toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Antonio Hernandez; Carlo Gatta; Sergio Escalera; Laura Igual; Victoria Martin-Yuste; Manel Sabate; Petia Radeva edit   pdf
doi  openurl
  Title Accurate coronary centerline extraction, caliber estimation and catheter detection in angiographies Type Journal Article
  Year 2012 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB  
  Volume 16 Issue 6 Pages 1332-1340  
  Keywords  
  Abstract Segmentation of coronary arteries in X-Ray angiography is a fundamental tool to evaluate arterial diseases and choose proper coronary treatment. The accurate segmentation of coronary arteries has become an important topic for the registration of different modalities which allows physicians rapid access to different medical imaging information from Computed Tomography (CT) scans or Magnetic Resonance Imaging (MRI). In this paper, we propose an accurate fully automatic algorithm based on Graph-cuts for vessel centerline extraction, caliber estimation, and catheter detection. Vesselness, geodesic paths, and a new multi-scale edgeness map are combined to customize the Graph-cuts approach to the segmentation of tubular structures, by means of a global optimization of the Graph-cuts energy function. Moreover, a novel supervised learning methodology that integrates local and contextual information is proposed for automatic catheter detection. We evaluate the method performance on three datasets coming from different imaging systems. The method performs as good as the expert observer w.r.t. centerline detection and caliber estimation. Moreover, the method discriminates between arteries and catheter with an accuracy of 96.5%, sensitivity of 72%, and precision of 97.4%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1089-7771 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ HGE2012 Serial 2141  
Permanent link to this record
 

 
Author (up) Antonio Hernandez; Miguel Angel Bautista; Xavier Perez Sala; Victor Ponce; Sergio Escalera; Xavier Baro; Oriol Pujol; Cecilio Angulo edit   pdf
doi  openurl
  Title Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D Type Journal Article
  Year 2014 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 50 Issue 1 Pages 112-121  
  Keywords RGB-D; Bag-of-Words; Dynamic Time Warping; Human Gesture Recognition  
  Abstract PATREC5825
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MV; 605.203 Approved no  
  Call Number Admin @ si @ HBP2014 Serial 2353  
Permanent link to this record
 

 
Author (up) Antonio Hernandez; Miguel Reyes; Victor Ponce; Sergio Escalera edit   pdf
doi  openurl
  Title GrabCut-Based Human Segmentation in Video Sequences Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue 11 Pages 15376-15393  
  Keywords segmentation; human pose recovery; GrabCut; GraphCut; Active Appearance Models; Conditional Random Field  
  Abstract In this paper, we present a fully-automatic Spatio-Temporal GrabCut human segmentation methodology that combines tracking and segmentation. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model. Spatial information is included by Mean Shift clustering whereas temporal coherence is considered by the historical of Gaussian Mixture Models. Moreover, full face and pose recovery is obtained by combining human segmentation with Active Appearance Models and Conditional Random Fields. Results over public datasets and in a new Human Limb dataset show a robust segmentation and recovery of both face and pose using the presented methodology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ HRP2012 Serial 2147  
Permanent link to this record
 

 
Author (up) Antonio Hernandez; Nadezhda Zlateva; Alexander Marinov; Miguel Reyes; Petia Radeva; Dimo Dimov; Sergio Escalera edit   pdf
doi  openurl
  Title Human Limb Segmentation in Depth Maps based on Spatio-Temporal Graph Cuts Optimization Type Journal Article
  Year 2012 Publication Journal of Ambient Intelligence and Smart Environments Abbreviated Journal JAISE  
  Volume 4 Issue 6 Pages 535-546  
  Keywords Multi-modal vision processing; Random Forest; Graph-cuts; multi-label segmentation; human body segmentation  
  Abstract We present a framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α−β swap Graph-cuts algorithm. Moreover, depth values of spatio-temporal neighboring data points are used as boundary potentials. Results on a new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology compared to classical approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1876-1364 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ HZM2012a Serial 2006  
Permanent link to this record
 

 
Author (up) Antonio Hernandez; Sergio Escalera; Stan Sclaroff edit  doi
openurl 
  Title Poselet-basedContextual Rescoring for Human Pose Estimation via Pictorial Structures Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 118 Issue 1 Pages 49–64  
  Keywords Contextual rescoring; Poselets; Human pose estimation  
  Abstract In this paper we propose a contextual rescoring method for predicting the position of body parts in a human pose estimation framework. A set of poselets is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body part hypotheses. A method is proposed for the automatic discovery of a compact subset of poselets that covers the different poses in a set of validation images while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for each body joint detection, given its relationship to detections of other body joints and mid-level parts in the image. This new score is incorporated in the pictorial structure model as an additional unary potential, following the recent work of Pishchulin et al. Experiments on two benchmarks show comparable results to Pishchulin et al. while reducing the size of the mid-level representation by an order of magnitude, reducing the execution time by 68 % accordingly.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ HES2016 Serial 2719  
Permanent link to this record
 

 
Author (up) Antonio Lopez; Ernest Valveny; Juan J. Villanueva edit  url
openurl 
  Title Real-time quality control of surgical material packaging by artificial vision Type Journal Article
  Year 2005 Publication Assembly Automation Abbreviated Journal  
  Volume 25 Issue 3 Pages  
  Keywords  
  Abstract IF: 0.061)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;DAG Approved no  
  Call Number ADAS @ adas @ LVV2005 Serial 552  
Permanent link to this record
 

 
Author (up) Antonio Lopez; Gabriel Villalonga; Laura Sellart; German Ros; David Vazquez; Jiaolong Xu; Javier Marin; Azadeh S. Mozafari edit   pdf
url  openurl
  Title Training my car to see using virtual worlds Type Journal Article
  Year 2017 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 38 Issue Pages 102-118  
  Keywords  
  Abstract Computer vision technologies are at the core of different advanced driver assistance systems (ADAS) and will play a key role in oncoming autonomous vehicles too. One of the main challenges for such technologies is to perceive the driving environment, i.e. to detect and track relevant driving information in a reliable manner (e.g. pedestrians in the vehicle route, free space to drive through). Nowadays it is clear that machine learning techniques are essential for developing such a visual perception for driving. In particular, the standard working pipeline consists of collecting data (i.e. on-board images), manually annotating the data (e.g. drawing bounding boxes around pedestrians), learning a discriminative data representation taking advantage of such annotations (e.g. a deformable part-based model, a deep convolutional neural network), and then assessing the reliability of such representation with the acquired data. In the last two decades most of the research efforts focused on representation learning (first, designing descriptors and learning classifiers; later doing it end-to-end). Hence, collecting data and, especially, annotating it, is essential for learning good representations. While this has been the case from the very beginning, only after the disruptive appearance of deep convolutional neural networks that it became a serious issue due to their data hungry nature. In this context, the problem is that manual data annotation is a tiresome work prone to errors. Accordingly, in the late 00’s we initiated a research line consisting of training visual models using photo-realistic computer graphics, especially focusing on assisted and autonomous driving. In this paper, we summarize such a work and show how it has become a new tendency with increasing acceptance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ LVS2017 Serial 2985  
Permanent link to this record
 

 
Author (up) Antonio Lopez; Joan Serrat; Cristina Cañero; Felipe Lumbreras; T. Graf edit   pdf
doi  openurl
  Title Robust lane markings detection and road geometry computation Type Journal Article
  Year 2010 Publication International Journal of Automotive Technology Abbreviated Journal IJAT  
  Volume 11 Issue 3 Pages 395–407  
  Keywords lane markings  
  Abstract Detection of lane markings based on a camera sensor can be a low-cost solution to lane departure and curve-over-speed warnings. A number of methods and implementations have been reported in the literature. However, reliable detection is still an issue because of cast shadows, worn and occluded markings, variable ambient lighting conditions, for example. We focus on increasing detection reliability in two ways. First, we employed an image feature other than the commonly used edges: ridges, which we claim addresses this problem better. Second, we adapted RANSAC, a generic robust estimation method, to fit a parametric model of a pair of lane lines to the image features, based on both ridgeness and ridge orientation. In addition, the model was fitted for the left and right lane lines simultaneously to enforce a consistent result. Four measures of interest for driver assistance applications were directly computed from the fitted parametric model at each frame: lane width, lane curvature, and vehicle yaw angle and lateral offset with regard the lane medial axis. We qualitatively assessed our method in video sequences captured on several road types and under very different lighting conditions. We also quantitatively assessed it on synthetic but realistic video sequences for which road geometry and vehicle trajectory ground truth are known.  
  Address  
  Corporate Author Thesis  
  Publisher The Korean Society of Automotive Engineers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1229-9138 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ LSC2010 Serial 1300  
Permanent link to this record
 

 
Author (up) Arash Akbarinia; C. Alejandro Parraga edit   pdf
doi  openurl
  Title Colour Constancy Beyond the Classical Receptive Field Type Journal Article
  Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 40 Issue 9 Pages 2081 - 2094  
  Keywords  
  Abstract The problem of removing illuminant variations to preserve the colours of objects (colour constancy) has already been solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron's receptive field (RF) as well as the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs' outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual system operates. These results might provide an insight on how dynamical adaptation mechanisms contribute to make object's colours appear constant to us.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.068; 600.072 Approved no  
  Call Number Admin @ si @ AkP2018a Serial 2990  
Permanent link to this record
 

 
Author (up) Arash Akbarinia; C. Alejandro Parraga edit   pdf
url  openurl
  Title Feedback and Surround Modulated Boundary Detection Type Journal Article
  Year 2018 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 126 Issue 12 Pages 1367–1380  
  Keywords Boundary detection; Surround modulation; Biologically-inspired vision  
  Abstract Edges are key components of any visual scene to the extent that we can recognise objects merely by their silhouettes. The human visual system captures edge information through neurons in the visual cortex that are sensitive to both intensity discontinuities and particular orientations. The “classical approach” assumes that these cells are only responsive to the stimulus present within their receptive fields, however, recent studies demonstrate that surrounding regions and inter-areal feedback connections influence their responses significantly. In this work we propose a biologically-inspired edge detection model in which orientation selective neurons are represented through the first derivative of a Gaussian function resembling double-opponent cells in the primary visual cortex (V1). In our model we account for four kinds of receptive field surround, i.e. full, far, iso- and orthogonal-orientation, whose contributions are contrast-dependant. The output signal from V1 is pooled in its perpendicular direction by larger V2 neurons employing a contrast-variant centre-surround kernel. We further introduce a feedback connection from higher-level visual areas to the lower ones. The results of our model on three benchmark datasets show a big improvement compared to the current non-learning and biologically-inspired state-of-the-art algorithms while being competitive to the learning-based methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.068; 600.072 Approved no  
  Call Number Admin @ si @ AkP2018b Serial 2991  
Permanent link to this record
 

 
Author (up) Arash Akbarinia; Karl R. Gegenfurtner edit  doi
openurl 
  Title Metameric Mismatching in Natural and Artificial Reflectances Type Journal Article
  Year 2017 Publication Journal of Vision Abbreviated Journal JV  
  Volume 17 Issue 10 Pages 390-390  
  Keywords Metamer; colour perception; spectral discrimination; photoreceptors  
  Abstract The human visual system and most digital cameras sample the continuous spectral power distribution through three classes of receptors. This implies that two distinct spectral reflectances can result in identical tristimulus values under one illuminant and differ under another – the problem of metamer mismatching. It is still debated how frequent this issue arises in the real world, using naturally occurring reflectance functions and common illuminants.

We gathered more than ten thousand spectral reflectance samples from various sources, covering a wide range of environments (e.g., flowers, plants, Munsell chips) and evaluated their responses under a number of natural and artificial source of lights. For each pair of reflectance functions, we estimated the perceived difference using the CIE-defined distance ΔE2000 metric in Lab color space.

The degree of metamer mismatching depended on the lower threshold value l when two samples would be considered to lead to equal sensor excitations (ΔE < l), and on the higher threshold value h when they would be considered different. For example, for l=h=1, we found that 43.129 comparisons out of a total of 6×107 pairs would be considered metameric (1 in 104). For l=1 and h=5, this number reduced to 705 metameric pairs (2 in 106). Extreme metamers, for instance l=1 and h=10, were rare (22 pairs or 6 in 108), as were instances where the two members of a metameric pair would be assigned to different color categories. Not unexpectedly, we observed variations among different reflectance databases and illuminant spectra with more frequency under artificial illuminants than natural ones.

Overall, our numbers are not very different from those obtained earlier (Foster et al, JOSA A, 2006). However, our results also show that the degree of metamerism is typically not very strong and that category switches hardly ever occur.
 
  Address Florida, USA; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; no menciona Approved no  
  Call Number Admin @ si @ AkG2017 Serial 2899  
Permanent link to this record
 

 
Author (up) Ariel Amato edit  openurl
  Title Moving cast shadow detection Type Journal Article
  Year 2014 Publication Electronic letters on computer vision and image analysis Abbreviated Journal ELCVIA  
  Volume 13 Issue 2 Pages 70-71  
  Keywords  
  Abstract Motion perception is an amazing innate ability of the creatures on the planet. This adroitness entails a functional advantage that enables species to compete better in the wild. The motion perception ability is usually employed at different levels, allowing from the simplest interaction with the ’physis’ up to the most transcendental survival tasks. Among the five classical perception system , vision is the most widely used in the motion perception field. Millions years of evolution have led to a highly specialized visual system in humans, which is characterized by a tremendous accuracy as well as an extraordinary robustness. Although humans and an immense diversity of species can distinguish moving object with a seeming simplicity, it has proven to be a difficult and non trivial problem from a computational perspective. In the field of Computer Vision, the detection of moving objects is a challenging and fundamental research area. This can be referred to as the ’origin’ of vast and numerous vision-based research sub-areas. Nevertheless, from the bottom to the top of this hierarchical analysis, the foundations still relies on when and where motion has occurred in an image. Pixels corresponding to moving objects in image sequences can be identified by measuring changes in their values. However, a pixel’s value (representing a combination of color and brightness) could also vary due to other factors such as: variation in scene illumination, camera noise and nonlinear sensor responses among others. The challenge lies in detecting if the changes in pixels’ value are caused by a genuine object movement or not. An additional challenging aspect in motion detection is represented by moving cast shadows. The paradox arises because a moving object and its cast shadow share similar motion patterns. However, a moving cast shadow is not a moving object. In fact, a shadow represents a photometric illumination effect caused by the relative position of the object with respect to the light sources. Shadow detection methods are mainly divided in two domains depending on the application field. One normally consists of static images where shadows are casted by static objects, whereas the second one is referred to image sequences where shadows are casted by moving objects. For the first case, shadows can provide additional geometric and semantic cues about shape and position of its casting object as well as the localization of the light source. Although the previous information can be extracted from static images as well as video sequences, the main focus in the second area is usually change detection, scene matching or surveillance. In this context, a shadow can severely affect with the analysis and interpretation of the scene. The work done in the thesis is focused on the second case, thus it addresses the problem of detection and removal of moving cast shadows in video sequences in order to enhance the detection of moving object.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Ama2014 Serial 2870  
Permanent link to this record
 

 
Author (up) Ariel Amato; Mikhail Mozerov; Andrew Bagdanov; Jordi Gonzalez edit   pdf
doi  openurl
  Title Accurate Moving Cast Shadow Suppression Based on Local Color Constancy detection Type Journal Article
  Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 20 Issue 10 Pages 2954 - 2966  
  Keywords  
  Abstract This paper describes a novel framework for detection and suppression of properly shadowed regions for most possible scenarios occurring in real video sequences. Our approach requires no prior knowledge about the scene, nor is it restricted to specific scene structures. Furthermore, the technique can detect both achromatic and chromatic shadows even in the presence of camouflage that occurs when foreground regions are very similar in color to shadowed regions. The method exploits local color constancy properties due to reflectance suppression over shadowed regions. To detect shadowed regions in a scene, the values of the background image are divided by values of the current frame in the RGB color space. We show how this luminance ratio can be used to identify segments with low gradient constancy, which in turn distinguish shadows from foreground. Experimental results on a collection of publicly available datasets illustrate the superior performance of our method compared with the most sophisticated, state-of-the-art shadow detection algorithms. These results show that our approach is robust and accurate over a broad range of shadow types and challenging video conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ AMB2011 Serial 1716  
Permanent link to this record
 

 
Author (up) Ariel Amato; Mikhail Mozerov; Xavier Roca; Jordi Gonzalez edit   pdf
doi  openurl
  Title Robust Real-Time Background Subtraction Based on Local Neighborhood Patterns Type Journal Article
  Year 2010 Publication EURASIP Journal on Advances in Signal Processing Abbreviated Journal EURASIPJ  
  Volume Issue Pages 7  
  Keywords  
  Abstract Article ID 901205
This paper describes an efficient background subtraction technique for detecting moving objects. The proposed approach is able to overcome difficulties like illumination changes and moving shadows. Our method introduces two discriminative features based on angular and modular patterns, which are formed by similarity measurement between two sets of RGB color vectors: one belonging to the background image and the other to the current image. We show how these patterns are used to improve foreground detection in the presence of moving shadows and in the case when there are strong similarities in color between background and foreground pixels. Experimental results over a collection of public and own datasets of real image sequences demonstrate that the proposed technique achieves a superior performance compared with state-of-the-art methods. Furthermore, both the low computational and space complexities make the presented algorithm feasible for real-time applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1110-8657 ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number ISE @ ise @ AMR2010 Serial 1463  
Permanent link to this record
 

 
Author (up) Arjan Gijsenij; R. Lu; Theo Gevers; De Xu edit  doi
openurl 
  Title Color Constancy for Multiple Light Source Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 2 Pages 697-707  
  Keywords  
  Abstract Impact factor 2010: 2.92
Impact factor 2011/2012?: 3.32
Color constancy algorithms are generally based on the simplifying assumption that the spectral distribution of a light source is uniform across scenes. However, in reality, this assumption is often violated due to the presence of multiple light sources. In this paper, we will address more realistic scenarios where the uniform light-source assumption is too restrictive. First, a methodology is proposed to extend existing algorithms by applying color constancy locally to image patches, rather than globally to the entire image. After local (patch-based) illuminant estimation, these estimates are combined into more robust estimations, and a local correction is applied based on a modified diagonal model. Quantitative and qualitative experiments on spectral and real images show that the proposed methodology reduces the influence of two light sources simultaneously present in one scene. If the chromatic difference between these two illuminants is more than 1° , the proposed framework outperforms algorithms based on the uniform light-source assumption (with error-reduction up to approximately 30%). Otherwise, when the chromatic difference is less than 1° and the scene can be considered to contain one (approximately) uniform light source, the performance of the proposed method framework is similar to global color constancy methods.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ALTRES;ISE Approved no  
  Call Number Admin @ si @ GLG2012a Serial 1852  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: