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ABSTRACT− Detection of lane markings based on a camera sensor can be a low cost solution to lane departure and 
curve over speed warning. A number of methods and implementations have been reported in the literature. However, 
reliable detection is still an issue due to cast shadows, wearied and occluded markings, variable ambient lighting 
conditions etc. We focus on increasing the reliability of detection in two ways. Firstly, we employ a different image 
feature other than the commonly used edges: ridges, which we claim is better suited to this problem. Secondly, we 
have adapted RANSAC, a generic robust estimation method, to fit a parametric model of a pair or lane lines to the 
image features, based on both ridgeness and ridge orientation. In addition this fitting is performed for the left and 
right lane lines simultaneously, thus enforcing a consistent result. Four measures of interest with regard several driver 
assistance applications are directly computed from the fitted parametric model at each frame: vehicle yaw angle and 
lateral offset with regard the lane medial axis, and lane width and curvature. We have qualitatively assessed our 
method in video sequences captured on several road types and under very different lighting conditions. Also, we have 
quantitatively assessed it on synthetic but realistic video sequences for which road geometry and vehicle trajectory 
ground truth are known.  
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1. INTRODUCTION 

A present challenge of the automotive industry is to 
develop low cost advanced driver assistance systems 
(ADAS) able to increase traffic safety and driving 
comfort. Since vision is the most used human sense for 
driving, some ADAS features rely on visual sensors 
(Bertozzi et al., 2000). Specifically, lane departure 
warning and lateral control can be addressed by 
detecting the lane markings on the road by means of a 
forward-facing camera and computer vision techniques. 
In this paper we focus on this problem, which is one of 
the first addressed in the field of ADAS. It is a difficult 
and not yet completely solved problem due to shadows, 
large contrast variations, vehicles occluding the marks, 
wearied markings, vehicle ego-motion etc. Recent 
reviews of detection methods can be found in (McCall 
and Trivedi, 2006; Jung and Kelber, 2005).  

Many of the proposed methods share the following 
three steps. First, collect cues on where the lane 
markings can be, typically in the form of image points 
labeled as lane markings candidates. Second, fit a 
certain lane model to them, commonly straight lines or 
some smooth parametric curve. Third, perform some 
sort of tracking in order to impose temporal continuity, 
yield a smooth response along time and facilitate real-
time (the results in the present frame guide the search in 
the next one). 

Ideally, lane markings are white lines on a dark 
pavement. Thus, the first step is usually based on image 
edges, defined as extrema of the gradient magnitude 
along the gradient direction. The gradient magnitude is 
an edgeness measure and the gradient direction can be 
used to filter out edge points having an orientation 
inconsistent with the expected orientation of a lane line. 
However, the gradient magnitude can be misleading: 
cast shadows and vehicles may give rise to high 
gradient values, while wearied marks and poor lighting 
conditions (e.g. in tunnels) reduce lane markings 
contrast. Also, the gradient orientation tends to be noisy 
because of its local nature. Therefore, methods based on 
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edge detection algorithms must devise strategies to cope 
with these problems (e.g. local adaptive and hysteresis 
thresholding). Otherwise, lane lines model fitting would 
fail or be much more difficult. 

The main contributions of this paper are three. The 
first one is to employ a different low-level image feature, 
namely, ridgeness, to obtain a more reliable lane 
marking points detection under poor contrast conditions 
(section 2.1). Aside from this practical consideration, 
conceptually, a ridge  describes better than an edge what 
a lane line is: the medial axis of a thick, brighter 
elongated structure. Secondly, we have adapted 
RANSAC, a generic robust estimation method, to fit a 
parametric model to the candidate lane marking points, 
using as input data both ridgeness and ridge orientation 
(section 3). Our model consists in a pair of hyperbolas 
sharing a common horizontal asymptote, which are 
constrained to be parallel on the road plane. We claim 
that a better suited feature (ridges) combined with a 
robust fitting method contribute to improve lane lines 
detection reliability. We have intentionally avoided any 
kind of result post processing, tracking or lane line 
prediction, for example through a Kalman filtering. 
Instead, each frame is processed independently of the 
others. This way we can better design the detection and 
fitting steps. Our aim has been to build a 'baseline' 
system to which later we can add filtering and data 
fusion to improve its performance. Thirdly, we 
quantitatively assess the method with regard to four 
geometrically meaningful quantities derived from the 
segmented lane markings: vehicle yaw angle and lateral 
offset, lane curvature and width. This is possible on 
synthetic sequences, for which we know exactly the 
value for these parameters since they are provided as 
input to a simulator which generates the sequences 
(section 4). Qualitative (visual) evaluation is also 
performed on a number of frames from real sequences 
exhibiting challenging lighting and occlusion conditions. 
In addition, video results are also provided in a 
companion material web page. Section 5 draws the main 
conclusions and comments future work.  

The work described in this paper is an evolution and 
extension of two previous works, (Lopez et al., 2007), 
(Lopez et al., 2005). Results in them are qualitative, that 
is, the fitted lane lines are superimposed to a limited 
number of frames, representative of the common 
difficulties such type of detectors have to face. They 
lack the in-depth quantitative performance evaluation of 
the lane detection on synthetic sequences with ground-
truth, that we have included in this paper. In addition, 
we provide now extensive results on fourteen long video 
sequences recorded on several road types and under 
different lighting conditions, which can be viewed in 
www.cvc.uab.es/adas/projects/lanemarkings
/IJAT/videos.html. Moreover, the method is not 
compared to state-of-the art techniques like steerable 

filters, as we do here. Finally, they do not detail the 
parameters involved and their actual values, thus 
facilitating an eventual implementation. 

2. IMAGE FEATURES 

2.1. Lane markings as ridges 
 

Ridges of a grey-level image are the center lines of 
elongated, bright structures. In the case of a lane line is 
its longitudinal center. This terminology comes from 
considering an image as a landscape, being the intensity 
the z axis or height, since then these center lines 
correspond to the landscape ridges (Figure 1). 
Accordingly, ridgeness stands for a measure of how 
much a pixel neighborhood resembles a ridge. Therefore, 
a ridgeness measure must have high values along the 
center of the line and decrease as the boundary is 
approached. A binary ridge image, corresponding to the 
centerline, can be obtained by simple thresholding, 
provided we have a well-contrasted and homogeneous 
ridgeness measure.  

This notion of ridge or medial axis is a simpler and, 
as we will see in short, computationally better 
characterization of lane lines than that provided by 
edges. Instead of defining (and trying to find out) a lane 
line as points between two parallel edge segments with 
opposite gradient direction, a ridge is the center of the 
line itself, once a certain amount of smoothing has been 

Figure 1. Top: road image with a region of interest 
(ROI) outlined and intensity of ROI seen as a 
landscape, where lane markings resemble mountains 
and ridges correspond to the center of the lane 
markings. Bottom: normalized gradient vector field 
superimposed to original image of the lower lane line 
segment (left) and ridgeness 0)(~ ≥xκ . 
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performed. And this amount is chosen as the scale at 
which ridges are sought. 

There are different mathematical characterizations of 
ridges. In (Lopez et al., 2000) a new one is proposed 
which compares favorably to others and that we have 
adapted for the problem at hand. Let Gσ (x) be a 2D 
Gaussian of standard deviation σ and L (x) be the grey-
level image, with x = (u, v) the spatial coordinates (u 
columns, v rows). Then, ridgeness is calculated as 
follows (∗ and · stand for convolution and the Hadamard 
product, respectively): 

 
1. Compute a smoothed version of the image, namely 
 

)(*)()( xxx LGL
dd σσ =                                                 (1) 

 
2. Compute the gradient vector field 
 

t))(),(()( xxxw
ddd

LL uu σσσ ∂∂=                                (2) 
 
3. Compute the structure tensor field 
 

)(*)()(, xsxxS
diid

G σσσσ =                                          (3) 
 
being 
 

)()()( t xwxwxs ddd
σσσ ⋅=                                          (4) 

 
4. Obtain the eigenvector corresponding to the highest 
eigenvalue of Sσ d,σ i (x), namely w′σ d,σ i (x). It is known 
that w′σ d,σ i (x)  yields the dominant gradient orientation 
of the original image at x and is perpendicular to the 
dominant image orientation at x (if x is from a lane 
marking then the dominant image orientation is along it). 
Therefore, its is a more robust orientation measure than 
the image gradient wσ d(x) itself. It is worth to notice 
that w′σ d,σ i (x) defines an orientation field in the image 
but for the next step we need a vector field. For this 
reason we project w′σ d,σ i (x) into wσ d (x) as: 
 

)()(')( t
,, xwxwx

didid
p σσσσσ ⋅=                                 (5) 

 
and define the following vector field: 
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5. Finally, the ridgeness measure is defined as the 
positive values of 
 

))(~div()(~
,, xwx

idid σσσσκ −=                                       (7) 
 

where div() denotes divergence of a vector field. 
The parameter σd is the differentiation scale, in 

opposition to σi which is the integration scale. The 
former must be tuned to the size of the target structures, 
while the later determines the size of the neighborhood 
we want to use in order to compute the dominant 
orientation.  

Positive values of κ~ measure the similarity of a 
neighborhood to a ridge structure. In fact, it has been 
shown (Lopez et al., 2000) that these values lie in the 
range [0, 2.0], where 0 means not at all ridge, around 
1.0 quite and 2.0 perfect local maximum. Besides, these 
values are homogeneously distributed along the center 
lines, thus facilitating thresholding. Other interesting 
properties of κ~ are invariance to image translation and 
rotation, as one would expect, but also to monotonic 
grey-level transforms. The later greatly helps in lane 
detection in presence of shadows and low contrast 
conditions, opposite to gradient-based measures. 
However, this means that ridgeness also enhances some 
bright and elongated irregularities in the pavement. 
Fortunately, this can be solved up to a large extent by 
discarding those ridges surrounded by a very low 
gradient magnitude neighborhood, less than a certain 
small threshold tgrad. We want to remark that the 
threshold value for selecting relevant ridge points has 
been fixed once and used in all the sequences, even 
though the cameras, lenses, vehicles and lighting 
conditions varied. We only take into account those 
pixels x for which 25.0)(~ >xκ , a value set 
experimentally but with a large margin before the 
number of selected pixels changes significantly. This 
can be appreciated in Figure 2, where dotted lines 
represent the cumulative histogram of the ridgeness for 
the fourteen original frames of Figure 9. We can 
observe that, on average, the number of selected points 

Figure 2. Dotted lines are the cumulative histogram of 
ridgeness for fourteen images of Figure 9. Solid lines: 
cumulative histogram after selection of ridge points 
with some nearby minimum gradient magnitude point. 
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for threshold values within the interval [0.4, 0.8] varies 
less than 5% of the total number of ridge points 
( 0)(~

, >x
id σσκ ). The subsequent application of the 

gradient magnitude filter just widens this interval to 
[0.25, 1.0] approximately (solid lines of Figure 2), so 
that any creaseness threshold within this interval would 
have a similar effect. We made the choice of a 
conservative value, its lower bound. 

Due to perspective, the imaged lane lines width 
decreases with distance. In order not to miss them when 
computing Lσ d in Equation (1), we want the upper rows 
to be less smoothed than lower rows, but just along the 
horizontal direction. This is achieved through 
anisotropic Gaussian smoothing, that is, replacing in 
Equation (1) the radially symmetric Gaussian kernel 
Gσ d(x) by a Gaussian kernel GΣ(x) with covariance 
matrix Σ =diag(σdx ,σdy), where σdy is constant and σdx 
increases with the row number. σdx has been set equal to 
the width of the target ridge structure, that is, the 
expected lane line width. It depends on the camera focal 
length and the pitch angle σdx with respect to the road 
plane. In particular, this later parameter determines the 
row of the horizon line. Thus, there is a simple way to 
set σdx once the camera has been fixed. Just below the 
horizon (row vmin of Figure 8), lane lines can be still 
distinguished, so we approximate their width there to 
one pixel. At the bottom row, simply measure it by hand. 
At intermediate rows, a linear interpolation between 
these two values has proved a sufficiently good 
approximation, given that they do not vary so much for 

the usual pitch angles (around 1.5°). Table 1 contains 
the actual values for all the detection parameters. 

Since the dominant orientation of a lane marking is 
perpendicular to the dominant gradient orientation, and 
therefore perpendicular to w~ (x), this vector field allows 
to discard pixels whose associated orientation is 
inconsistent with that expected by a lane markings 
model instantiation. We discard a ridge point xr if 
w~ (xr) is within [3π/8, 5π/8], which happens for lane 
markings with a large horizontal component. Of course, 
this could be a problem for curves with a very high 
curvature. However, we have experimentally checked 
that this criterion performs well even for curves that can 
not be driven safely at more than 40 Kmh. Figure 3 
shows the resulting candidate lane line points in some 
specially difficult situations like worn off paint, 
shadows, high contrast variation and tire marks. 
 

2.2. Comparison 
Besides classical edge-detection operators, steerable 

filters have been employed for road markings feature 

 
Table 1. Parameter values of the feature detection and 
model fitting phases. Original images of 640×480 
pixels are sample to half resolution in order to speed up 
processing. Row vmin is at 35 to 40 meters from the 
camera.  
 )(udxσ  0.65.0 K  
 dyσ  5.0  
detection iσ  5.0  
 gradt  0.2  
 ridgenesst  25.0  
 vanishu  160  
 minv  137  
 commonv  187  
fitting trialsn  1000  
 ],[ maxmin LL  px ]300,220[  
 α  o15  
 distt  pixels 2  

 ϕΔ  rows) (10 1o  

Figure 3. Detection in challenging conditions: (1) worn 
off paint, (2) tire marks, (3) white vehicle, (4) high 
curvature, (5) at night, (6) entering a tunnel, (7) shadow 
cast by a truck. Right column: ridgeness of points 
selected as candidate lane markings. The dotted line is 
the fixed initial row under which candidate points are 
sought (vmin in Figure 8). 
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extraction in several recent works like (McCall and 
Trivedi, 2006), (Veit et al., 2008). A steerable filter 
computes the second directional derivative along some 
direction θ. It can be written as a linear combination of 
the second derivatives in two orthogonal directions, say 
vertical and horizontal: 
 

θθ

θθ

σ

σσσθ

cossin2                  

sincos)(
2

2222

L

LLL
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vvuu

∂

+∂+∂=∂ x                    (8) 

 
Differentiating with respect to θ and setting it equal 

to zero yields a closed form expression for the 
directions θmax ,θmin of extremal second directional 
derivative, from which the maximum and minimum 
derivatives are computed. 

The advantages of the steerable filter are its 
simplicity, low computational cost due to the Gaussian 
kernels separability, and the selection of the features 
scale through the parameter σ. The suitability of 
steerable filters for lane markings detection stems from 
realizing that these structures are, at least locally, bright 
and uniform straight strips on a darker background. 
Therefore, θmax and θmin are expected to coincide with 
the orthogonal and parallel lane line orientation, 
respectively. Thus, the difference 

 
 σθσθσ LLD 22

minmax
∂−∂=                                             (9) 

 
can be interpreted as a measure of similarity to such an 
ideal model. 

The steerable filter has several drawbacks in this 
particular application context. First, it produces a wide 
response, as can be appreciated in Figure 4. This is 
because the image has to be heavily smoothed in order 
to convert the lane lines profile in their orthogonal 
direction into a single maximum, bell-shaped curve. 
Then, the central axis is usually obtained by 
thresholding Dσ with a high value. Second, the threshold 
value is contrast dependent, since the values of the 
second derivatives are too. Thus, highly contrasted lane 
lines can be well detected but not low contrast ones. 
Third, in order to deal with the perspective effect it is 
applied to the inverse perspective mapped image, which 
requires an additional computation and precludes the 
extraction of features close to the horizon line. Finally, 
it yields a high response not only at the center of 
contrasted strips but also at edges of similar scale. In 
our application context this is an important drawback of 
steerable filters because edges of cast shadows and 
diverse pavement markings, like arrows, words and 
yield symbols, can be mistaken as lane lines. 

In contrast, the ridgeness operator shares the former 
advantages and avoids the shortcomings, as illustrated 
in Figure 4. The response is one pixel wide, no matter 

the smoothing degree. By its very definition, it is 
located along the lane line center. In effect, as pointed 
out in the introduction, this operator is specifically 
designed to produce a high response at the medial axis 
of bright elongated structures and low elsewhere, 
including edges. 

The ridgeness value does not depend on the image 
contrast but on the image local structure. What matters 
is not the gradient magnitude but the spatial distribution 
of the gradient orientation in a neighborhood, since this 
measure is defined in Equation (7) as the divergence of 
the normalized gradient vector field. If the image locally 
resembles a ridge, then the gradient field exhibits 
parallel vectors pointing to opposite directions on each 
side of the ridge, as shown in Figure 1 (bottom). The 
more parallel and opposite are the normalized gradient 
vectors, the higher the ridgeness measure (but always 
|κ~ (x)| ≤ 2). This is in fact an advantage over methods 
built on gradient magnitude or magnitude of the second 
directional derivatives, which have to rely on finding a 
proper, contrast dependent threshold. The steerable filter 
employed in (McCall and Trivedi, 2006) and (Veit et al., 
2008) suffers this drawback. 

We have also compared our method with an edge-
based approach. Specifically, the image derivatives are 
computed in the same way (Equation (2)) and with the 
same parameter values. Directly using the edge points 
with a gradient higher than a certain threshold would 
produce an unfair comparison, since simple 
improvements can be applied which can greatly enhance 
the result. To this end, we keep only those points which, 

Figure 4. Comparison of lane markings detection with 
steerable filters and ridgeness operator (middle and 
bottom image of each group) in case of low contrast 
(a,b) and edges caused by (c) cast shadows and (d) 
other road markings. 
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in addition to having a gradient orientation from left to 
right (plus some allowed variation), have also in its 
vicinity some other point with high gradient but in the 
opposite direction. This way we are trying thus to detect 
the left contours of lane lines. The resulting points are 
then passed to the robust model fitting procedure, thus 
changing only the feature extraction part. We have 
performed this test on two video clips, and even though 
the gradient threshold and other minor parameters were 
hand tuned to achieve a good result, the ridge-based 
approach outperformed the edge-based in approximately 
20% of the frames. One reason is the mentioned 
dependence on the image contrast, but we have also 
seen that the orientation computed with the structure 
tensor is more reliable than simply using the gradient 
direction. 

The local dominant orientation is a powerful cue for 
filtering lane line points, because clearly not every 
orientation is allowed everywhere in the image. As we 
have seen, we compute it by means of the structure 
tensor, but other authors do it in different ways. The 
simplest one is directly from the gradient vector 
components, though it is a too local measure and is not 
reliable when calculated on isotropic structures. An 
alternative is the so called edge distribution function 
(EDF), employed for instance in (Guo et al., 2006) and 
(Yi and Lee, 2005). It is the mode of the histogram of 
the gradient orientation weighted by the gradient 
magnitude. Like in the structure tensor, the gradient is 
computed by convolution of the image with the x and y 
Gaussian first derivative kernels. Since left and right 
lane lines exhibit a different orientation and they may 
not even be straight, the EDF computation must be 
performed locally. We have compared both approaches 
on synthetic lane line images for which the ground-truth 
orientation is known. We have observed that, for the 
best EDF settings of window size and number of bins, 
the estimated orientation is slightly worse than 
computed with the structure tensor (Figure 5). One 
reason is that all pixels within the EDF window matter 
the same with regard the estimation of dominant 
orientation, once weighted by the gradient magnitude. 
In contrast, the structure tensor weights pixels on the 
basis of both the magnitude of Gaussian derivatives and 
distance to the window center, thus providing a better 
and smoother estimate of the orientation. In addition, 
the quantizing effect of the number of bins of the 
orientation histogram tends to induce sharp changes, as 
shown in Figure 5b. 

Using the structure tensor to compute the dominant 
orientation does not imply any additional cost to our 
method, since it is a necessary intermediate step toward 
computing the ridgeness measure of Equation (7). 
Actually, it can be performed quite fast as we will see. 
Once computed the horizontal and vertical image 
derivatives, needed by both EDF and the structure 

tensor, they are smoothed by convolution with two one-
dimensional Gaussian kernels of size 2σi. At each 
coordinate x, three products yield the structure tensor 
2×2 matrix of Equation (4). The eigenvector of its 
largest eigenvalue is readily computed because a closed 
form solution exists, involving only six products and 
two square roots. The C++ implementation of the whole 
ridgeness computation, including of course that of the 
dominant orientation, takes less than 5 milliseconds per 
frame (320×240 pixels) on a 2 Ghz Pentium IV. By the 
way, the total processing time per frame, including the 
model fitting with Ransac explained in the next section, 
is 20 milliseconds. 
 

3. LANE MODELING AND FITTING 

3.1. Lane lines model 
 

A number of geometrical models for the projected 
lane lines have been proposed, from simple straight 
lines to quadratic, spline and other polynomial curves, 
with the aim of performing a good image segmentation. 
However, few are built on a sound geometrical base like 
in (Guiducci, 1999). There it is shown that, under the 

Figure 5. (a) synthetic lane line with additive Gaussian 
noise of σ = 20, (b) dominant gradient orientation along 
the lane line center as estimated by the structure tensor 
(smooth curve) and EDF, with ground-truth at −45°. 
The window size for EDF is equal to the lane line width
and the number of bins is 360. 
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assumptions of flat road and constant curvature, a lane 

line is projected onto the image plane as an hyperbola. 
Admittedly, this is not a new model, but what that work 
reveals are the relationships among model parameters 
and meaningful and interesting geometrical entities such 
as lane width, curvature and the vehicle's lateral position, 
which we want to compute in order to validate our 
method, aside of their own evident applicability for 
driver assistance. 

Assume the road is on a plane, that is, there is not 
vertical curvature neither torsion. Furthermore, the 
curvature is either constant or varies linearly with the 
arc length s: 
 

sCC
R

C 10
1

+==                                                     (10) 

 
This is consistent with a road formed by segments of 

constant curvature connected by clothoids (Dickmanns 
and Mysliwetz, 1992). Assume too that changes in the 
road direction are smooth, being C1 small enough with 
regard to s so that approximations C1/C0 <<1 and C1<<1  
hold.  

World and camera coordinate systems share a 
common origin but have different orientation  (Figure  
6). For the world coordinate system the Z axis is parallel 
to the road tangent, Y axis points downwards and is 
orthogonal to the road plane, whereas the X axis is 
parallel to the road plane and orthogonal to the road 
tangent and therefore to the lane lines. The camera 
coordinate system has Y axis coincident with the vehicle 
direction and sustains an angle θ  << 1 radians with the 
road tangent line (also referred as yaw angle). It also 
forms an angle ϕ with the road plane (pitch angle). The 
lane has width L and the camera is located at a 
horizontal distance of dr meters from the right border 
and at height H above the ground. Of course, L, dr, θ 
and ϕ may vary over time, but H is supposed constant. 
Finally, let Eu and Ev be the focal lengths in pixels/meter 
along the horizontal and vertical camera axes, and the 
image origin centered in the principal point (intersection 
of the optical axis with the image plane). Then, the 

following equation relates (ur, vr), the pixel coordinates 
where the right lane line is imaged, to the road 
parameters it belongs to (Guiducci, 1999): 
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Let's make a final simplifying assumption, namely that 
the linear term of the curvature is negligible, C1 ≈ 0. 
Hence, our road model is simply a succession of 
segments of constant curvature. The former equation 
clearly follows the formulation of a hyperbola with a 
horizontal asymptote at v = v0: 
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In order to enforce parallelism of lane borders, we 
introduce a new variable xc, which is the signed distance 
along the X axis between the camera projection on the 
road plane and the central axis of the left lane line 
(Figure 6). It follows that dr = xc − L, dl = xc and we 
have the following couple of equations, for points (ul, vl), 
(ur, vr), on the left and right border, respectively: 
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Since parameters Eu, Ev, H and ϕ can be estimated 
through a camera calibration process (Zhang, 2000; 
Bouguet, 2008), Equation (13) is linear with respect to 
the four unknowns θ, xc, L and C0. It can be compactly 
rewritten as: 
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Figure 6. Image acquisition geometry. 
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with 
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Note that according to this model, four points, not all on 
the same line, define a pair of hyperbolas sharing the 
same horizontal asymptote. In addition, they correspond 
to two parallel curves L meters apart, when back-
projected to the road plane. This implies that we are 
going to fit both left and right lane lines at the same 
time and enforcing parallelism, that is, consistency in 
the solution. Besides, the sparsity of candidates in one 
lane side due to occlusions or dashed lane marks can be 
compensated by those in the other side. The parallelism 
constraint, however, is a potential drawback at places 
where the present lane bifurcates, like in highway exits 
and lane splitting, as shown in Figure 7. 
 

3.2. Model fitting 
 

We would like to separate ridge points on each side 
of the lane in order to adjust the corresponding curve 
only to them. Since the camera is located at the center of 
the windshield screen and forward-facing, we can make 
a guess based on the horizontal coordinate with respect 
to a fixed image column uvanish (Figure 8). This column 
corresponds to the u-coordinate of the image vanishing 
point when the vehicle is centered (xc = 0, θ = 0) in a 
straight lane (C0 = 0). In curves, of course, this simple 
criterion is reliable only near the vehicle. Therefore, 
from rows vmin to vcommon we cannot tell which side a 
ridge point belongs to, and we assume both are possible. 
It is only below row vcommon that the image is safely 
divided by uvanish into left and right lane regions. 

A minimum of four points are necessary in order to 
solve Equation (14), provided there is at least one point 
on each curve. If more points are known, we get an over 
constrained system that is solved in the least-squares 
sense. The problem, of course, is the selection of the 
right points among all candidates from the previous 
detection step. We need a robust technique in the sense 
of, simultaneously, classify candidate points into lane 
points (inliers) and not lane points (outliers, at least for 
that side), and perform the fitting only to the former 
ones. This is the kind of problem that can solve the well 
known Ransac technique (Fischler and Bolles, 1981) for 
model fitting based on hypotheses generation and 
verification. In our particular case, the models to fit are 
pairs of hyperbolas parametrized by a1 … a4. Any four 

feature points instantiate one such model by solving the 
linear system of Equation (14). As for the needed 
number of trials ntrials, we have estimated it from 
thousands of frames belonging to sequences recorded 
under different lighting conditions (at day and night) 
and roads (including highways, motorways and local 
roads). Table 1 lists the value for this and all other 
fitting parameters which we describe in the following. 

Ransac requires the specification of a distance 
function d(p,M) in order to measure the support of a 
certain model instantiation M. Previously, however, we 
check whether the lane width of M is a reasonable 
quantity, that is, within an interval [Lmin, Lmax]. If so, the 
support is computed by combining two factors: distance 
to the instantiate lane line and orientation similarity. 
There is not a simple expression for the geometric 
distance between a point and a hyperbola since there are 
up to four lines through a point which are perpendicular 
to a conic. Instead, we are going to use the Sampson's 
distance (Sampson, 1982), which lies between the 

Figure 7. Several frames of a sequence at 10 fps. The 
vehicle leaves a highway, finds a bifurcation and turns 
to the right. Notice that in spite of the high curvature of 
the lane lines the method is able to detect them very 
well, except in the frames where the two lines are not 
parallel (f68 and f75) due to the approaching bifurcation. 
 
 

Figure 8. The detected features are divided into three 
groups, depending on their position in the image. 
Ridgeness is computed from row vmin downwards. 
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algebraic and the geometric distances in terms of 
complexity but which gives a close approximation to the 
later. Let p = (u, v ,1)t be a point in homogeneous 
coordinates and C a symmetric 3×3 matrix. Then, 
ptCp=0 is the equation of a conic section. The 
Sampson's distance is defined by: 
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where (Cp)i denotes the i-th component of the vector 
Cp. For those ridge points satisfying dS(p,C) < tdist , a 
second test is applied before being admitted as inliers: at 
the point p' on C closest to p, the line Cp' tangent to the 
conic must be parallel to the dominant image orientation 
at p, or equivalently, perpendicular to the dominant 
gradient orientation field w′ at that point. A maximum 
deviation of α is allowed. For the sake of computational 
simplicity p' is taken as the point of C in the same row 
as p. 

We have checked that in cases where the two lane 
lines are dashed, there are few inlier points to which fit 
the model and possibly a larger number of outliers 
which have not been filtered out by the expected 
orientation criterion. Ransac is then able to select the 
right points based on the fact that models fitted to 
combinations of outliers have less support because they 
lack the expected spatial organization. In the less 
difficult case of one solid and one dashed line, the inlier 
points on the solid line provide a high support for the 
models having one of the lines close to them and thus, 
with the help of the lane width constraint, help to select 
as inliers the few points on the dashed line. 

A final observation must be made concerning the 
lane model of Equation (14). In it we supposed the pitch 
angle φ to be known from the calibration process, but it 
actually suffers variations around its nominal value due 
to non-planar roads, acceleration, brake actioning etc. 
To account for this fact, quite influential in the 
instantiated model because it changes its horizontal 
asymptote, we test several possible values for φ, taking 
nφ equispaced samples within φ ± Δφ, for a certain 
margin value Δφ (again, refer to Table 1 for the actual 
parameters values). 

4. VALIDATION AND RESULTS 

As pointed out in a recent survey on video-based lane 
departure warning (McCall and Trivedi, 2006), results 
in the literature  are often presented only in the form of 
several frames, where the reader can check the 
correspondence between detected lane lines and real 
lane markings. We also present results in this qualitative 
way, but just to show examples of challenging situations 

due to occlusions, shadows, reflections and poor 
lighting conditions, both in daytime and nighttime,  
where our method succeeds, at least by visual 
comparison (Figures 7 and 9). Complete sequences from 
which these frames have been extracted can be viewed 
at www.cvc.uab.es/adas/projects/lanemarkings/IJA

T/videos.html.  
However, since our fitted model has a direct relation 

to geometrically meaningful parameters of interest in 
the context of ADAS, we base the evaluation on the 
comparison of these computed values with the actual 
ones. And here we face the main difficulty in obtaining 
quantitative results for this kind of work: the lack of 
ground truth, that is, the precise knowledge of the road 
shape, the camera position and the viewing direction at 
each frame. True, they can be approximated by means 

Figure 9. Segmented lane curves on frames acquired by 
different cameras: (1-3) dashed lines, (4) occlusion. 
(5,6) tunnel exit and entrance, (7) horizontal marks, (8) 
cones, (9,10) special road marks, (11,12) shadows, 
(13,14) night images with low contrast and reflections. 
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of additional sensors like differential or high precision 

GPS, accelerometers etc. (Wang et al., 2005), but the 
construction of digital road maps at lane line resolution 
is still a research issue in itself and out of the scope of 
this paper. Therefore, we have resorted to build a 
simulator which generates sequences of synthetic but 
realistic images from exactly known road geometry and 
camera dynamics. This has the evident advantage of 
controlling every possible factor, from the 3D road 
shape and contrast to the camera trajectory and pose 
along time. 

Specifically, the simulator, implemented in Matlab, is 
based on four models: 
1. Road photometry. The road is composed of two 

lanes and thus it has two border and one central lane 
lines. Each of them can be continuous or dashed. 
Variable lighting conditions are simulated by sudden 
gray level changes of long road patches (Figure 10b). 

2. Road geometry. The road is divided into segments 
of varying length and constant but random curvature, 
and a linear interpolation of curvature is performed 
at their ends to get smooth transitions. Likewise, it is 
also divided into segments of fixed random slope, 
independently of curvature. Slope is later smoothed 
to avoid sudden unrealistic  changes. 

3. Camera model (intrinsic parameters). The camera is 
simulated by a central projection, according to the 
pin-hole model. The principal point is located at the 
image center. No radial distortions have been 

considered for the sake of simplicity. A focal length 
of 1200 pixels for both axes and a resolution of 
640×480 pixels yield a field of view very similar to 
that of real cameras we have used. However, images 
are sampled to half resolution to speed up 
processing. 

4. Camera dynamics (extrinsic parameters). Camera 
location changes due to the simulated vehicle 
motion which is longitudinally 1 meter per frame 
(thus, at 30 fps the simulated vehicle speed is 108 
Kmh). In order to determine the lateral displacement 
with respect the lane central axis, the whole road is 
divided into segments of varying length. Each is 
assigned a constant lateral offset, and then a 
Gaussian smoothing is performed to avoid sudden 
vehicle direction changes. With regard to camera 
pose, we have fixed the roll angle to zero (the 
horizon line is parallel to the image horizontal axis) 
and set at each frame the yaw angle θ such that the 
camera is always forward facing, that is, the optical 
axis is parallel to the vehicle trajectory tangent 
(Figure 6). Finally, the pitch angle φ has not been 
fixed, since it is responsible for the horizon line 
vertical motion, which is not static in real sequences. 
Besides, it turns out that this parameter is quite 
influential on the results. Thus, we have randomly 
varied the pitch angle so as to mimic the effects of 
an uneven road surface and of acceleration and 
brake actioning, both observed in real sequences. 
Specifically, the pitch variation is generated by 
adding two random signals: the first one of high 
frequency and small amplitude (less than 0.2°) and 

Figure 10. a) Planar projection of the synthetic 3D road,
(b) sample frame of a place close to changes in slope,
curvature and road contrast, (c) road slope, (d) nominal
and real pitch angle φ. For viewing the complete video 
sequence, please see 
www.cvc.uab.es/adas/projects/lanemarkings/IJAT

/videos.html. 
 
 

Table 2. Main simulator parameters.  
image dimensions 640×480 pixels 
bits/pixel 8 
focal lengths Eu , Ev 1200 pixels 
camera height H 1.6 m 

camera 
model 

camera pitch φ 1.6° 
maximum amplitude of pitch 
noise : low frequency 1.0° 
 high frequency  0.2° 
roll angle 0° 

camera 
(vehicle) 
motion 

maximum lateral offset 80% of lane width 
total road length 5 Km 
length of segments of constant 
curvature and slope 300-600 m. 

maximum slope magnitude 7% 
minimum radius of curvature 50 m. 
lane width 3.65 m. 
road border line width 0.2 m. 
  length 20 m. 
  gap 4 m. 
inter-lanes line width 0.15 m. 
  length 4 m. 
  gap 7 m. 
mean road intensity 0.2 (1=white) 

Road 
geometry 
and 
photome-
try 

mean lane line intensity 0.9 
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the second one of low frequency but larger 
amplitude (between 0.5° and 1°), which account 
respectively for the two former pitch variation 
sources (Figure 10d). 

 
Table 2 contains the specific values for the most 

relevant parameters of the simulator, some of which 
correspond to a real road. We have performed several 
tests on synthetic sequences in order to calculate the 
error in the estimation of  C0, L, θ, xc and also ϕ. Figure 
10a shows the whole 5 Km long synthetic road from 
which quantitative results have been drawn at each 

meter. Figure 10b shows a typical frame. Error 
computation has not been the unique goal of testing, but 
we wanted also to assess the error contribution due to 
the departure from the assumed road model and to 
errors in image lane line detection. Specifically, we 
have conducted the following tests, increasingly 
approaching the real testing scenario: 
• Non-ideal road. We have generated a sequence of a 

synthetic road with piecewise constant curvature and 
slope. Camera pitch has been fixed to a known 
nominal value. Lane lines detection is ideal, since 
we obtain one point per row points from the central 
projection of the generated lane lines world 
coordinates, instead of the road image itself. 

• Non-ideal camera. Like the former case but now the 
camera pitch is allowed to vary from its nominal 
value, in the way explained above. 

• Non-ideal detection. The only difference with the 
previous case is that detection is performed on 
actual images of the sequence. This test assesses the 

Figure 12. Ground truth and computed C0 in m−1, same 
cases as Figure 11. 
 

Figure 11. Ground truth and computed xc in meters for
(top to bottom) : a) non-ideal road, b) non-ideal camera,
c) non-ideal detection with nominal pitch (nφ = 1), d) 
non-ideal detection trying nφ = 7 pitch angles around
nominal camera pitch and median filtering of this latter
result, e) causal median filtering of (d). To achieve a
proper zoom only the first 2 Km are shown. Circles and
triangles mark the locations of slope and large pitch 
variation, respectively. 
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influence of detection, performed as described in 
sections 2.1 and 3.2. 

• Best pitch search. Like the former case of non-ideal 
detection, but now we do not rely on the nominal 
pitch. Instead, we test a fixed number of values nφ 
equispaced around the nominal value ϕ. This is 
equivalent to look for the best horizon line near that 
produced by the nominal pitch angle. 

 
Figures 11 and 12 (top) show that the difference 

between computed parameters xc and C0, and their 
corresponding ground truth is very small if the road 
follows the ideal model of constant (but also linearly 
varying) curvature, flat surface and known camera pitch 
angle, thus confirming the suitability of the proposed 
method. At the same time, deviations from this ideal 
case due to sudden slope change introduce large errors, 
though logically localized in time. The larger the slope 
variation, the larger the error, but the sign of change 
does matter. The slope variation at times t = 450 and 
850 is almost equal (Figure 10c) but the error is much 
smaller in the first case, for all four parameters. The 
reason is that, when the camera approaches a negative 
slope change (the vehicle goes uphill and almost reaches 
the 'top'), the number of image rows depicting road 
surface is reduced (Figure 13). In principle, this should 
not cause any problem, since the detection of the lane 
line points is ideal, that is, the (ul,vl), (ur,vr) are exact. 
However, these points are taken only from the road 
visible region, one per row and side. If they have similar 
v coordinate, the over constrained linear system built by 
stacking pairs of equations (14) becomes ill-conditioned. 
When the slope change is positive (the camera faces a 
'ramp', like in Figure 10b), the lane line points do not fit 
into the flat road model and, consequently, there is some 
error, but the system is well conditioned. 

The second row of Figures 11 and 12 shows the error 
introduced by variations in the camera pitch (Figure 
10d). At frames where the pitch variation has its largest 
peaks, the error is small for xc for C0. The reason is that 
xc is a local road measure very close to the camera 
position and thus not affected by the global lane line 
shape, specially its shape at a large distance, close to the 
horizon line. On the contrary, C0 does depend on the 
global shape (according to the road model, the curvature 
is supposed to be constant) which is in turn dependent 
on the shared lane lines horizontal asymptote. 

When the lane line points (ul,vl), (ur,vr) are extracted 
from the images, in the non-ideal detection scenario, the 
former two types of errors are somehow amplified for 
all four parameters (third row of Figures 11 and 12). In 
addition, a small amplitude noise appears everywhere. 
This latter could be attributed to the detection process, 
but experiments have shown that it is mainly due to the 
small amplitude pitch variation. We have tried to 

minimize the effect of pitch changes (both large and 
small) by considering ϕ another parameter to estimate, 
as explained in the next paragraph. Recall that the last 
testing scenario consists of looking for the best pitch 
angle (in terms of Ransac, maximize the size of the 
consensus set) among nφ possible values within the 
nominal pitch ± Δφ. However, the estimated φ is not 
used to recompute the four parameters, it is just a way to 
check the success of the best pitch search procedure 
when comparing the estimated φ to the ground truth 
(Figure 14). 

The fourth row of Figures 11 and 12 shows the result 
for nφ = 7 and Δφ = 1°. From Figure 14 we conclude 
that the best pitch search is often able to correctly 
estimate the pitch (the four largest pitch variations are 

Figure 13. A negative slope change shrinks the road 
region from the image, causing large errors in the 
computed parameters. 
 
 

Figure 14. Ground truth and computed φ in degrees, for 
(a) nφ = 7, (b) nφ = 41, (c), (d) causal median filtering of 
(a) and (b). 
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well detected), but not always. The most prominent 
errors are localized around the four slope changes, 
where this simple approach of guessing the best pitch 
fails. Elsewhere, a sort of impulsive error is observed, 
caused by a small number of inliers. In addition, 
depending on the value of nφ , the estimated φ suffers 
from a quantization noise: the 2° interval is too wide for 
just 7 possible values. Increasing nφ yields a better 
estimation but the computational cost precludes a high 
processing rate. In spite of it, a causal median filter 
(median of a number of pitch estimations before the 
current frame) produces an acceptable result, even for nφ 
= 7. Likewise, the causal median filtering of xc and C0 
(bottom row of Figures 11 and 12) produces more 
accurate values due to the impulsive and zero mean 
nature of the error induced by the pitch estimation. 
Finally, Figure 15 shows the root-mean square error 
(RMSE) between computed and ground truth for nφ = 1, 
3, 7, 41 and also for their median filtered versions. 
Whereas there is only a slight improvement, or even no 
improvement at all, when nφ increases, the error of the 
filtered parameters clearly decreases. Therefore, it 
seems that it does not pay to look for the best pitch if no 
filtering is performed afterward. But the important thing 
to note is that even in the simplest case of nφ = 1, the 
RMSE of xc and C0 is only 25 cm, and 0.0027 m–1, 
respectively. 

5. CONCLUSIONS 

We have developed a new method for the extraction of 
lane lines from video sequences, with robustness and 
quantitative evaluation as the main considerations. 
Robustness is achieved both in the feature detection 
phase, where we employ an  image feature well suited 
to this problem, and in the model fitting phase, which 
we have addressed with a RANSAC approach. This 
method relies just on images, that is, we do not take into 
account data from other vehicle sensors, like the 
steering angle, yaw rate or vehicle speed. In addition, 
each frame is processed independently of the others, 
since our goal has been to build a 'baseline' system on 
which to later add filtering, to enforce temporal 
consistency, and data fusion, to improve reliability. 

Our lane line extraction method has the advantage of 
computing four road and vehicle trajectory parameters 
which are of interest in the context of ADAS: road 
curvature, lane width, lateral vehicle offset and heading 
angle with respect the road medial axis. We have 
compared the computed values with ground truth from a 
synthetic but realistic road, in several testing scenarios, 
increasingly closer to a real test. From the experiments 
we conclude that it is possible to compute reasonable 
estimations of these parameters, even in the case where 
the road does not exactly follow the assumed model of 

flatness, constant curvature and known camera pitch. 
We have also performed extensive visual testing on real 
sequences from different roads, with varying traffic 
density and lighting conditions (day, night, tunnels, cast 
shadows), and also recorded with several camaras (CCD, 
CMOS). Results have shown the robustness of our 
method to these factors. 

The weak point of our method, with regard the 
correct computation of the road geometric parameters, is 
the estimation of the pitch angle. Its prediction on the 
basis of previous frames seems a promising way. Future 
work also includes the design of a post-processing phase 
which incorporates the temporal continuity of detected 
lane lines and parameters. Some promising results have 
already been obtained with a Kalman filter. 
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