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Abstract. We present a framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory,
and apply it to the segmentation of human limbs. First, from aset of random depth features, Random Forest is used to infer
a set of label probabilities for each data sample. This vector of probabilities is used as unary term inα − β swap Graph-cuts
algorithm. Moreover, depth values of spatio-temporal neighboring data points are used as boundary potentials. Results on a
new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology
compared to classical approaches.
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1. Introduction

Human motion capture is an essential acquisition
technology with many applications in computer vision.
However, detecting humans in images or videos is a
challenging problem due to the high variety of possi-
ble configurations of the scenario, such as changes in
the point of view, illumination conditions, and back-
ground complexity. An extensive research on this topic
reveals that there are many recent methodologies ad-
dressing this problem [11,12,24,10]. Most of these
works focus on the extraction and analysis of visual
features. These methods have made a breakthrough
in the treatment of human motion capture, achieving
high performance despite the occasional similarities
between the foreground and the background in the case
of changes in light or viewpoint. In order to treat hu-
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man pose recovery in uncontrolled scenarios, an early
work used range images for object recognition or mod-
eling [23]. This approach achieved a straighforward
solution to the problem of intensity and view changes
in RGB images through the representation of 3D struc-
tures. The progress and spread of this method came
slowly since data acquisition devices were expensive
and bulky, with cumbersome communication inter-
faces when conducting experiments. Recently, Mi-
crosoft has launched the Kinect, a cheap multisensor
device based on structured light technology, capable
of capturing visual depth information (RGBD tech-
nology, from Red, Green, Blue, and Depth, respec-
tively). The device is so compact and portable that it
can easily be installed in any environment to analyze
scenarios where humans are present. Before Kinect,
in the last decade, researchers have also used differ-
ent methodologies and techniques for constructing 3D
structures, such as stereoscopic images [13,29]. How-
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ever, in this case the problems of different lighting
conditions and calibration still exist. Some of the re-
search has also focused on the use of time-of-flight
range cameras (TOF) for human parts detection and
pose estimation [15,21,28], combining depth and RGB
data [19].

Following the high popularity of Kinect and its
depth capturing abilities, there exists a strong research
interest for improving the current methods for human
pose and hand gesture recognition. While this could
be achieved by inter-frame feature tracking and match-
ing against predefined gesture models, there are sce-
narios where a robust segmentation of the hand and
arm regions are needed, e.g. for observing upper limb
anomalies or distinguishing between finger configura-
tions while performing a gesture. In that respect, depth
information appears quite handy by reducing ambigu-
ities due to illumination, colour, and texture diversity.
Many researchers have obtained their first results in
the field of human motion capture using this technol-
ogy. In particular, Shotton et al. [25] present one of the
greatest advances in the extraction of the human body
pose from depth images, an approach that also forms
the core of the Kinect human recognition framework.
The method is based on inferring pixel label proba-
bilities through Random Forest (RF), using mean shift
to estimate human joints, and representing the body
in skeletal form. Other recent work uses the skeletal
model in conjunction with computer vision techniques
to detect complex poses in situations where there are
many interacting actors [20].

Currently, there exists a steady stream of updates
and tools that provide robustness and applicabil-
ity to the device. In December 2010, OpenNI [5]
and PrimeSense [6] released their own Kinect open
source drivers and motion tracking middleware (called
NITE [3]) for PCs running Windows (7, Vista, and
XP), Ubuntu and MacOSX. FAAST (Flexible Ac-
tion and Articulated Skeleton Toolkit) is a middle-
ware developed at the University of Southern Cali-
fornia (USC) Institute for Creative Technologies that
aims to facilitate the integration of full-body control
within virtual reality applications and video games
when using OpenNI-compliant depth sensors and
drivers [2,27]. In June 2011, Microsoft released a non-
commercial Kinect Software Development Kit (SDK)
for Windows that includes Windows 7-compatible PC
drivers for the Kinect device [7]. Microsoft’s SDK al-
lows developers to build Kinect enabled applications
in Microsoft Visual Studio 2010 using C++, C# or Vi-
sual Basic. Microsoft is planning to release a commer-

cial version of the Kinect for Windows SDK with sup-
port for more advanced device functionalities. There
is also a third set of Kinect drivers for Windows, Mac
and Linux PCs by the OpenKinect (libFree- Nect)
open source project [4]. Code Laboratories CL NUI
Platform offers a signed driver and SDK for multiple
Kinect devices on Windows XP, Vista, and 7 [1].

In this paper we present a framework for object seg-
mentation using depth maps based on RF and Graph-
cuts theory (GC) and apply it to the segmentation of
human limbs. The use of GC theory has recently been
applied to the problem of image segmentation, obtain-
ing successful results [9,17,18]. RF is used to infer a
set of probabilities for each data sample, each one in-
dicating the probability of a pixel to belong to a par-
ticular label. Then, this vector of probabilities is used
as unary term in theα− β swap GC algorithm. More-
over, depth of neighbor data points in space and time
are used as boundary potentials. As a result, we obtain
an accurate segmentation of depth images based on the
defined energy terms. Moreover, as long as we have
a priori likelihoods representing target appearance, the
presented method is generic enough to be applicable in
any other object segmentation scenario. Our method is
evaluated on a 3D data set designed in our lab, obtain-
ing higher segmentation accuracy compared to stan-
dard segmentation approaches.

The rest of the paper is organized as follows: Sec-
tion 2 presents the novel segmentation framework in
depth images based on RF and GC theory. Section 3
presents a quantitative and qualitative evaluation of the
methodology on a new multi-label depth video data set
of human poses. Finally, Section 4 concludes the pa-
per.

2. Method

The depth-image based approach suggested in [25]
interprets the complex pose estimation task as an ob-
ject classification problem by evaluating each depth
pixel affiliation with a body part label, using respective
Probability Distribution Functions (PDF). The pose
recognition phase is addressed by re-projecting the
pixel classification results and inferring the 3D posi-
tions of several skeletal joints using the RF and mean-
shift algorithms. The work of [25] shows a number of
achievements and improvements over previous work,
most notably the growing of a randomized decision
forest classifier ofT decision trees applied on simple
and computationally efficient depth features.
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Fig. 1. Pipeline of the presented method, including the input depth
information, Random Forest, Graph-cuts, and the final segmentation
result.

Our goal is to extend the work of [25] and com-
bine it with a general segmentation optimization pro-
cedure to define a globally optimum segmentation of
objects in depth images. As a case study, we segment
pixels belonging to the following seven body parts1:
LU/LW/RU/RW for arms, (from Left, Right, Upper
and loWer, respectively), LH/RH for hands, and the
torso. The pipeline of the segmentation framework is
illustrated in Fig. 1.

2.1. Random Forest

Considering a priori segmented human body from
the background in a training set of depth images, the

1Note that the method can be applied to segment any number of
labels of any object contained in a depth image.

procedure for growing a randomized decision treet is
formulated over the same definition of a depth compar-
ison feature as defined in [25]:

fθ(I,x) = dI

(

x+
u

dI(x)

)

−dI

(

x+
v

dI(x)

)

,

(1)

wheredI(x) is the depth at pixelx in imageI, I is con-
sidered subset of the Euclidean spaceE2, θ = (u,v),
andu,v ∈ R

2 is a pair of offsets, the normalization
of which ensures depth invariance. Thus, eachθ deter-
mines two new pixels relative tox, the depth differ-
ence of which accounts for the value offθ(I,x). Each
tree consists of split and leaf nodes (the root is also a
split node), as depicted in the upper part of Fig. 1. The
training procedure of a given treet over a unique set
of ground truth images (avoid sharing images among
trees), runs through the following steps:

1. Define a setΦ of node splitting criteriaφ =
(θ, τ) , through the random selection ofθ =
(u,v), andτ, τ ⊂ R (a set of splitting thresholds
for eachθ), with bothθ andτ lying within some
predefined range limits. After training, each split
node will be assigned with its optimalφ value
fromΦ.

2. Define a setQ of training examplesQ =
{(I,x)|x ∈ I} over the entire set of training im-
ages for the tree, whereI stands for an image,x
is a randomly selected pixel inI, and the number
of pixelsx per image is fixed. Estimate the PDF
of Q over the whole set of labelsC (in our case
|C| = 7):

PQ(c) =
hQ(c)

|Q|
, c ∈ C, (2)

wherehQ(c) is the histogram of the examples
fromQ associated with the labelc ∈ C. Each ex-
ample fromQ enters the root node, thus ensuring
optimal training of the treet.

3. At the currently being processed node (start-
ing from the root), split the (sub)setQ, entering
this node into two subsetsQL andQR obeying
Eq. (1):

QL(φ) = {(I,x) |fθ (I,x) < τ}, φ = (θ, τ),
QR(φ) =Q \Qleft,

(3)
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and estimate the PDF ofQL, PQL
(c), as defined

in Eq. (2). Compute the PDF ofQR, which may
be speeded up by the following formulae:

PQR
(c) =

|Q|

|QR|
PQ(c)−

|QL|

|QR|
PQL

(c), (4)

QR = QR(φ), QL = QL(φ), (5)

c ∈ C. (6)

4. Estimate the best splitting criterionφ∗ for the
current node, so that the information gainGQ(φ

∗)
of partitioning setQ entering the node into left
and right subsets to be maximum:

GQ(φ) =H(Q)−
|QL(φ)|

|Q|
H(QL(φ)) (7)

−
|QR(φ)|

|Q|
H(QR(φ)), (8)

φ = (θ, τ) ∈ Φ, (9)

whereH(Q) = −
∑

c∈C

PQ(c) ln(PQ(c)) repre-

sents Shannon’s entropy for the input (sub)setQ

and its splits (QL andQR) over the set of labels
C. It is more or less obvious thatGQ(φ) > 0,
φ ∈ Φ, but it is difficult to make a more analyt-
ical statement for the behaviour ofGQ(φ). That
is why we also use the full search approach to
evaluateφ∗:

φ∗ = argmax
φ∈Φ

GQ(φ). (10)

5. Recursively repeat step 3 and 4 overQL (φ∗) and
QR (φ∗) for the left and right node children re-
spectively until some preset stop conditions are
met: the tree reaches maximum depth; the in-
formation gain or the number of pixels in the
node falls below a minimum. The node where the
stop condition occurred is treated as a leaf node,
where, instead ofφ∗, the respective PDF for the
subsetQ reaching the node is stored (see Eq. (2)).

Once trained, such a randomized tree serves as a per
pixel classifier for a test depth image. Each image pixel
for recognition, i.e. an example(I,x) is run through
the tree, starting from the root and ending at a leaf
node, taking a path that depends solely on the in-
equality fθ(I,x) < τ , using the splitting criterion
φ = (θ, τ) stored at the current tree node. The pixel
acquires the PDF kept at the reached leaf node. Be-
cause of the random factor when growing the tree, dif-

ferent trees have different predictions for the pixels of
the same image. It cannot be stated that one tree is a
better single classifier than another one since each tree
is fitted to its training set. But an ensemble of trees,
which form a random forestT , is expected to increase
the predictive power of the classifier. Therefore, the in-
ferred pixel probability distribution within the forest is
estimated by averaging the PDFs over all trees in the
forest as follows:

P (c|I,x) =
1

|T |

∑

t∈T

Pt (c|I,x) , c ∈ C, (11)

wherePt (c|I,x) is the PDF stored at the leaf, reached
by the pixel for classification(I,x) and traced through
the treet, t ∈ T . Assuming the trees in the forestT
are fairly balanced, the time complexity of classifying
an image isO(|T | ·NP ·Lmax), whereNP is the total
number of pixels(I,x) from the image andLmax is
the averaged maximum depth level over the trees ofT .

The randomized tree growing process suggested by
Shotton et al. [25] involves two levels of random-
ness: in choosing the training images and in the ran-
dom definition of the node splitting criteria. This en-
sures minimum correlation among the trees in the for-
est. Unlike Breiman’s classic Random Forest algo-
rithm [26], which chooses the best split candidate (cri-
terion) among a small subset of all possible candi-
dates, the presented split candidate selection procedure
greedily explores all possible choices in order to guar-
antee the most efficient split at the current node. The
after-effects are two: the most informative features are
filtered down and pushed onto the tree; similar pixels
have better chances of falling within the same descen-
dant nodes. The estimated time complexity of building
a randomized decision tree under the above conditions
isO(|Φ| · |Q| · Lmax).

We apply the RF methodology of [25], as described
above, in the following two use cases: for rough detec-
tion of the main body parts, and for detailed segmen-
tation of the fingers of the hands (to eventually be ap-
plied for sign/cued languages recognition problems).

2.2. Graph-cuts framework

GC [9] is an energy minimization framework which
has been considerably applied in image segmentation
–both binary and multi-label–, with highly successful
results. In this work, we extend the GC theory to be
used in depth images and optimize the results obtained
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from the RF approach in order to deal with automatic
spatio-temporal multi-label segmentation.

Given I = {I1, ..., Is, ..., IS} the set of frames of
the video sequence, andX = (x1, ...,xi, ...,x|P|) the
set of pixels ofI, let us defineP = (1, ..., i, ...|P|)
the set of indexes ofI; N the set of unordered pairs
{i, j} of neighboring pixels in space and time, under
a defined neighborhood system –typically 6- or 26-
connectivity–, andL = (L1, ..., Li, ..., L|P|) a vector
whose componentsLi specify the labels assigned to
pixelsi ∈ P . This framework defines an energy func-
tionE(L) that combines local and contextual informa-
tion, and whose minimum value corresponds to the op-
timal solution of the problem –in our case, the optimal
segmentation:

E(L) = U(L) + λB(L). (12)

The first term of the energy function is called the
“unary potential”. This potential encodes the local
likelihood of the data by assigning individual penalties
to each pixel for each one of the defined labels:

U(L) =
∑

i∈P

Ui(Li). (13)

The second term or “boundary potential” encodes con-
textual information by introducing penalties to each
pair of neighboring pixels as follows:

B(L) =
∑

{i,j}∈N

B{i,j} Ω(Li, Lj), (14)

whereΩ(Li, Lj) is a function that introduces prior
costs between each possible pair of neighboring labels.
Finally, λ ∈ R

+ is a weight that specifies the rela-
tive importance of the boundary term against the unary
term.

Once the energy function is defined, a graphG =<

V , E > is built following the neighborhood system
used in the boundary potentialB(L). Since the Graph-
cuts framework is defined forN -dimensional graphs,
and we are working with video sequences –which can
be seen as 3-D volumes–, we can extend the graph
topology from 2-D to 3-D, and segment more than just
one frame at a time. From a practical point of view,
and considering that computer memory resources are
limited, we adopt a sliding-window approach. More
specifically, we define a fixed size volume window
V like the one depicted in Fig. 2. This new graph
topology introduces a new set of inter-frame connec-

Fig. 2. Graph topology introducing temporal coherence.

tions between nodes, in addition to the existing intra-
frame connections from the previous frame-by-frame
approach. The values associated with these edges of
the graph are computed with the sameB{i,j} function
as in the case of intra-frame edges.

The sliding-window approach starts segmenting the
first |V | frames, and covers all the video sequence vol-
ume, with a one-frame stride. This means that all the
frames except the first and the last one are segmented
at least twice and|V | times at most. In order to se-
lect the final hypothesis for each frame, we use the en-
ergy value resulting from the minimization algorithm
at each execution. Therefore, the execution with the
lowest energy value is the one we trust as the best hy-
pothesis.

Once the graph is built, the energy function is trans-
ferred to it. In the case of binary segmentation, i.e.
Li ∈ {0, 1}, ∀i ∈ P , the min-cut algorithm [9] finds
the minimum cut of this graph –which corresponds to
the minimum energy– and thus, the optimal segmenta-
tion. WhenLi ∈ {0, ..., NL}, NL > 1, two main algo-
rithms can be applied in order to find not the minimum
energy, but a suboptimal approximation of it:α − β

swap andα-expansion [8]. While the first one is less
restrictive and can be applied in a broader range of en-
ergy functions, the second one has been proven to ob-
tain better results, as long as the energy function ful-
fills some conditions [8]. In the case ofα − β swap
the boundary termB{i,j} must besemi-metric, which
means that the conditions in Eq. (15) and (16) must be
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Table 1

Weights of edges inE .

edge weight (cost) for

tαi Ui(α) +
∑

j∈Ni
Lj /∈{α,β}

B(α, Lj) Li ∈ {α, β}

t
β
i Ui(β) +

∑
j∈Ni

Lj /∈{α,β}

B(β, Lj) Li ∈ {α, β}

e{i,j} B(α, β)
{i,j}∈N

Li,Lj∈{α,β}

fulfilled:

B(Li, Lj) = B(Lj, Li) ≥ 0 (15)

B(Li, Lj) = 0 ↔ Li = Lj (16)

B(Li, Lj) ≤ B(Li, Ln) +B(Ln, Lj), (17)

for any Li, Lj, Ln ∈ L, beingB(Li, Lj) = B{i,j}

Ω(Li, Lj). Additionally, if we want to applyα- expan-
sion, the condition in Eq. (17) must also be fulfilled. In
that case, the boundary termB{i,j} is said to bemetric.

In our case, Eq. (17) is not true for all nodes inG,
and so, we useα−β swap in our segmentation method-
ology for depth maps. This way, the set of nodesV
contains a node for each pixel inI, plus two terminal
nodes:α andβ. Similarly,E is composed by two kinds
of edges: terminal linkstαi andtβi , and neighbor links
e{i,j}. The values assigned to the edges ofG are then
assigned following Table 1. Regarding time complex-
ity, both algorithmsα-expansion andα − β swap run
in O(|L|2 · |P|).

The following subsections define the specific energy
function potentials that we designed for our problem.

Unary potential
The unary potential encodes the local likelihood for

each pixel to belong to each one of the labelsLi of our
problem. In our case, we have used the log-likelihood
of the probabilities returned by the RF for the compu-
tation of the unary potential:

Ui(Li) = − ln(P (c|I, x)), (18)

obtaining a unary cost potential for each classci –
corresponding to labelLi in GC. This step is shown at
the top of Figure 1, where the output probabilities of
the leafs of the RF trees are used to compute the unary
potentialsUi(Li) at the input edges of the GC graph.

Boundary potential
In the case of the boundary potential, we use the fol-

lowing formulation:

B{i,j} =
1

dist(i, j)
e−β·H(xi,xj), (19)

whereβ =
(

2〈(dI (xi)− dI (xj))
2〉
)−1

anddist(i,
j) computes the Euclidean distance between the carte-
sian coordinates of pixelsxi andxj . In a similar way,
the H(xi,xj) function computes the Euclidean dis-
tance between certain features of pixelsxi and xj .
The simpler case just uses depth information, thus
H(xi,xj) = dI (xi)−dI (xj), but in the experimental
section we also test the use of RGB and depth infor-
mation joined as a 4-dimensional feature vector.

Finally, we defined two differentΩ(Li, Lj) func-
tions in order to introduce some prior costs between
different labels. On one hand, we considered the trivial
case where all different labels have the same cost:

Ω1(Li, Lj) =

{

0 for Li = Lj

1 for Li 6= Lj.
(20)

On the other hand, we introduced some spatial coher-
ence between the different labels, taking into account
the kinematic constraints of the human body limbs:

Ω2(Li, Lj) =































0 for Li = Lj

10 for Li = LU, Lj = RU
Li = LH, Lj = RH

5 for Li = LW, Lj = RH
Li = RW, Lj = LH

1 otherwise.

(21)

With this definition of the inter-label costs, we are
making it difficult for the optimization algorithm to
find a segmentation in which there exists a frontier
between the right and left upper-arms, right and left
hands, or in the lower measure, between left hand and
right lower-arm, and vice-versa. Therefore, we are as-
suming that poses in which the two hands are touching
are not probable2.

3. Experiments and results

This section starts with a brief description of the
considered data and the different methods, parameters,
and validation protocol of the evaluation.

Data: For the purposes of gathering ground truth
data, we defined a new data set of several sessions

2This label coherence cost should be estimated for each particular
problem domain. In our particular data set of poses, the values of 1,
5, and 10 were experimentally computed.
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where the actors are performing different gestures with
their hands in front of the Kinect camera – only the
upper body is considered. See Fig. 4 for some pose
samples. Each frame is composed by one 24 bit RGB
image of size 640x480 pixels, one 12 bit depth buffer
of the same dimension, and a skeletal graph describ-
ing relevant joints of the upper human body. In order
to label every pixel we created a special editing tool to
facilitate labelling in a semi-supervised manner. Each
frame is accompanied with label buffer of the same
dimension as the captured images. The label buffer is
automatically initialized through a rough label estima-
tion algorithm. The pixels bounded by the cylinders
between the enclosing joints of the shoulder to elbow
are labelled as upper arm (LU/RU). By analogy the
pixels inside the cylinder between the elbow and the
joint of the hand are labelled as lower arm (LW,RW).
The palm is labelled by the pixels bounded by a sphere
centered in the joint of the hand (LH,RH). The RGB,
depth, and skeletal data are directly obtained via the
OpenNI library [5]. Finally each frame is manually
edited to correct the roughly estimated labels by the
initialization algorithm. The whole ground truth used
in our experiments is created from capturing 2 actors
in 3 sessions gathering 500 frames in total (15 fps).
It should be noted that after the manual editing there
still exist around1% of false positive labels due to ed-
itor mistakes. An example of the developed interface
for semi-automatic ground-truth generation is shown
in Figure 33.

We also made an extra experiment for finger seg-
mentation defining 6 labels per hand - one label for
each finger and one for the palm. For gathering ground
truth data from the fingers, we applied another initial-
ization algorithm using coloured gloves, with each fin-
ger being painted with a different colour. Finally man-
ual editing is still necessary due to the high level of
false positive errors. 63 frames are generated and used
in the experiment.

Methods and validation: In the first place, we an-
alyze the results obtained directly using the proba-
bilities returned by the RF approach. The RF algo-
rithm used for the experiments computation has been
implemented following the description of Shotton et
al. [25]. In the same way, inspired by the reported
test parameters and accuracy results in [25], our ex-
periments rest on the following setup: we perform a
5-fold cross-validation over the available 500 frames

3The data set is public at
http://www.cvc.uab.cat/~ahernandez/data.html

Fig. 3. Interface for semi-automatic ground-truth generation.

by training random forest ofT = 3 trees, therefore
130 unique training images per tree, with1000 uni-
formly distributed pixels per image. We limit the max-
imum depth levelLmax for all trees to20, and use100
candidate offset pairsθ, and20 thresholdsτ per θ to
build the splitting criteriaΦ. The remaining100 im-
ages form the test set. Carrying a randomized test trial,
we analyze the effect of the choice of test parameters
on the classification accuracy and compare the results
with another set of features: a mixture of the original
depth featuresfθ(I,x) from Eq. (1) and new features
gθ(I,x) based on the depth gradient:

gθ (I,x) = ∡

(

▽I

(

x+
u

dI (x)

)

,▽I

(

x+
v

dI (x)

))

,

(22)

where▽I (x) is the gradient of depthdI(x) at pixelx.
In fact, the new featuregθ(I,x) represents the angle
between the two gradient vectors at offsetsu andv

fromx.
In the second place, we compare our proposed seg-

mentation approach with the state-of-the-art Random
Walks (RWalks) image segmentation algorithm [16],
both applied to the probability maps returned by the
execution of the RF method. Since RWalks is designed
to segment still images, no temporal coherence is taken
into account in this approach. Furthermore, besides
the probability maps, RWalks also receives some user-
designed seeds, since it is semi-automatic. However,
in order to perform a fair comparison between this
method and our proposal, which is fully-automatic, we
need to automatize the seed-selection process. For this
task, we select the seeds for each label as the pixels
with greatest probability value. When applying GC,
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theλ parameter was set to50 for all the performed ex-
periments, the nodes of the graph are10-connected –
8 spatial neighbors +2 temporal neighbors–, and the
size of the sliding window is set to|V | = 5. In order to
achieve a more appropriate comparison of the results,
we perform an additional GC experiment. It consists
of removing the temporal coherence, i.e., segmenting
each frame of the sequence independently, using a 2-
D lattice graph topology. In this frame-by-frame ap-
proach, theα-expansion algorithm is used, since the
boundary term ismetricwith this new topology. More-
over, in this second experiment we also compare the
use of different pixel information for the computation
of the boundary term. Apart from depth information
alone, we also test using RGB information only, as in
the standard GrabCut algorithm from [22], as well as
RGB and depth together. For this last approach, we
normalize the depth information in the range[0...255],
and concatenate it with the RGB information, resulting
in a 4-dimensional RGBD vector per pixel. Finally, we
also apply the Friedman test [14] in order to look for
statistical significance of the performed experiments.

3.1. Random forest results

Table 2 shows the estimated average classification
accuracy for each of the considered labels. The most
likely label predicted for a pixel is chosen to be the
one that corresponds to the maximum of the inferred
RF probabilities for that pixel. Without claiming ex-
haustiveness of our experiments, the results from Ta-
ble 2 allow us to make the following analysis: The up-
per limit Omax for the module ofu andv offsets has
the greatest impact on the accuracy results at the hands
regions, which have the smallest area in our body part
definition. DoublingOmax leads to an increase in the
accuracy of about20% for the hands and about6% for
the other body parts. In other words,Omax increases
the feature diversity and the global ability to represent
spatial detail. The number of candidate offset pairsθ

would not have such a tremendous impact on the ac-
curacy as theOmax parameter, though a higher num-
ber ofθ candidates would help in identifying the most
discriminative features. A decrease of the number of
candidates from100 to 80 features drops the hands ac-
curacy with1− 3%.

We also tested the impact ofLmax, the depth level
limit of the decision trees. Trimming the trees to level
15 has a very little impact, showing an improvement of
0.1% on the average accuracy. The latter may weakly
be attributed to better classification at the lower arm

regions. Trimming to depth level10 shows a4% de-
crease in the accuracy at the hands. Our analysis in-
dicates that we may be witnessing slight overfitting at
tree depth level of20 due to the small amount of train-
ing images. Our final test includes comparison over
combination of both featuresfθ andgθ of Eq. (1) and
Eq. (22). Since the depth data provided by Kinect is
noisy, we apply a Gaussian smoothing filter before
calculating the image gradients and thegθ features.
We chose the gradient feature since it complements
the relations of depth features with information about
the orientation of local surfaces. However, in our test
we did not find significant improvement in the perfor-
mance results of the RF approach.

In order to show the generalization capability of the
proposed approach, we carried out an extra case study,
stressing on the segmentation of the finger regions. For
this test we only considered a manual annotated set
of 63 depth image frames without including tempo-
ral coherence. The results applying the same valida-
tion as in the previous case show the best performance
for the following setup:1 tree of depth15, 500 pix-
els per image,100 candidate offset pairsθ, 20 can-
didate thresholdsτ , andOmax = 45. The estimated
average per class accuracy was58.5%, mostly due to
the small number of training images. Fig. 5 displays a
couple of test images comparing the ground truth and
the inferred labels for the fingers and hands. Review-
ing the classification results from both use cases, the
body parts and finger regions, we observe that some of
the errors appear due to left/right uncertainty. Never-
theless, the results are promising, showing the gener-
alization ability of the presented approach for general
multi-class labelling in depth images.

3.2. Graph-cuts results

The results we obtained when applying GC over the
probabilities returned by the RF are detailed in Table 3.
We can see how these results improved the labelling
obtained by the RF approach, and also the one obtained
in the frame-by-frame approach. Moreover, all the GC
approaches shown in Table 3 outperform the results
obtained using the RWalks segmentation algorithm in
most of the body parts. If we take a closer look at the
measurements, we can see that we obtain the best re-
sults when using only depth information for the com-
putation of the boundary potential. In our case study,
adding RGB to the depth information reduces the gen-
eralization of the boundary potential. In Fig. 4 we can
see some qualitative results of the segmentations.
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(a) (b) (c) (d) (e)

Fig. 4. Qualitative results; Ground Truth (a), RF inferred results (b), RWalks results (c), frame-by-frame GC results (d), and Temporally-coherent
GC results (e).
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Table 2

Average per class accuracy in % calculated over the test samples in a
5-fold cross validation.fθ represents features of the depth compar-
ison type from Eq. (1), whilegθ - the gradient comparison feature
from Eq. (22).Omax is the upper limit of theu andv offsets, and
Lmax stands for the maximal depth level of the decision trees

Torso LU arm LW arm L hand RU arm RW arm R hand Avg.

100fθ , Omax = 30,Lmax = 20 92.90 73.29 71.42 57.75 74.25 76.26 59.3872.18

100fθ , Omax = 60,Lmax = 20 94.17 79.83 77.69 77.10 81.04 82.65 80.17 81.81

80fθ , Omax = 60,Lmax = 20 94.22 79.08 76.46 74.19 81.24 83.26 79.05 81.07

60fθ , Omax = 60,Lmax = 20 94.09 78.86 75.86 73.49 79.43 82.60 78.0880.34

100fθ , Omax = 60,Lmax = 15 94.06 79.81 78.69 76.59 81.18 83.10 80.23 81.95

100fθ , Omax = 60,Lmax = 10 91.83 81.47 78.98 72.30 83.00 83.74 76.85 81.17

60fθ + 20gθ , Omax = 60,Lmax = 20 94.04 77.73 74.93 71.97 77.62 81.22 76.6479.17

Table 3

Average per class accuracy in % obtained when applying the different GC approaches –TC: Temporally coherent, Fbf: Frame-by-Frame– , and
the best results from the RF probabilities [25] and the RWalks segmentation algorithm [16], in the first and second rows, respectively.

Torso LU arm LW arm L hand RU arm RW arm R handAvg. per class

RF results 94.06 79.81 78.69 76.59 81.18 83.10 80.23 81.95

RWalks results 99.05 72.17 81.04 86.98 73.27 88.48 91.68 84.67

TC, Depth, Ω2 (Li, Lj) 98.44 78.93 84.38 88.32 82.57 88.85 93.86 87.91

Fbf, Depth,Ω1 (Li, Lj) 98.86 75.05 82.87 91.45 77.57 87.35 93.96 86.73

Fbf, Depth,Ω2 (Li, Lj) 98.86 75.03 83.36 92.41 77.54 87.67 94.20 87.01

Fbf, RGB+Depth,Ω1 (Li, Lj) 99.02 72.02 81.86 90.29 76.56 86.84 92.14 85.53

Fbf, RGB+Depth,Ω2 (Li, Lj) 99.02 72.03 81.95 91.19 76.53 87.12 92.12 85.71

Another interesting result is the influence of the
prior costs given by the differentΩ (Li, Lj) func-
tions. Clearly, when introducing spatial coherence with
Ω2 (Li, Lj), we obtain better results, especially in the
segmentation of the hands, which are the parts with
more confusion among all. Fig. 6 shows a qualitative
example of both approaches.

A more detailed analysis of the results from the
temporally-coherent approach reveals that the highest
improvement is obtained in the case of the upper part
of the limbs. In contrast, the results related to both the
left and right hands are slightly worse than the frame-
by-frame approach. However, hands are the most mov-
ing body parts in the video sequences, and the time
lapse between one frame and the next one can be too
large, inducing the introduction of some noise.

Taking a look at the qualitative results in Fig. 4,
one can first see how the spatial coherence introduced
by the basic frame-by-frame GC approach –Fig. 4
(d)– allows to recover more consistent regions than
the ones obtained with just the RF probabilities, in
such a way that each limb is represented by just one
blob. Moreover, when introducing temporal coherence
–Fig. 4 (e)–, the classification of certain labels like the

ones corresponding to the arms is more accurate com-
pared to the results obtained without temporal coher-
ence. The RWalks algorithm –Fig. 4 (c)– obtains accu-
rate segmentations when the RF probabilities have low
noise, but it fails in the opposite case, though in the
shown cases it seems to perform better than the frame-
by-frame GC approach. Furthermore, RWalks is prone
to confuse the labels between the right and left body
limbs, since no label consistency is enforced.

Finally, we use the Friedman test [14] to show that
the results are not affected by randomness. For this
purpose, we compute the ranks of each segmentation
strategy in Table 3 independently for each segmenta-
tion label –and also for the average. We define the com-
putation of the ranks for a certain label as one “ex-
periment”. More specifically, the rankings are obtained
estimating each relative rankrji for each labeli and
each segmentation strategyj, and computing the mean
rankingR for each strategy asRj = 1

N

∑N

i=1 r
j
i with

N = |L|+1, where|L| is the total number of possible
labels. The Friedman statistic value is then computed
as follows:
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X2
F =

12N

k(k + 1)





∑

j

R2
j −

k(k + 1)2

4



 . (23)

In our case, withk = 7 segmentation strategies
to compare,N = 8 different experiments, and ranks
R = [5.63, 4.88, 2.5, 3, 2.75, 4.75, 4.5] in the row or-
der of Table 3,X2

F = 15.48. Since this value is unde-
sirable conservative, Iman and Davenport proposed a
corrected statistic:

FF =
(N − 1)X2

F

N(k + 1)−X2
F

. (24)

Applying this correction we obtainFF = 3.38.
With seven strategies and eight experiments,FF is dis-
tributed according to theF distribution with six and 42
degrees of freedom. The critical value ofF (6, 42) for
0.05 is 2.23. As the value ofFF is higher than2.23 we
can reject the null hypothesis, and thus, looking at the
best mean performance in Table 3, we can conclude
that the spatio-temporal GC proposal is the best choice
from the presented experiments.

In the second experiment, labelling pixels from
hands –in a frame-by-frame fashion, we achieve an
average per class accuracy of 70.9%, which supposes
even a greater improvement than in the case of human
limbs. Fig. 5 shows some qualitative results of the GC
approach, where we can appreciate that regions are
more consistent and better defined than in the case of
just using RF probabilities. It is worth mentioning that
for this experiment we usedΩ1 (Li, Lj) as the cost
function between labels, and yet we obtained consis-
tent results.

4. Conclusion

We proposed a generic framework for object seg-
mentation using depth maps based on Random Forest
and Graph-cuts theory in order to benefit from the use
of spatial and temporal coherence, and applied it to
the segmentation of human limbs. Random Forest esti-
mated the probability of each depth sample point to be-
long to a set of possible object labels, while Graph-cuts
was used to optimize, both spatially and temporally
the RF probabilities. Results on two novel data sets
showed high performance segmenting several body

Fig. 5. Results from RF classification in the case of hands. First row
shows the ground-truth for two examples. Second row shows the
RF classification results. Third row shows the finalα-expansion GC
segmentation results.

(a) (b)

Fig. 6. Comparison of results without (a) and with (b) spatially-con-
sistent labels.

parts in depth images compared to state-of-the-art ap-
proaches.

As future work, we plan to increase the available
data for improving pixel label inference, and to con-
sider different multi-label object problems from depth
maps. We also plan to explore other ways to deal
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with the temporal coherence, by using different graph
topologies and different energy potential formulation,
as well as to use the proposed method for real smart
environment applications.
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