with respect to co-segmentation
is that co-clustering concerns regions, not pixels. Glasner
et al. [8] perform this clustering by comparing the color
and shape of groups of regions. They are thus able to co-
segment two or more images with similar backgrounds pro-
vided that the foreground shape is roughly the same, like in
nearby frames of a video sequence. They pose co-clustering
as a quadratic semi-assignment problem which is solved by
linear programming relaxation, like in [18]. Joulin et al. ad-
dress co-segmentation of two or more images by means of
unsupervised discriminative clustering. Their elegant for-
mulation ends up in a relaxed convex optimization.

All these works provide original formulations and suc-
cessful results for automatic co-segmentation. But only
a few of them [17, 10] go beyond the relatively simple
image pairs of the first papers (’banana’, ’bear’, ’dog’,
. . . on varying backgrounds), and focus on the challenging
datasets iCoseg and MSRC. iCoseg contains a varying num-
ber of images of the same object instance under very differ-
ent viewpoints and illumination, articulated or deformable
objects like people, complex backgrounds and occlusions.
MSRC contains images of different objects belonging to the
same class, with varying aspect.

1.2. Goal

The novelty of our work is a new automatic co-
segmentation method which exhibits the following charac-
teristics:

• Fully unsupervised, meaning that there is no need of
training with ground-truth segmentations of images
from the same or from other classes (like in [16]).

• Able to work with more than two images, a novelty just
explored in recent papers [10, 14, 8]. This means that
not only the formulation is more general but that the
method has to scale well with the number of images.

• The method not only produces a foreground / back-
ground partition of the images but also computes
many-to-one and one-to-many associations (corre-
spondences) among regions from different images.
These regions may constitute object parts and thus co-
segmentation would allow further applications.

• It is comparable with state of the art non-supervised
and supervised methods on the benchmark datasets
iCoseg and MSRC. On this regard, we take as refer-
ence the very recent works by Vicente et al. [17] and
Joulin et al. [10] for the reasons mentioned previously.



• Performing well in the difficult case of similar back-
grounds, overcoming the constraint associated with the
first co-segmentation methods, as explained above.

The reminder of this paper is organized as follows: In
section 2, we formulate the co-segmentation problem as
an unsupervised binary-class labeling of a set of images
depicting the same object instance. We start proposing a
multi-image representation, and define the problem in terms
of an energy minimization. In section 3, we extend the
scene representation to include several segmentation pro-
posals to capture the image elements at different scales,
and we present a generative appearance model of the scene,
trained at testing time. In section 4, we show that spectral
matching can be used to establish correspondences between
image regions, by exploiting the underlying information of
region arrangements. Section 5 presents the experimental
set-up and results on standard databases, while the last sec-
tion concludes the paper.

2. Co-segmentation Formulation
Let us consider a set of images I = {I1, I2, ..., In} con-

taining an instance of the object of interest. Let us also con-
sider that the images have been partitioned based on visual
appearance, by a segmentation algorithm such as mean-shift
[5]. We propose a two-layered MRF composed of region
nodes and pixel nodes. The indexing of nodes is denoted
by V ∈ Vr ∪ Vp, where the sets Vr and Vp correspond to
regions and pixel nodes respectively. Slightly abusing nota-
tion, we write Vr(k) to denote the regions of image k, and
Vp(k) to refer to the pixels. The MRF comprises a vector of
boolean random variables X = (Xi)i∈Vr ∪ (Xj)j∈Vp . The
varsables can take two values: X = 0 indicates background
and X = 1 indicates foreground. Our goal is to infer a con-
sistent labeling of regions and pixels that better separates
the foreground and background areas of the image set. We
state the problem as the minimization of the following en-
ergy function:

E(X) = λ1E
pixel +λ2E

region +Escale +Ematching (1)

The first two components Epixel and Eregion are unary po-
tentials encoding the likelihood of pixels and regions be-
longing to foreground or background, weighted by parame-
ters λ1 and λ2. The Escale term enforces a consistent la-
beling of pixels and the region they belong to. The last
term Ematching encourages coherent inter-image labeling
of regions. The next sections detail the formulation of these
terms. Figure 2. shows an example of MRF.

3. Generative Foreground/Background Model
We first compute several segmentation proposals at dif-

ferent scales in order to have a rich description of the scene.

Then, an iterative algorithm infers the appearance likeli-
hood distribution of foreground and background. The pecu-
liarity of our framework is that the distributions are trained
at testing time using a rough estimate of the image fore-
ground/background labeling, instead of ground-truth anno-
tations.

3.1. Multi-scale Segmentation Pool

An over-segmented dictionaryR of regions is generated
using mean-shift with different sets of parameters, over ev-
ery image in the set I . The original region set Vr is re-
defined to include every region of the dictionary, for all im-
ages: Vr = Rk,∀Ik ∈ I . Our model comprehends pixels
as well as regions. Each pixel has as many parent regions
as levels of segmentations computed to build the dictionary
(See Figure 2). To encourage a coherent labeling between
regions and pixels we introduce the first energy component
Escale, as

Escale(X) =
∑

(i,j)∈∆

η(1− δ(Xi, Xj)), (2)

where the cost η penalizes pairs of pixel and region nodes
with different labels. The function δ is the Dirac delta func-
tion, and the set ∆ contains the indexes of every pair of
overlapping regions and pixels.

While pixel labeling helps to overcome errors propa-
gated from the mean-shift segmentations (providing finer
labeling atoms), the region level enforces spatial group-
ing. Moreover, multiple segmentations capture the image
semantics at different scales, making the inter-image region
matching robust against scale variations.

3.2. Pixel and Region Potentials

Defining the likelihood of a pixel/region belonging to
the foreground or the background in a unsupervised frame-
work is a challenging task. A priori, there is no information
available about such distributions. However, analogously to
[17], we assume without loss of generality that the image
foreground is an object. Therefore, we can use the algo-
rithm of [1] as a measure of objectness. Note that the object-
ness measure is applied out-of-the-box, without re-training
with the databases used in the experiments. This is impor-
tant because we want our method to be free of ground-truth
segmentations, or ground-truth class labeling. The method
of [1] outputs a prior of the object location as the probability
of covering an object with a sampled window. We sample
104 bounding boxes, and calculate the probability of a pixel
belonging to an object by simply averaging the score of ev-
ery bounding box containing that pixel. Then we extend
these scores to the regions, by averaging the probabilities of
every pixel contained in each of the regions.

One of the typical requirements for performing co-
segmentation is that the appearance of the foreground dif-



Figure 2: Markov Random Field of the multi-scale multi-image model (two images), illustrating the energy components. In the left and right sides, it is
shown the pool of proposal segmentations (two scales) for images I1 and I2. The two big gray circles represent the dictionaries of regionsR1 andR2. The
small white and black circles denote the singleton potentials for regions and pixel nodes. The red vertical edges (∆) connect pixel nodes with regions from
the image dictionaries. The green horizontal lines (E) show examples of region correspondences. The yellow intra-image edges between pixels and regions
denote optional smoothing potentials.

fers from that of the background to a certain extent. We
propose a generative image model, on which the object-
ness measure plays a guiding role to iteratively infer both
distributions. The inference is based on the premise that
the objectness-based initial distribution resembles the fore-
ground and is distinct to the background. Note that even
if this may not be always true for every image, it is very
likely that it remains true if we jointly model the distribu-
tion from several images. Figure 1.(b) shows an example of
an objectness initialization.

The distributions are constructed with simple features.
We use the RGB color of the image pixels and a texture de-
scriptor extracted from every region of the set R. In our
implementation we use Gaussian Mixture Models (GMM)
to estimate pixel color distributions. The foreground and
background GMMs are denoted asHf andHb respectively.
We also train a texture-based appearance model of the im-
age regions using a texture descriptor (Local Binary Pat-
tern). However, in this case, a parameter estimation for
GMMs with high dimensionality (50 bins) requires a large
amount of training data and computation time. Instead, a
linear SVM classifier F is trained over the texture descrip-
tors of the foreground and background estimation.

The algorithm starts by initializing the labels of pixels
and regions using the output of the objectness measure, and
estimating the color and texture distribution of the back-
ground and foreground from this first rough labeling. We
feed our unary potentials by querying the learnt distribu-
tions, and optimize the energy function of Eq. 1 to obtain a
new labeling. Then, we iteratively update the distributions
from the last output labeling until reaching a maximum
number of iterations, or a convergence criteria. The proce-

dure is detailed in Algorithm. 1. Constructing independent
distributions for texture and color makes the model robust
against difficult cases where the foreground and background
have a similar appearance. When one of the features (color,
texture) is not discriminative enough, we rely on the other
to forbid one distribution to leak into the other.

A weakness of such an iterative approach is the initial
seeding. A poor initialization results in ill-formed distribu-
tions with spurious samples that may bias the foreground
model towards the background, and vice versa. In practice,
what we observe is that one of the distributions slowly ex-
pands with every iteration, and quickly covers every pixel
of the image. In order to make the model robust to poor
initializations, we build as many appearance models as im-
ages in I in such a way that the distribution corresponding
to image Ik is constructed with the information of every im-
age except Ik. Following this approach, the wrong training
samples will not contribute with a high probability when
the same samples are used at testing time to query the dis-
tribution. We extend the previous formulation to denote the
two GMMs of a specific image k as Hf

k and Hb
k. This also

applies to the texture classifier of image k, now denoted
as Fk. Given the set of n images, the singleton potential
for the regions is formulated below, as the logarithm of the
probability estimate returned by the texture classifier.

Eregion(X) =

n∑
k

∑
i∈Vr(k)

−log(P̂ f
k (Ti)Xi + P̂ b

k(Ti)Xi),

(3)
The probability P̂ f

k (Ti) is the estimate for the foreground
label predicted by the classifier Fk on the texture descrip-
tor Ti of region i. The term P̂ b

k(Ti) is the estimate for the



background label on the same texture descriptor.
The singleton potential of a pixel node is the resulting

cost of applying the logarithm to the color likelihood distri-
butionH. Formally,

Epixel(X) =

n∑
k

∑
j∈Vp(k)

−log(P (Cj |Hf
k)Xj+P (Cj |Hb

k)Xj),

(4)
where Cj is the color (e.g. RGB value) of pixel j. The

term Hf
k refers to a gaussian mixture model trained on the

foreground pixels of every image except Ik, and Hb
k is the

analogous model for the background.

Algorithm 1 Iterative Foreground/Background Modeling

1: Initialize Xi,Xj ← objectness, ∀i ∈ Vr, ∀j ∈ Vp.
2: repeat
3: EstimateHf

k ← GMM(Xj = 1), ∀Ik ∈ I

4: EstimateHb
k ← GMM(Xj = 0), ∀Ik ∈ I

5: Train SVM Fk ← Xi, ∀Ik ∈ I
6: X∗ ← argminXE(X)
7: Update labels Xi,Xj ← X∗

8: until convergence

4. Region Matching

A key aspect when tackling the co-segmentation problem
is the exploitation of the inter-image information. For chal-
lenging cases in which objects are deformable and change
considerably in terms of viewpoint and pose, it is difficult
to leverage the spatial distribution of the regions in order to
find correspondences. Usually, matching methods establish
geometric constraints on the image structure by preserving
a distance measure between nodes embedded in a Euclidean
space. One major drawback of this approach is the restric-
tion to a near-rigid or near-isometric assignment, which re-
sults in poor performance when there are large variations
in the node arrangements. We overcome this limitation by
relying in the statistical properties of the graph of regions,
by applying commute times as a distance between pairs of
matching regions.

Let (ri, rj) be the indexes of two arbitrary regions from
the dictionary Vr. The distance between regions is defined
as

D(ri, rj) = αd(Ci, Cj) + (1− α)d(Si, Sj), (5)

where C denotes the RGB color of the image region as the
mean color of the pixels contained in it. In the second term,
S refers to the SIFT descriptor extracted from the image
regions, obtained by computing a dense SIFT on every pixel
of a region using a 16 by 16 patch, and clustering them in 8
bins. The function d is a χ2- distance measure, and α is a
weight expressing the influence of feature similarity.

The structure of regions within an image is represented
as a graph of regions, with its adjacency matrix defined as:

Ω(ri, rj) =

{
D(ri, rj) if ri shares a boundary with rj

0 otherwise
(6)

Commute times have been recently used in [3] to charac-
terize the layout of a graph, proving to be stable against
structural variations of the scene. The commute time matrix
between regions can be efficiently computed from the spec-
trum of the normalized Laplacian of the adjacency graph:

CT (ri, rj) = vol

N∑
k=2

1

λk

(
πk(ri)√
di
− πk(rj)√

dj

)2

(7)

where vol =
∑N

k=1 dk, and dk is the degree of node k. The
terms πk and λk denote the kth eigenvalue and eigenvector
of the graph Laplacian.

We denote every possible correspondence a between
one region in image I1 and another region in image I2 as
a = (ri, rj) ∈ I1 × I2. The matching score of those corre-
spondences is defined by the matrix M , where,

• M(a, a) denotes the affinity of individual assignments
given by the distance between regions defined in Eq.
5. Given a correspondence a = (ri, rj),

M(a, a) = D(ri, rj) (8)

• M(a, b) defines how well a pair of region correspon-
dences match. In our case, we use this term to pre-
serve a commute time distance between pairs of re-
gions in correspondence. Given a pair of correspon-
dences a = (ri, rj), b = (rk, rl),

M(a, b) =
|CT (ri, rj)− CT (rk, rl)|
CT (ri, rj) + CT (rk, rl)

(9)

As stated in [6], the matching problem reduces to find the
set of region correspondences (ri, rj) ∈ E that maximizes
the score M . If we represent the set of possible correspon-
dences as a vector of indicator variables, such that y(a) = 1
if a ∈ E , and zero otherwise, the matching problem can be
formulated as the following optimization:

y∗ = argmax(yTMy) (10)

We use the algorithm of [6] to optimize the above objec-
tive, and define a new set of corresponding regions E =
{a|y∗(a) = 1}, matching every possible pair of images of
the input set. Finally, we introduce the last energy term,
Ematching , which imposes a penalty on corresponding re-
gions with different labels. We can write it analogously to
Eq. 2, as

Ematching(X) =
∑

(i,j)∈E

θ(1− δ(Xi, Xj)), (11)



Alaskan Bear Stonhenge1 Elephants Taj Mahal Gymnastics Liberty Statue
accuracy:0.91085 accuracy:0.90498

accuracy:0.90228
accuracy:0.89678

accuracy:0.89541

accuracy:0.93259

91.3 91.7 90.4 90.9 89.9 93.8

accuracy:0.80462

accuracy:0.90617

accuracy:0.88009

accuracy:0.89167
accuracy:0.86055 accuracy:0.86239

80.2 90.6 88.3 89.2 86.5 87.1
Figure 3: Example results on the iCoseg dataset. A red line separates foreground and background areas.

iCoseg Ours [10] [17] uniform obj.
Alaskan bear 86.4 74.8 90.0 79.0 79.5
Red Sox Players 90.5 73.0 90.9 86.8 77.2
Stonehenge1 87.3 56.6 63.3 88.8 85.5
Stonehenge2 88.4 86.0 88.8 68.4 70.0
Liverpool FC 82.6 76.4 87.5 82.9 85.0
Ferrari 84.3 85.0 89.9 73.9 78.0
Taj Mahal 88.7 73.7 91.1 83.4 74.9
Elephants 75.0 70.1 43.1 83.5 80.6
Pandas 60.0 84.0 92.7 68.7 81.3
Kite 89.8 87.0 90.3 76.0 77.3
Kite panda 78.3 73.2 90.2 62.0 78.4
Gymnastics 87.1 90.9 91.7 62.7 75.8
Skating 76.8 82.1 77.5 73.7 72.9
Hot Balloons 89.0 85.2 90.1 78.2 84.1
Liberty Statue 91.6 90.6 93.8 64.4 79.4
Brown Bear 80.4 74.0 95.3 82.2 78.1
mean accuracy 83.9 78.9 85.3 75.9 78.6

Table 1: Bold numbers represent classes in which our method’s perfor-
mance overcomes the non-supervised competitor [10]. In bold red, the
scores for classes in which our method outperforms the state-of-the-art su-
pervised method. In the second column the results as reported in [17].

by noting that the penalty is equal to 0 when both corre-
sponding regions belong to the foreground or both to the
background, and θ otherwise.

5. Qualitative and Quantitative results
We evaluate our method with three different experi-

ments. We report results on the iCoseg and MSRC datasets,
and we illustrate the application of co-segmentation by
matching, with an example of part-based correspondence.

We present qualitative and quantitative results of our al-
gorithm. The segmentation accuracy of a given image is
measured by computing the ratio of correctly labeled pix-
els of foreground and background with respect to the total
number of pixels, like in [17].

Pandas Skatingaccuracy:0.60867 accuracy:0.80649

60.8 80.2

accuracy:0.64332
accuracy:0.79755

64.5 79.0
Figure 4: Examples of cases where the method fails in classes Panda
and Skating. In the case of the panda, the objectness initialization leads the
foreground to a local minima on the white fur. The images of the Skating
class present complex compositions of objects.

5.1. Experimental set-up

The sub-modularity of the pairwise potentials is assured,
since we only apply a cost on the variable configurations
[Xi 6= Xj ]. This lets us optimize the objective using graph-
cuts but, in principle, any other optimization algorithm
could be used as well. We choose graph-cuts because it pro-
vides a good trade-off between optimization speed and low
energy bound. The number of components in the GMMs
is automatically determined using the center-based cluster-
ing algorithm proposed in [11]. The last detail remaining
is the value of the penalty scalars (θ, η) and unary weights
(λ1, λ2). Since we want to avoid learning these parameters
from training data, we adopt a conservative approach to set
them: we set both penalties to the minimum integer cost 1,
and we uniformly assign the same weight λ = λ1, λ2 to
both singleton potentials. At the end, our method only de-
pends on three parameters: λ, α, and the maximum number



of iterations. It is worth to mention that only the λ value has
an important influence on the algorithm performance. The
stopping condition of the iterative process depends on the
ratio of pixels that switched label since the last iteration. If
this percentage is less than 2.5%, the algorithm stops. We
use three different levels of scale segmentations, with the
same mean-shift parameters for every image. We set the pa-
rameter α which weights the contribution of color and SIFT
in the distance measure to 0.5. The parameter λ to scale the
appearance potential is set to 2.75.

It is very common in the literature to apply a smoothing
on the label values using an extra pairwise term between
neighbor variables. We leave it as an optional energy com-
ponent, because it proved to be not much influential in the
performance of the algorithm, and we avoid setting an extra
penalty parameter.

5.2. iCoseg database

The iCoseg database was introduced in [2]. It contains
643 images divided into 38 classes with hand-labelled pixel-
level segmentation ground-truth. Each class is composed of
approximately 17 images. For this experiment, and for the
sake of comparison, we use the same sub-set of 16 classes
reported in [17]. We simultaneously co-segment groups of
(at most) 10 images, and average the results for each of the
groups. The images of each group are randomly selected,
to avoid unfair grouping of affine-looking images.

In Table 1, we compare the performance of our method
with a recent non-supervised method [10]. That is, a method
that does not require ground-truth segmentations of object
instances. Our results are on line with state-of-the-art al-
gorithms such [17] (third column), which trains a pairwise
energy from groundtruth segmentations of pairs of objects,
tested against new groups of images.

The fourth column shows results with a uniform seg-
mentation: best error rate of full (all ones) and empty
(all zeros) segmentations. The last column contains the
objectness-based initialization results. The bold red figures
show classes in which our method outperforms [17]. This is
mainly due to the high similarity on the image background
(Elephant and Stonehenge), for which our method performs
better because it estimates both foreground and background
distributions. On average, our result for all 16 classes is
slightly below [17] (just -1.4%).

The Pandas class performs the worst because an incor-
rect objectness initialization in the majority of its images
keeps the foreground distribution trapped inside the white
fur patches of the panda (See Figure 4). If the object
presents a high color variability within the same instance,
a correct initialization of the first foreground estimate is key
to achieve satisfactory results. The Skating class is diffi-
cult to segment due to the complexity of the object. Again,
the appearance variability between the color of the skaters’

Horse Car Plane
accuracy:0.66267

accuracy:0.5607

accuracy:0.82168

82.3 43.7 79.4
accuracy:0.63709

accuracy:0.68305

accuracy:0.78817

85.9 62.6 76.2
Figure 5: Example results on the MSRC dataset. The images show
a high color variability between foregrounds of the same class, in Horse
and Cars (back). The background of the plane class does not significantly
change.

MSRC images Ours Joulin et al.[10] uniform
Cars (front) 6 65.9 87.65 64.0
Cars (back) 6 52.4 85.1 71.3
Face 30 76.3 84.3 60.4
Cow 30 80.1 81.6 66.3
Horse 30 74.9 80.1 68.6
Cat 30 77.1 74.4 59.2
Plane 30 77.0 73.8 75.9
Bike 30 62.4 63.3 59.0

Table 2: Segmentation accuracy for the MSRC dataset and Weizzman
horses.

costume and the body parts, makes the foreground distribu-
tion fall in a local minima covering only the costume. The
skaters’ legs and heads are labeled as background.

5.3. Objects with variate appearances

The MSRC database depicts images of different in-
stances of the same class. This contradicts one of the main
hypotheses of our method, which strongly relies on a unique
aspect of the foreground object. For instance, some classes
show objects with variate colors and textures (e.g. Cars).
We show that our method performs reasonably well even
though this assumption does not hold.

Table 2. shows comparative results on the MSRC dataset
and Weizman Horses dataset. In comparison to [10], our
method outperforms the reported results when the back-
ground hardly changes, such as the plane class. As pointed
out in [10], plane images have a similar background (the air-
port) that makes the task of separating foreground and back-
ground harder. Our algorithm does not suffer from this lim-
itation, as long as foreground and background do not look
alike.

Cars perform poorly due to the small number of images
available in the database (6), and the large intra-class vari-
ability, especially regarding color. Figure 5. shows an ex-
ample of this. Our method tends to identify windows and
light-beams as the common foreground region.



5.4. Part-based recognition

Obtaining region correspondences within a co-
segmentation framework is very useful for understanding
the semantics of a scene. In our third experiment we use the
region matching output to identify parts of the common ob-
jects co-segmented. We simply gather the regions selected
as foreground by our co-segmentation algorithm, and select
the correspondences with the highest spectral matching
scores. Figure 6. shows the corresponding regions of four
images of the Kendo class from the iCoseg database. The
images are paired in two sets to show the part-recognition
of each of the fighters. The heads and regions close to the
head present the higher matching scores, being the only
regions with discriminative features. In Figure 6. (e,f),
only the upper part of the body finds matching candidates
scoring over the threshold. In (h), the whole body of the
fighter is correctly matched.

6. Conclusions
We have proposed a multi-scale multi-image representa-

tion that is able to model complex scenes containing several
objects. A non-supervised iterative algorithm is presented,
that is able to separate foreground and background by mod-
eling both appearance distributions on pixels and regions.
We show that is possible to take advantage of an explicit
matching of regions, that increases the consistency of the
foreground and background models across images. Our ap-
proach has shown to be robust against deformable objects as
well as changes on object poses and camera viewpoint. We
also overcome the limitation of other recent methods, which
require background dissimilarity among the input images.

Our algorithm shows competitive results with state-of-
the-art methods, and outperforms recent non-supervised co-
segmentation approaches. It has shown good performance
on two types of databases, one (iCoseg) contains the same
object instance per class, while the other (MSRC) contains
objects with varied appearances within the same class. One
of the main advantages of our method is that it does not
require different backgrounds in the input images. Other
advantage is that the performance improves with the num-
ber of images available. We also present a prove of concept
to illustrate the use of co-segmentation as a starting point to
perform part-based recognition.
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